Feuille d'exercices 7. Applications et lois internes.

Exercice 7.1: (niveau 1)

Calculer $f([-1,1]^2)$, $f(\mathbb{R}_+ \times [1,+\infty[), f^{-1}(\{4\}) \text{ et } f^{-1}(]-\infty,1])$ pour les fonctions de \mathbb{R}^2 dans \mathbb{R} suivantes : $f(x,y)=x^2+y^2$ et f(x,y)=x+y.

Exercice 7.2: (niveau 1)

Soit f une application de E dans F et soit F' une partie de F.

Exprimer $f(f^{-1}(F'))$ en fonction de F' et de f(E).

Exercice 7.3: (niveau 1)

Soit G un groupe tel que $\forall g \in G, \ g^2 = 1_G$. Montrer que G est abélien.

Exercice 7.4: (niveau 1)

Soit $f \; : \; E \longrightarrow F, \; g \; : \; F \longrightarrow G \; \text{et} \; h \; : \; G \longrightarrow E \; \text{des applications}.$

On suppose que, parmi les 3 applications hgf, gfh et fhg, 2 sont injectives (resp : surjectives) et que la troisième est surjective (resp : injective). Montrer que f,g et h sont des bijections.

Exercice 7.5: (niveau 1)

Soit (E, *) un magma. On dit que $x \in E$ est idempotent si et seulement si x * x = x.

- 1°) On suppose que tout élément de E est régulier et que * est distributive par rapport à elle-même. Montrer que tout élément est idempotent.
- 2°) On suppose que tout élément de E est régulier et que * est associative. Montrer que E possède au plus un élément idempotent.

Exercice 7.6: (niveau 1)

Soit E un ensemble et A une partie de E.

$$\mathbf{1}^{\circ}) \text{ On note } f: \begin{array}{ccc} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(E) \\ X & \longmapsto & X \cup A \end{array}.$$

À quelle condition f est-elle injective (resp : surjective)?

$$\mathbf{2}^{\circ}$$
) On note $f: \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$
 $X \longmapsto X \cap A$.

À quelle condition f est-elle injective (resp : surjective)?

Exercice 7.7: (niveau 2)

Démontrer que tout groupe fini (G, .) de cardinal pair contient au moins un élément g_0 différent de 1_G tel que $g_0^2 = 1_G$.

Exercice 7.8: (niveau 2)

Soient E un ensemble et $p: E \longrightarrow E$ une application telle que $p \circ p \circ p = p$.

- 1°) Démontrer que p est injective si et seulement si p est surjective.
- **2°)** Démontrer que si p est injective ou surjective alors $p \circ p = Id_E$.

Exercice 7.9: (niveau 2)

Soient E et F deux ensembles et f une application de E dans F. Montrez que les assertions suivantes sont équivalentes (où $\mathcal{P}(F)$ désigne l'ensemble des parties de F):

- i) f est surjective;
- ii) $\forall y \in F \quad f(f^{-1}\{y\}) = \{y\};$
- iii) $\forall Y \in \mathcal{P}(F) \quad f(f^{-1}(Y)) = Y;$
- iv) $\forall Y \in \mathcal{P}(F)$ $f^{-1}(Y) = \emptyset \iff Y = \emptyset$.

Donnez un énoncé analogue en remplaçant i) par i'): f injective.

Exercice 7.10: (niveau 2)

Soit (M, .) un monoïde. Soit $a, b \in M$ tels que a et b commutent.

On suppose que a n'est pas inversible. Montrer que ab n'est pas inversible.

Exercice 7.11: (niveau 2)

Soit E muni d'une loi interne notée ".", associative, telle qu'il existe e vérifiant :

- i) $\forall x \in E$ xe = x. (e est neutre à droite).
- ii) $\forall x \in E, \exists y \in E \ xy = e$. (tout élément admet un symétrique à droite).

Montrez que E est un groupe.

Exercice 7.12: (niveau 2)

Etudier l'injectivité et la surjectivité de l'application f, de $\mathbb{Z} \times \mathbb{N}^*$ dans \mathbb{Q} , définie par $f(p,q) = p + \frac{1}{q}$.

Exercice 7.13: (niveau 2)

Soit A,B,C,D des ensembles. Construire une bijection entre $C^{A\times B}$ et $(C^A)^B$ et une injection de $C^A\times D^B$ dans $(C\times D)^{A\times B}$.

Exercice 7.14: (niveau 2)

Soit $f: E \longrightarrow F$. On note \hat{f} l'application "image directe" de $\mathcal{P}(E)$ dans $\mathcal{P}(F)$, et $\widehat{f^{-1}}$ l'application "image réciproque" de $\mathcal{P}(F)$ dans $\mathcal{P}(E)$.

- 1°) Montrer que f est injective si et seulement si \hat{f} est injective (resp : \widehat{f}^{-1} est surjective).
- **2°)** Montrer que f est surjective si et seulement si \hat{f} est surjective (resp : $\widehat{f^{-1}}$ est injective).

Exercice 7.15: (niveau 2)

- 1°) Montrer que, pour tout $r \in \mathbb{C}$ avec |r| < 1, $\sum_{n=0}^{+\infty} r^n = \frac{1}{1-r}$.
- **2°)** Dans un anneau A quelconque, si $a, b \in A$ sont tels que 1 ab est inversible, montrer que 1 ba est aussi inversible.

Exercice 7.16: (niveau 3)

Soient A et B deux parties non vides d'un ensemble E et f l'application de $\mathcal{P}(E)$ dans $\mathcal{P}(A) \times \mathcal{P}(B)$ définie par $f(X) = (A \cap X, B \cap X)$.

- 1°) Donner une condition nécessaire et suffisante pour que f soit injective.
- 2°) Donner une condition nécessaire et suffisante pour que f soit surjective.
- **3°)** Lorsque f est une bijection, déterminer f^{-1} .

Exercice 7.17: (niveau 3)

Soit E, F et G trois ensembles.

Soit f une application de F dans G et g une application de E dans G.

- 1°) Donnez une condition nécessaire et suffisante pour qu'il existe une application h telle que $g = f \circ h$.
- 2°) Donner une condition nécessaire et suffisante pour que h soit unique.
- **3°)** Mêmes questions en supposant maintenant que f est une application de E dans F et en étudiant la condition d'existence de h tel que $g = h \circ f$.

Exercice 7.18: (niveau 3)

Soit E, F, G et H quatre ensembles, $s: E \longrightarrow F, f: E \longrightarrow G, i: G \longrightarrow H$ et $g: F \longrightarrow H$ des applications telles que s est surjective, i est injective, et $i \circ f = g \circ s$. Montrer qu'il existe une unique application $h: F \longrightarrow G$ telle que $f = h \circ s$ et $g = i \circ h$.

Exercices supplémentaires:

Exercice 7.19: (niveau 1)

Soit $f: E \longrightarrow E$ une application. On note $F = \{x \in E/f(x) = x\}$. F est l'ensemble des points fixes de f. Montrer que $f \circ f = f$ si et seulement si $f(E) \subset F$.

Exercice 7.20: (niveau 1)

Soient $f: \mathbb{N} \longrightarrow \mathbb{N}$ et $g: \mathbb{N} \longrightarrow \mathbb{N}$ définies, pour tout $x \in \mathbb{R}$, par f(x) = 2x et $g(x) = \lfloor \frac{x}{2} \rfloor$.

- 1°) a) Démontrer que f est injective et non surjective.
- b) Pour tout $y \in \mathbb{N}$, résoudre l'équation f(x) = y d'inconnue $x \in \mathbb{N}$. Retrouver ainsi le fait que f est injective et non surjective.
- 2°) Étudier l'injectivité et la surjectivité de g.
- **3°)** Préciser $g \circ f$ et $f \circ g$.

Exercice 7.21: (niveau 1)

Déterminer $f(\mathbb{R}_+)$, $f(\mathbb{R}_-^*)$, f(]0,1]), $f^{-1}(\mathbb{R}_+)$ et $f^{-1}(\{-1\})$ lorsque f prend les valeurs suivantes : $f(x) = e^x$, $f(x) = \ln x$, $f(x) = \cos x$, $f(x) = \frac{1}{x}$.

Exercice 7.22: (niveau 1)

- 1°) Soit A et B deux parties d'un ensemble E. Calculer l'indicatrice de $A\Delta B$ en fonction des indicatrices 1_A et 1_B de A, B.
- 2°) Soit A, B, C trois parties d'un ensemble E et D la partie des éléments appartenant exactement à deux des parties A, B, C. Calculer l'indicatrice 1_D en fonction des indicatrices 1_A , 1_B et 1_C de A, B, C.

Exercice 7.23: (niveau 1)

Soit E un ensemble muni de deux lois internes + et ., admettant chacune un élément neutre (respectivement noté e et u), et telles que chacune d'elles soit distributive par rapport à l'autre.

- a) Montrez en calculant e(u + e) que $e^2 = e$, et de façon analogue que u + u = u.
- b) Prouvez que ces deux lois sont idempotentes.

Exercice 7.24: (niveau 2)

Sur l'ensemble $\mathcal{P}(E)$ des parties d'un ensemble E, on considère la loi suivante :

$$A \top B = (A \cup (E \setminus B)) \cap (B \cup (E \setminus A)).$$

Montrez que $(\mathcal{P}(E), \top)$ est un groupe abélien

Exercice 7.25: (niveau 2)

Soit E un ensemble. On note $\mathcal{P}(E)$ l'ensemble des parties de E.

Si A est une partie de E, on notera A le complémentaire de A dans E.

Sur $\mathcal{P}(E)$, on considère les lois suivantes :

$$\begin{array}{ll} A+B &= (A\cap \overline{B}) \cup (B\cap \overline{A}) & \text{et} \\ A.B &= A\cap B. \end{array}$$

Montrez que $(\mathcal{P}(E), +, .)$ est un anneau abélien. Est-il intègre?

Exercice 7.26: (niveau 2)

Soient E, F deux ensembles et $f: E \longrightarrow F$ une application.

On dit qu'une partie A de E est un domaine d'injectivité pour f lorsque la restriction de f à A (au départ) est une injection. Ce domaine est dit maximal lorsqu'il n'existe pas de partie B de E, autre que A, telle que $A \subset B$ et la restriction de f à B est injective.

Soit A un domaine d'injectivité de f. Démontrer que ce domaine est maximal si et seulement si f(A) = f(E).

Exercice 7.27: (niveau 2)

Soit (G,.) un groupe et $a,b \in G$ tels que $aba = b^3$ et $b^5 = 1_G$.

Montrer que a et b commutent.

Exercice 7.28: (niveau 2)

On munit un ensemble E d'une loi de composition interne associative notée *.

On suppose qu'il existe $a \in E$ tel que l'application $E \longrightarrow E$ est surjective.

Montrer l'existence d'un élément neutre et l'inversibilité de a.

Exercice 7.29: (niveau 2)

Soit E un ensemble non vide et $A, B \in \mathcal{P}(E)$. On note f l'application de $\mathcal{P}(E)$ dans $\mathcal{P}(E)^2$ définie par $f(X) = (X \cup A, X \cup B)$.

- 1°) Montrer que f n'est pas surjective.
- 2°) Donner une CNS pour que f soit injective.

Exercice 7.30: (niveau 2)

Soient E, F deux ensembles et $f: E \longrightarrow F$ une application.

- 1°) Démontrer que pour tout $A, B \in \mathcal{P}(E), f(A \setminus B) \supset f(A) \setminus f(B)$.
- **2°**) Démontrer que f est injective si et seulement si pour tout $A, B \in \mathcal{P}(E)$, $f(A \setminus B) = f(A) \setminus f(B)$.

Exercice 7.31: (niveau 2)

Soient $(A, +, \times)$ un anneau et $a \in A$. On suppose que a admet un unique inverse à droite (c'est-à-dire $\exists!b \in A, ab = 1$). Démontrer que a est simplifiable et en déduire que a est inversible.

Exercice 7.32: (niveau 2)

Construire une surjection de \mathbb{N} sur lui-même pour laquelle chaque entier possède exactement p antécédents ($p \ge 1$ étant fixé). En construire une pour laquelle chaque entier possède une infinité d'antécédents.

Exercice 7.33: (niveau 2)

Soit
$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x+y,xy).$

- 1°) Soit $(S, P) \in \mathbb{R}^2$. Déterminer le nombre de solutions de l'équation F(x, y) = (S, P) d'inconnue $(x, y) \in \mathbb{R}^2$. L'application F est-elle injective, surjective, bijective?
- **2°)** Comment peut-on restreindre F pour qu'elle devienne bijective? On restreindra sur une partie A de \mathbb{R}^2 telle que $F(A) = F(\mathbb{R}^2)$.

Exercice 7.34: (niveau 2)

Soit E un ensemble non vide muni d'une loi interne associative notée *.

On suppose que pour tout $(a, b) \in E^2$, les équations a * x = b et y * a = b admettent au moins une solution.

Montrer que (E, *) est un groupe.

Exercice 7.35: (niveau 2)

Soit f une application continue de \mathbb{R} dans \mathbb{R} . Si la restriction de f sur \mathbb{Q} est injective, f est-elle nécessairement injective?

Exercice 7.36: (niveau 3)

Soit f et g deux bijections de \mathbb{Z} dans \mathbb{Z} . Montrer que l'application $k \mapsto f(k)g(k)$ n'est pas une bijection de \mathbb{Z} dans \mathbb{Z} .

Exercice 7.37: (niveau 3)

Soit E, E', F, F' quatre ensembles, $u: E' \longrightarrow E$ et $v: F \longrightarrow F'$ deux applications. On pose $\begin{picture}(1,0) \put(0,0){\line(0,0){15}} \put(0,0){\li$

- 1°) Montrer que si u est surjective et v injective, alors Φ est injective.
- **2°)** Montrer que si u est injective et v est surjective, alors Φ est surjective.
- 3°) Étudier les réciproques.

Exercice 7.38: (niveau 3)

1°) Montrer qu'une application f est surjective si et seulement si $g_1 \circ f = g_2 \circ f \Longrightarrow g_1 = g_2$, pour tout couple d'applications (g_1, g_2) pour lequel ceci a un sens.

Soit f et g deux applications d'un ensemble X vers un ensemble Y.

Si e est une application de Y vers un ensemble Q, on dit que e est un co-égalisateur de (f,g) si et seulement si

- $-e \circ f = e \circ q$;
- pour toute fonction $d: Y \longrightarrow Q'$ telle que $d \circ f = d \circ g$, il existe une unique application $h: Q \longrightarrow Q'$ telle que $h \circ e = d$.
- 2°) Montrer que si e est un co-égalisateur de (f,g), alors e est surjective.
- 3°) Montrer que (f,g) possède un co-égalisateur.