DM 9 : Loi 0-1 de Kolmogorov un corrigé

Partie I: Tribus

- 1°) $\mathcal{P}(\Omega)$ contient Ω , est stable par passage au complémentaire et par réunion dénombrable, donc $\mathcal{P}(\Omega)$ est une tribu, et c'est clairement la plus grande.
- $\{\emptyset,\Omega\}$ contient Ω et est stable par passage au complémentaire, de plus, si $(F_n)_{n\in\mathbb{N}}$ est une suite d'éléments de $\{\emptyset,\Omega\}$, alors $\bigcup F_n$ est égal à \emptyset si tous les F_n sont vides et à Ω

sinon. Ainsi, $\{\emptyset, \Omega\}$ est stable par réunion dénombrable, donc c'est une tribu. De plus, toute tribu de Ω contient Ω et son complémentaire, égal à \emptyset , donc $\{\emptyset, \Omega\}$ est la plus petite tribu de Ω .

$$2^{\circ}$$
) Posons $\mathcal{F} = \{\emptyset, A, \overline{A}, \Omega\}.$

 \mathcal{F} contient Ω et est stable par passage au complémentaire.

Soit $(F_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{F} . Posons $\mathcal{G}=\{F_n\mid n\in\mathbb{N}\}$.

Alors
$$\bigcup_{n\in\mathbb{N}} F_n = \bigcup_{B\in\mathcal{G}} B$$
: en effet, pour tout $x\in\Omega$,

$$x \in \bigcup_{n \in \mathbb{N}} F_n \iff [\exists n \in \mathbb{N}, \ x \in F_n] \iff [\exists B \in \mathcal{G}, \ x \in B],$$

Alors
$$\bigcup_{n\in\mathbb{N}} F_n = \bigcup_{B\in\mathcal{G}} B$$
: en effet, pour tout $x\in\Omega$,
$$x\in\bigcup_{n\in\mathbb{N}} F_n \Longleftrightarrow [\exists n\in\mathbb{N},\ x\in F_n] \Longleftrightarrow [\exists B\in\mathcal{G},\ x\in B],$$
or $\mathcal{G}\subset\mathcal{F}$, donc $\bigcup_{B\in\mathcal{G}} B\in\{\emptyset,A,\overline{A},\Omega\}$, car $A\cup\overline{A}=\Omega$. Ainsi, $\bigcup_{n\in\mathbb{N}} F_n\in\mathcal{F}$, ce qui prouve

que \mathcal{F} est stable par union dénombrable.

De plus, si \mathcal{F}' est une tribu contenant A, alors elle contient Ω en tant que tribu, puis \emptyset et A par passage au complémentaire, donc $\mathcal{F} \subset \mathcal{F}'$.

Ainsi, $\{\emptyset, A, \overline{A}, \Omega\}$ est la plus petite tribu contenant A.

 3°) \diamond Soit $(F_n)_{n\in\mathbb{N}}$ une famille d'éléments de \mathcal{F} .

 \mathcal{F} est stable par passage au complémentaire, donc pour tout $n \in \mathbb{N}, \overline{F}_n \in \mathcal{F}$. Alors par stabilité par réunion dénombrable, $\bigcup_{n\in\mathbb{N}} \overline{F}_n \in \mathcal{F}$, puis à nouveau par passage au

complémentaire,
$$\bigcap_{n\in\mathbb{N}} F_n = \overline{\bigcup_{n\in\mathbb{N}} \overline{F}_n} \in \mathcal{F}.$$
 $\diamond \text{ Soit } n\in\mathbb{N} \text{ et soit } F_0,\ldots,F_n \ n+1 \text{ éléments de } \mathcal{F}.$

Pour tout k>n, posons $F_k=\Omega$. Alors $\bigcap_{0\leq k\leq n}F_k=\bigcap_{k\in\mathbb{N}}F_k\in\mathcal{F}$ d'après le point précédent.

Posons maintenant, pour tout k > n, $F_k = \emptyset = \overline{\Omega} \in \mathcal{F}$. Alors $\bigcup_{0 \le k \le n} F_k = \bigcup_{k \in \mathbb{N}} F_k \in \mathcal{F}$.

4°) Soit $a \in]-1,1[$. $a-1 \neq 0$, donc d'après le cours, pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^n a^k = \frac{1-a^{n+1}}{1-a} \underset{n \to +\infty}{\longrightarrow} \frac{1}{1-a}, \text{ donc la série } \sum a^n \text{ est convergente et } \sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}.$$

5°) Pour tout
$$n \in \mathbb{N}$$
, $\sum_{k=0}^{n} (a_{k+1} - a_k) = \sum_{k=0}^{n} a_{k+1} - \sum_{k=0}^{n} a_k$. Or en posant $h = k+1$,

$$\sum_{k=0}^{n} a_{k+1} = \sum_{h=1}^{n+1} a_h = \sum_{k=1}^{n+1} a_k, \text{ donc } \sum_{k=0}^{n} (a_{k+1} - a_k) = a_{n+1} - a_0.$$

On en déduit que la série $\sum (a_{n+1} - a_n)$ est convergente si et seulement si la suite

$$(a_n)_{n\in\mathbb{N}}$$
 est convergente et que dans ce cas, $\sum_{n=0}^{+\infty}(a_{n+1}-a_n)=(\lim_{n\to+\infty}a_n)-a_0$.

6°) \diamond Posons, pour tout entier n, $F_n = \emptyset$. Alors $(F_n)_{n \in \mathbb{N}}$ est une suite d'éléments de \mathcal{F} deux à deux disjoints, donc, en posant pour tout $n \in \mathbb{N}$, $p_n = P(\emptyset)$, la série $\sum p_n$ est

convergente. Supposons que
$$P(\emptyset) \neq 0$$
, alors pour $n \in \mathbb{N}$, $\sum_{k=0} p_k = (n+1)P(\emptyset) \underset{n \to +\infty}{\longrightarrow} +\infty$

(car $P(\emptyset) > 0$), ce qui est faux. Ainsi, $P(\emptyset) = 0$.

 \diamond Soit $n \in \mathbb{N}$, et F_0, \ldots, F_n des éléments de \mathcal{F} deux à deux disjoints.

Posons, pour tout p > n, $F_p = \emptyset$. Alors $(F_k)_{k \in \mathbb{N}}$ est une suite d'éléments de \mathcal{F} deux

à deux disjoints, donc
$$P\left(\bigcup_{k=0}^{n} F_k\right) = P\left(\bigcup_{k \in \mathbb{N}} F_k\right) = \sum_{k=0}^{\infty} P(F_k)$$
, or pour tout $N \ge n$,

$$\sum_{k=0}^{N} P(F_k) = \sum_{k=0}^{n} P(F_k) \underset{N \to +\infty}{\longrightarrow} \sum_{k=0}^{n} P(F_k), \text{ donc } P\left(\bigcup_{k=0}^{n} F_k\right) = \sum_{k=0}^{n} P(F_k).$$

 \diamond Soit $F \in \mathcal{F}$. Appliquons la propriété précédente avec $n = 1, F_0 = F$ et $F_1 = \overline{F}$.

Ainsi, $P(F) + P(\overline{F}) = P(F \cup \overline{F}) = P(\Omega) = 1$. On en déduit que $P(\overline{F}) = 1 - P(F)$. \diamond Soit $G, H \in \mathcal{F}$ avec $G \subset H$.

 $H \setminus G = H \cap \overline{G} \in \mathcal{F}$ d'après la question 3. De plus, H est la réunion disjointe de G et de $H \setminus G$, donc $P(H) = P(G) + P(H \setminus G)$. Subséquemment, $P(H \setminus G) = P(H) - P(G)$.

7°) Posons
$$\mathcal{G} = \bigcap_{i \in I} \mathcal{F}_i$$
.

Cette intersection est bien définie d'après le cours car I est non vide.

Pour tout $i \in I$, \mathcal{F}_i étant une tribu, il contient Ω , donc $\Omega \in \mathcal{G}$.

Soit $A \in \mathcal{G}$. Soit $i \in I : A \in \mathcal{F}_i$ et \mathcal{F}_i est une tribu, donc $\overline{A} \in \mathcal{F}_i$. C'est vrai pour tout $i \in I$, donc $A \in \mathcal{G}$. Ainsi \mathcal{G} est stable par passage au complémentaire.

Soit $(F_n)_{n\in\mathbb{N}}$ une famille d'éléments de \mathcal{G} . Soit $i\in I$. Alors $(F_n)_{n\in\mathbb{N}}$ une famille d'éléments de \mathcal{F}_i , donc $\bigcup_{n\in\mathbb{N}} F_n \in \mathcal{F}_i$. Ainsi, $\bigcup_{n\in\mathbb{N}} F_n \in \mathcal{G}$.

Ceci prouve que \mathcal{G} est bien une tribu.

- 8°) Notons \mathbb{F} l'ensemble des tribus contenant \mathcal{A} . \mathbb{F} est non vide car $\mathcal{P}(\Omega) \in \mathbb{F}$. Alors d'après la question précédente, $\bigcap \mathcal{F}$ est une tribu sur Ω . Elle contient \mathcal{A} en tant qu'intersection de parties contenant \mathcal{A} . De plus, si \mathcal{G} est une tribu contenant \mathcal{A} , alors $\mathcal{G} \in \mathbb{F}$, donc $\bigcap \mathcal{F} \subset \mathcal{G}$. Ceci démontre que $\bigcap \mathcal{F}$ est la plus petite tribu de Ω contenant \mathcal{A} . On peut donc bien définir cette notion.
- 9°) \diamond Supposons que (F_n) est croissante pour l'inclusion. Pour tout $n \geq 1$, posons $G_n = F_n \setminus F_{n-1} \in \mathcal{F}$ et posons $G_0 = F_0$. Pour tout $n \in \mathbb{N}$, $G_n \subset F_n$, donc $\bigcup_{n \in \mathbb{N}} G_n \subset \bigcup_{n \in \mathbb{N}} F_n$. Soit $x \in \bigcup_{n \in \mathbb{N}} F_n$. Alors $\{n \in \mathbb{N} \mid x \in F_n\}$ est une partie non vide de \mathbb{N} , donc elle

possède un minimum, que l'on note m. Si m=0, alors $x\in F_0=G_0$. Si m>0, alors

Subséquemment,
$$\bigcup_{n\in\mathbb{N}} G_n = \bigcup_{n\in\mathbb{N}} F_n$$
 et donc $P\left(\bigcup_{n=0}^{\infty} F_n\right) = P\left(\bigcup_{n=0}^{\infty} G_n\right)$.
Soit $n, m \in \mathbb{N}$ avec $m < n$. Alors $G_m \subset F_m \subset F_{n-1}$,

donc $(G_m \cap G_n) \subset F_{n-1} \cap (F_n \setminus F_{n-1}) = \emptyset$. En conséquence, les éléments de la suite (G_n) sont deux à deux disjoints. On en déduit que la série $\sum P(G_n)$ est convergente et que

$$P\left(\bigcup_{n=0}^{\infty} F_n\right) = \sum_{n=0}^{\infty} P(G_n)$$
. Alors, d'après la question 6, $P\left(\bigcup_{n=0}^{\infty} F_n\right) = \sum_{n=0}^{+\infty} (a_{n+1} - a_n)$, en posant, pour tout $n \in \mathbb{N}^*$, $a_n = P(F_{n-1})$ et $a_0 = 0$. D'après la question 5, la suite

 (a_n) est convergente et $\sum_{n=0}^{+\infty} (a_{n+1} - a_n) = (\lim_{n \to +\infty} a_n) - a_0$. On en déduit que la suite

 $(P(F_n))_{n\in\mathbb{N}}$ est convergente (ce que l'on pouvait obtenir directement en remarquant que c'est une suite croissante et majorée par 1) et que $P(\bigcup_{n \to +\infty} F_n) = \lim_{n \to +\infty} P(F_n)$.

 \diamond Supposons maintenant que (F_n) est décroissante pour l'inclusion.

Passons aux complémentaires : la suite $(\overline{F_n})$ est une suite croissante d'éléments de \mathcal{F} ,

donc, en utilisant la question 6, $P\left(\bigcap_{n=0}^{\infty} F_n\right) = 1 - P\left(\bigcup_{n=0}^{\infty} \overline{F_n}\right) = 1 - \lim_{n \to +\infty} P(\overline{F_n})$, puis

$$P\Big(\bigcap_{n=0}^{\infty} F_n\Big) = 1 - \lim_{n \to +\infty} (1 - P(F_n)) = \lim_{n \to +\infty} P(F_n).$$

Partie II: lemme des classes monotones

- 10°) Soit \mathcal{T} une tribu de Ω . Soit $A, B \in \mathcal{T}$ avec $A \subset B$. Alors $\overline{A} \in \mathcal{T}$, puis d'après la question 3, $A \setminus B = A \cap \overline{B} \in \mathcal{T}$. Ainsi, \mathcal{T} est stable par différence. De plus, $\Omega \in \mathcal{T}$ et \mathcal{T} est stable par réunion dénombrable, donc a fortiori par réunion dénombrable croissante. En conclusion, \mathcal{T} est bien une classe monotone.
- 11°) Soit $A \in \mathcal{M}$. $\Omega \in \mathcal{M}$ et \mathcal{M} est stable par différence, donc $\overline{A} = \Omega \setminus A \in \mathcal{M}$. Ainsi \mathcal{M} est stable par passage au complémentaire.

Soit $A, B \in \mathcal{M}$. $A \cup B = \overline{A} \cap \overline{B}$, or \mathcal{M} est stable par intersection finie et par passage au complémentaire, donc $A \cup B \in \mathcal{M}$. Par récurrence sur $n \in \mathbb{N}$, on en déduit que si $A_1, \ldots, A_n \in \mathcal{M}$, alors $\bigcup_{1 \le k \le n} A_k \in \mathcal{M}$. Ainsi, \mathcal{M} est stable par réunion finie.

Soit maintenant $(A_n)_{n\in\mathbb{N}}$ une suite quelconque d'éléments de \mathcal{M} . Pour tout $n\in\mathbb{N}$, posons $B_n = \bigcup_{0 \le k \le n} A_k$. Alors $B_n \in \mathcal{M}$ pour tout $n \in \mathbb{N}$ et la suite (B_n) est croissante,

donc par stabilité par réunion croissante dénombrable, $\bigcup_{n\in\mathbb{N}} B_n \in \mathcal{M}$.

Pour tout $n \in \mathbb{N}$, $A_n \subset B_n$, donc $\bigcup_{n \in \mathbb{N}} A_n \subset \bigcup_{n \in \mathbb{N}} B_n$. Soit $m \in \mathbb{N}$. $B_m = \bigcup_{0 \le k \le m} A_k \subset \bigcup_{n \in \mathbb{N}} A_n$, donc $\bigcup_{n \in \mathbb{N}} B_n \subset \bigcup_{n \in \mathbb{N}} A_n$. Ainsi, on a montré que $\bigcup_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} B_n \in \mathcal{M}$. Donc \mathcal{M} est stable par réunion dénombrable.

En conclusion, \mathcal{M} est une tribu.

 12°) On adapte facilement la démonstration de la question 7 pour montrer que, si Iun ensemble non vide et si $(\mathcal{M}_i)_{i\in I}$ une famille de classes monotones, alors $\bigcap \mathcal{M}_i$ est

encore une classe monotone. On peut alors adapter la question 8 et montrer que, en notant M l'ensemble des classes monotones contenant A, qui est non vide car

 $\mathcal{P}(\Omega) \in \mathbb{M}, \bigcap \mathcal{M}$ est une classe monotone qui contient \mathcal{A} et que c'est la plus petite au sens de l'inclusion.

13°) Posons $\mathcal{A} = \{]-\infty, t] / t \in \mathbb{R} \}$, qui est bien inclus dans $\mathcal{P}(\mathbb{R})$.

Soit $A, B \in \mathcal{A}$. Il existe $t, s \in \mathbb{R}$ tel que $A =]-\infty, t]$ et $B =]-\infty, s]$.

Alors $A \cap B =]-\infty, \min(t,s)]$, donc $A \cap B \in \mathcal{A}$. Ceci montre que \mathcal{A} est un π -système.

14°) $\diamond m(\mathcal{A})$ est une classe monotone, donc $\Omega \in m(\mathcal{A})$.

De plus, $A \cap \Omega = A \in \mathcal{A} \subset m(\mathcal{A})$, donc $\Omega \in \mathcal{M}$.

 \diamond Soit $B, D \in \mathcal{M}$ tels que $B \subset D$.

 $m(\mathcal{A})$ est une classe monotone, donc $D \setminus B \in m(\mathcal{A})$.

De plus, $A \cap (D \setminus B) = A \cap D \cap \overline{B} = (A \cap D) \cap (\overline{A} \cup \overline{B}) = (A \cap D) \setminus (A \cap B)$, or $A \cap B \subset A \cap D$ et $A \cap B$ et $A \cap D$ sont dans m(A) qui est une classe monotone. Ainsi, $A \cap (D \setminus B) \in m(\mathcal{A})$, ce qui prouve que $D \setminus B \in \mathcal{M}$. Ainsi, \mathcal{M} est stable par différence

 \diamond Soit (B_n) une suite croissante d'éléments de \mathcal{M} . Alors $\bigcup_{n \in \mathbb{N}} B_n \in m(\mathcal{A})$. De plus, par distributivité de \cap par rapport à \cup , $A \cap \bigcup_{n \in \mathbb{N}} B_n = \bigcup_{n \in \mathbb{N}} (A \cap B_n)$, or $(A \cap B_n)_{n \in \mathbb{N}}$ est une suite croissante d'éléments de $m(\mathcal{A})$, qui est une classe monotone,

donc $A \cap \bigcup_{n \in \mathbb{N}} B_n \in m(\mathcal{A})$, ce qui prouve que $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{M}$. Ainsi, \mathcal{M} est stable par

réunion dénombrable croissante.

En conclusion, \mathcal{M} est une classe monotone.

- \diamond Lorsque $B \in \mathcal{A}$, $A \cap B \in \mathcal{A}$, car \mathcal{A} est un π -système, donc $A \cap B \in m(\mathcal{A})$. Ainsi, $B \in \mathcal{M}$. On vient de montrer que $\mathcal{A} \subset \mathcal{M}$. Ainsi, \mathcal{M} est une classe monotone contenant \mathcal{A} , donc \mathcal{M} est plus grande, au sens de l'inclusion, que $m(\mathcal{A})$. Mais par définition de \mathcal{M} , on a $\mathcal{M} \subset m(\mathcal{A})$, donc $\mathcal{M} = m(\mathcal{A})$.
- 15°) D'après la question 14, pour tout $A \in \mathcal{A}$, pour tout $B \in m(\mathcal{A})$, $A \cap B \in m(\mathcal{A})$. Fixons maintenant $A \in m(A)$ et posons $\mathcal{M} = \{B \in m(A) \mid A \cap B \in m(A)\}.$

Alors $\mathcal{A} \subset \mathcal{M}$. De plus, de même qu'en question 14, on montre que \mathcal{M} est une classe monotone, donc \mathcal{M} contient $m(\mathcal{A})$, puis $\mathcal{M} = m(\mathcal{A})$.

Ceci démontre que, pour tout $A, B \in m(\mathcal{A}), A \cap B \in m(\mathcal{A}),$ donc que $m(\mathcal{A})$ est stable par intersection finie. Alors, d'après la question 11, m(A) est une tribu. Cette tribu contient \mathcal{A} , donc $\sigma(\mathcal{A}) \subset m(\mathcal{A})$.

De plus, d'après la question 10, $\sigma(A)$ est une classe monotone, elle contient A, donc $m(\mathcal{A}) \subset \sigma(\mathcal{A})$. On a ainsi bien démontré que $m(\mathcal{A}) = \sigma(\mathcal{A})$

Partie III : indépendance

- 16°) On vérifie par double inclusion que $\overline{G} \cap H = H \setminus (H \cap G)$, donc d'après la question $6, P(\overline{G} \cap H) = P(H) - P(H \cap G) = P(H) - P(H)P(G)$, car G et H sont indépendants. Ainsi, $P(\overline{G} \cap H) = P(H)(1 - P(G)) = P(H)P(\overline{G})$, ce qui prouve que \overline{G} et H sont indépendants.
- 17°) D'après la question 2, $\sigma(\{A\}) = \{\emptyset, A, \overline{A}, \Omega\}$ et $\sigma(\{B\}) = \{\emptyset, B, \overline{B}, \Omega\}$.

Ainsi, si $\sigma(A)$ et $\sigma(B)$ sont indépendantes, il est évident que A et B sont indépendants. Réciproquement, supposons que A et B sont indépendants.

Si $C \in \mathcal{F}$, $P(C \cap \emptyset) = 0 = P(C)P(\emptyset)$ et $P(C \cap \Omega) = P(C) = P(C)P(\Omega)$, donc tout élément de \mathcal{F} est indépendant avec \emptyset et avec Ω .

De plus, d'après la question précédente, A est indépendant de \overline{B} , donc A est indépendant de tout élément de $\sigma(\{B\})$.

D'après la question 16, \overline{A} est indépendant de B, donc en appliquant à nouveau la question 16, A est indépendant de B. Finalement, on a montré que tous les élements de $\sigma(\{A\})$ sont indépendants de tous les éléments de $\sigma(\{B\})$. Ainsi, $\sigma(\{A\})$ et $\sigma(\{B\})$ sont indépendantes.

18°) Soit $B \in \mathcal{A}_2$. Posons $\mathcal{M} = \{ A \in \sigma(\mathcal{A}_1) / P(A \cap B) = P(A)P(B) \}$. $\sigma(\mathcal{A}_1)$ est une tribu, donc $\Omega \in \mathcal{M}$.

Soit $A, D \in \mathcal{M}$ avec $A \subset D$. $\sigma(\mathcal{A}_1)$ est une tribu, donc une classe monotone, donc $D \setminus A \in \sigma(\mathcal{A}_1)$. De plus, on a déjà vu que $(D \setminus A) \cap B = (D \cap B) \setminus (A \cap B)$, or $(A \cap B) \subset (D \cap B)$, donc d'après la question 6,

 $P((D \setminus A) \cap B) = P(D \cap B) - P(A \cap B) = (P(D) - P(A))P(B)$, car $A, D \in \mathcal{M}$, donc $P((D \setminus A) \cap B) = P(D \setminus A)P(B)$, ce qui prouve que $D \setminus A \in \mathcal{M}$. Ainsi, \mathcal{M} est stable par différence.

Soit (A_n) une suite croissante d'éléments de \mathcal{M} . Alors $\bigcup_{n\in\mathbb{N}} A_n \in \sigma(\mathcal{A}_1)$, car $\sigma(\mathcal{A}_1)$ est

une tribu. De plus, $(A_n \cap B)$ est aussi une suite croissante, donc d'après la distributivité de \cap par rapport à \cup , puis d'après la question 9,

$$P\left(\left(\bigcup_{n\in\mathbb{N}}A_{n}\right)\cap B\right) = P\left(\bigcup_{n\in\mathbb{N}}(A_{n}\cap B)\right)$$

$$= \lim_{n\to+\infty}P(A_{n}\cap B)$$

$$= \lim_{n\to+\infty}P(A_{n})P(B) \text{ (car } A_{n}\in\mathcal{M})$$

$$= P(B)\lim_{n\to+\infty}P(A_{n})$$

$$= P(B)P\left(\bigcup_{n\in\mathbb{N}}A_{n}\right) \text{ à nouveau grâce à la question 9.}$$

Ainsi, $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{M}$, ce qui prouve que \mathcal{M} est stable par réunion dénombrable croissante.

En conclusion, \mathcal{M} est une classe monotone.

19°) Soit $B \in \mathcal{A}_2$. $\mathcal{M} = \{A \in \sigma(\mathcal{A}_1) \mid P(A \cap B) = P(A)P(B)\}$ est une classe monotone, qui contient \mathcal{A}_1 car $(\mathcal{A}_1, \mathcal{A}_2)$ est mutuellement indépendante, donc qui contient $m(\mathcal{A}_1)$. Mais \mathcal{A}_1 est un π -système, donc d'après le lemme des classes monotones, $\sigma(\mathcal{A}_1) = m(\mathcal{A}_1) \subset \mathcal{M}$. Ceci démontre que, parce que \mathcal{A}_1 est un π -système, la famille $(\sigma(\mathcal{A}_1), \mathcal{A}_2)$ est mutuellement indépendante.

On applique maintenant ce dernier résultat en remplaçant (A_1, A_2) par le couple $(A_2, \sigma(A_1))$, ce qui est possible car A_2 est un π -système. On en déduit que la famille $(\sigma(A_2), \sigma(A_1))$ est mutuellement indépendante, ce qu'il fallait démontrer.

20°)

 \diamond Commençons par établir le lemme suivant : Soit $n \in \mathbb{N}$ avec $n \geq 2.$

Soit $(A_i)_{1 \le i \le n}$ une famille mutuellement indépendante de n parties de \mathcal{F} . Alors, pour

tout
$$(A_2, ..., A_n) \in \mathcal{A}_2 \times \cdots \times \mathcal{A}_n$$
, $\left\{ A_1 \in \sigma(\mathcal{A}_1) / P\left(\bigcap_{1 \le i \le n} A_i\right) = \prod_{i=1}^n P(A_i) \right\}$ est une

classe monotone.

Pour cela, fixons $(A_2, \ldots, A_n) \in \mathcal{A}_2 \times \cdots \times \mathcal{A}_n$,

et posons
$$\mathcal{M} = \left\{ A_1 \in \sigma(\mathcal{A}_1) / P\left(\bigcap_{1 \le i \le n} A_i\right) = \prod_{i=1}^n P(A_i) \right\}.$$

Lorsque
$$A_1 = \Omega$$
, $P\left(\bigcap_{1 \le i \le n} A_i\right) = P\left(\bigcap_{2 \le i \le n} A_i\right) = \prod_{i=2}^n P(A_i)$, d'après la mutuelle

indépendance de $(A_i)_{1 \leq i \leq n}$, donc $\Omega \in \mathcal{M}$.

La suite de la preuve du lemme est analogue à la question 18, car, avec des notations

évidentes,
$$(D \setminus A) \cap \bigcap_{2 \le i \le n} A_i = \left(D \cap \bigcap_{2 \le i \le n} A_i\right) \setminus \left(A \cap \bigcap_{2 \le i \le n} A_i\right)$$
 et car $\left(\bigcup_{p \in \mathbb{N}} B_p\right) \cap \bigcap_{2 \le i \le n} A_i = \bigcup_{p \in \mathbb{N}} \left(B_p \cap \bigcap_{2 \le i \le n} A_i\right)$.

 \diamond Soit $n \geq 2$. Soit $(A_i)_{1 \leq i \leq n}$ une famille mutuellement indépendante de n parties de \mathcal{F} . On suppose de plus que, pour tout $i \in \mathbb{N}_n$, \mathcal{A}_i est un π -système.

Pour tout $i \in \mathbb{N}_n$, posons $\mathcal{B}_i = \mathcal{A}_i \cup \{\Omega\}$. Alors les \mathcal{B}_i sont encore des π -systèmes et $(\mathcal{B}_i)_{1 \leq i \leq n}$ reste mutuellement indépendante.

Soit $k \in \{0, ..., n\}$. Notons R(k) la propriété suivante :

la famille $(\sigma(A_1), \ldots, \sigma(A_k), B_{k+1}, \ldots, B_n)$ est mutuellement indépendante.

On vient de dire que $(\mathcal{B}_i)_{1 \le i \le n}$ est mutuellement indépendante, donc R(0) est vraie.

Soit $k \in \{0, \dots, n-1\}$. On suppose R(k).

On peut alors appliquer le lemme à la famille $(\mathcal{B}_{k+1}, \sigma(\mathcal{A}_1), \ldots, \sigma(\mathcal{A}_k), \mathcal{B}_{k+2}, \ldots, \mathcal{B}_n)$. Ainsi, si l'on fixe $(A_1, \ldots, A_k) \in \sigma(A_1) \times \cdots \times \sigma(A_k)$

et
$$(A_{k+2},\ldots,A_n) \in \mathcal{B}_{k+2} \times \cdots \times \mathcal{B}_n$$
,

alors l'ensemble
$$\mathcal{M} = \left\{ A_{k+1} \in \sigma(\mathcal{B}_{k+1}) / P\left(\bigcap_{1 \leq i \leq n} A_i\right) = \prod_{i=1}^n P(A_i) \right\}$$
 est une classe

monotone qui contient le π -système \mathcal{B}_{k+1} , donc $\bar{\mathcal{M}}$ contient $m(\mathcal{B}_{k+1})$ qui est égal à $\sigma(\mathcal{B}_{k+1})$, d'après le lemme des classes monotones.

De plus, $\mathcal{A}_{k+1} \subset \mathcal{B}_{k+1}$, donc $\sigma(\mathcal{A}_{k+1}) \subset \sigma(\mathcal{B}_{k+1})$,

mais on a aussi $\mathcal{B}_{k+1} = \mathcal{A}_{k+1} \cup \{\Omega\} \subset \sigma(\mathcal{A}_{k+1})$, donc $\sigma(\mathcal{B}_{k+1}) \subset \sigma(\mathcal{A}_{k+1})$, si bien que $\sigma(\mathcal{A}_{k+1}) = \sigma(\mathcal{B}_{k+1}).$

Comme les parties $\sigma(A_1), \ldots, \sigma(A_k), \sigma(A_{k+1}), \mathcal{B}_{k+2}, \ldots, \mathcal{B}_n$ possèdent toutes Ω comme élément, ceci démontre R(k+1).

 \diamond Maintenant, si $(A_i)_{i\in I}$ est une famille mutuellement indépendante de π -systèmes de \mathcal{F} , ce qui précède montre que, pour toute partie finie J de I, la famille $(\sigma(\mathcal{A}_i))_{i\in J}$ est mutuellement indépendante, donc $(\sigma(A_i))_{i\in I}$ est mutuellement indépendante.

Partie IV : Loi 0-1 de Kolmogorov

21°) Pour tout $n \in \mathbb{N}$, posons $A_n = \bigcup_{k=0}^{+\infty} G_k$. Ainsi, $(A_n)_{n \in \mathbb{N}}$ est une suite décroissante d'éléments de \mathcal{F} .

Soit $m \in \mathbb{N}$. Si $x \in \bigcap A_n$, alors pour tout $n \in \{0, \dots, m-1\}$, $x \in A_m \subset A_n$, par

décroissance de la suite $(A_k)_{k\in\mathbb{N}}$, donc $x\in\bigcap A_n=H.$ L'inclusion réciproque étant

claire, on a montré que $H = \bigcap_{n=m}^{+\infty} A_n$.

Or, pour tout $n \geq m$, $A_n = \bigcup_{k=n}^{+\infty} G_k \in \bigcup_{k=m}^{+\infty} \mathcal{T}_k \subset \sigma\Big(\bigcup_{k=m}^{+\infty} \mathcal{T}_k\Big) = \mathcal{B}_m$, donc d'après la

question 3, $H = \bigcap_{n=m}^{+\infty} A_n \in \mathcal{B}_m$. C'est vrai pour tout $m \in \mathbb{N}$, donc $H \in \bigcap_{m \in \mathbb{N}} \mathcal{B}_m = \mathcal{B}_{\infty}$.

22°) Soit $n \in \mathbb{N}$. Notons \mathcal{D}_1 l'ensemble des intersections finies d'éléments de $\bigcup \mathcal{T}_k$, c'est-à-dire que \mathcal{D}_1 est l'ensemble des $\bigcap_{j\in J}A_j$, où J est un ensemble fini et où pour tout

 $j \in J, A_j \in \bigcup_{k=0}^n \mathcal{T}_k$. Alors \mathcal{D}_1 est un π -système.

De même, notons \mathcal{D}_2 l'ensemble des intersections finies d'éléments de $\bigcup^{+\infty} \mathcal{T}_k$. Alors

 \mathcal{D}_2 est également un π -système.

La famille $(\mathcal{T}_n)_{n\in\mathbb{N}}$ étant mutuellement indépendante, et en tenant compte du fait que tout élément de \mathcal{D}_1 peut s'écrire sous la forme $\bigcap A_k$ où $A_k \in \mathcal{T}_k$ pour

tout $k \in \{0, ..., n\}$ (car $\Omega \in \mathcal{T}_k$ pour tout $k \in \mathbb{N}$) et que tout élément de \mathcal{D}_2 peut s'écrire sous la forme $\bigcap_{k=n+1}^{n} A_k$ où $N \in \mathbb{N}$ avec $N \geq n+1$ et où $A_k \in \mathcal{T}_k$ pour tout

 $k \in \{n+1,\ldots,N\}$, on voit que $(\mathcal{D}_1,\mathcal{D}_2)$ est indépendante, donc d'après la question 19, $(\sigma(\mathcal{D}_1), \sigma(\mathcal{D}_2))$ est indépendante.

De plus, $\mathcal{D}_1 \subset \sigma\left(\bigcup_{k=0}^n \mathcal{T}_k\right) = \mathcal{C}_n$, donc $\sigma(\mathcal{D}_1) \subset \mathcal{C}_n$, mais on a aussi que $\bigcup_{k=0}^n \mathcal{T}_k \subset \mathcal{D}_1$, donc $C_n \subset \sigma(\mathcal{D}_1)$, donc $C_n = \sigma(\mathcal{D}_1)$. De même, on montre que $\mathcal{B}_{n+1} = \sigma(\mathcal{D}_2)$, donc on a bien montré que $(\mathcal{C}_n, \mathcal{B}_n)$ de la contre que $(\mathcal{C}_n, \mathcal{B}_n)$ de $(\mathcal{$ a bien montré que $(\mathcal{C}_n, \mathcal{B}_{n+1})$ est indépendante.

23°) \diamond Pour tout $n \in \mathbb{N}$, $\mathcal{B}_{\infty} \subset \mathcal{B}_{n+1}$, donc $(\mathcal{C}_n, \mathcal{B}_{\infty})$ est indépendant. Donc si l'on pose $C = \bigcup_{n} C_n$, $(C, \mathcal{B}_{\infty})$ est indépendant.

Soit $A, B \in \mathcal{C}$. Il existe $n, m \in \mathbb{N}$ tel que $A \in \mathcal{C}_n$ et $B \in \mathcal{C}_m$. Sans perte de généralité, on peut supposer que $m \leq n$. Alors $B \in \mathcal{C}_n$, or \mathcal{C}_n est une tribu, donc $A \cap B \in \mathcal{C}_n \subset \mathcal{C}$. Ainsi, C est un π -système. \mathcal{B}_{∞} est également un π -système car c'est une tribu, en tant qu'intersection de tribus, donc d'après la question 19, $(\sigma(\mathcal{C}), \mathcal{B}_{\infty})$ est indépendant.

 $\Rightarrow \text{ Pour tout } n \in \mathbb{N}, \ \mathcal{T}_n \subset \mathcal{C}_n \subset \mathcal{C}, \ \text{donc} \ \bigcup_{n \in \mathbb{N}} \mathcal{T}_n \subset \sigma(\mathcal{C}), \ \text{or} \ \sigma(\mathcal{C}) \ \text{est une tribu, donc}$ $\mathcal{B}_0 = \sigma\Big(\bigcup_{n \in \mathbb{N}} \mathcal{T}_n\Big) \subset \sigma(\mathcal{C}). \ \text{Mais } \mathcal{B}_{\infty} \subset \mathcal{B}_0, \ \text{donc} \ \mathcal{B}_{\infty} \subset \sigma(\mathcal{C}).$

$$\mathcal{B}_0 = \sigma\Big(\bigcup_{n\in\mathbb{N}} \mathcal{T}_n\Big) \subset \sigma(\mathcal{C})$$
. Mais $\mathcal{B}_\infty \subset \mathcal{B}_0$, donc $\mathcal{B}_\infty \subset \sigma(\mathcal{C})$

On a montré que $(\sigma(\mathcal{C}), \mathcal{B}_{\infty})$ est indépendant, donc $(\mathcal{B}_{\infty}, \mathcal{B}_{\infty})$ est mutuellement indépendante. \diamond Soit $A \in \mathcal{B}_{\infty}$. Alors $P(A \cap A) = P(A)P(A)$, donc $P(A)^2 = P(A)$ ou encore P(A)(P(A) - 1) = 0. Ainsi, $P(A) \in \{0, 1\}$.

24°) \diamond Soit $x \in \Omega$. $\{n \in \mathbb{N} \mid x \in G_n\}$ est infini si et seulement si c'est une partie non majorée de \mathbb{N} , donc si et seulement si, pour tout $n \in \mathbb{N}$, il existe $k \geq n$ tel que $x \in G_k$.

Ainsi,
$$x \in H \iff \left(\forall n \in \mathbb{N}, \ x \in \bigcup_{k=n}^{+\infty} G_k\right)$$
, ce qui montre que $H = \bigcap_{n \in \mathbb{N}} \left(\bigcup_{k=n}^{+\infty} G_k\right)$.
\$\displant \text{ La famille } (\{G_n\})_{n \in \mathbb{N}} \text{ est une famille de parties de \$\mathcal{F}\$ mutuellement indépendante

 \diamond La famille $(\{G_n\})_{n\in\mathbb{N}}$ est une famille de parties de \mathcal{F} mutuellement indépendante et, pour tout $n\in\mathbb{N}$, $\{G_n\}$ est un π -système, donc d'après la question 20, si l'on pose $\mathcal{T}_n = \sigma(\{G_n\})$ pour tout $n\in\mathbb{N}$, alors $(\mathcal{T}_n)_{n\in\mathbb{N}}$ est une suite de tribus mutuellement indépendante.

Utilisons maintenant les notations de cette partie pour cette famille $(\mathcal{T}_n)_{n\in\mathbb{N}}$.

 \diamond D'après la question 21, $H = \bigcap_{n \in \mathbb{N}} \left(\bigcup_{k=n}^{+\infty} G_k\right)$ est un élément \mathcal{B}_{∞} , donc d'après la question 23, $P(H) \in \{0,1\}$.