DS 3 : Construction de \mathbb{R} par coupures.

Les calculatrices sont interdites.

L'objet de ce problème est de construire l'ensemble des réels. Aucune propriété des réels ne peut être considérée comme connue. À l'inverse, les ensembles de nombres \mathbb{N} , \mathbb{Z} et \mathbb{Q} , munis de l'addition, de la multiplication et de l'ordre usuel, sont considérés comme parfaitement connus.

Partie I: Définition d'un réel

Dans cette partie, " \leq " désigne l'ordre usuel dans \mathbb{Q} et "<" désigne l'ordre strict associé. Dans tout ce problème, 0 désigne le "zéro" de \mathbb{Q} , c'est-à-dire l'élément neutre pour l'addition entre rationnels.

Définition 1 : Un réel est un sous-ensemble α de $\mathbb Q$ tel que

- α est non vide et n'est pas égal à \mathbb{Q} ;
- pour tout $x \in \alpha$, pour tout $y \in \mathbb{Q} \setminus \alpha$, x < y;
- α ne possède pas de maximum dans \mathbb{Q} .

On notera \mathbb{R} l'ensemble des réels.

Remarque historique : Lorsque Dedekind a proposé cette construction des réels, il a appelé *coupure* dans les nombres rationnels la partition de \mathbb{Q} selon α et $\mathbb{Q} \setminus \alpha$.

1°) Soit $a \in \mathbb{Q}$. On pose $\alpha = \{x \in \mathbb{Q} \mid x < a\}$.

Montrer que α est un réel.

Pour la suite du problème, on dira qu'un tel réel est de type 1. Il correspondra plus loin au rationnel *a vu comme* un réel.

2°) Soit
$$a \in \mathbb{Q}$$
. On pose $b = \frac{a(a^2 + 6)}{3a^2 + 2}$.

Exprimer en fonction de a les quantités b-a et b^2-2 .

- **3°)** Pour cette question seulement, on pose $\alpha = \{x \in \mathbb{Q}_+ / x^2 < 2\} \cup \mathbb{Q}_-$. Déduire de la question précédente que α est un réel.
- 4°) Montrer que le réel de la question précédente n'est pas de type 1.

Partie II : Propriété de la borne supérieure

5°) Lorsque E est un ensemble, démontrer que la relation d'inclusion est une relation d'ordre sur $\mathcal{P}(E)$.

Définition 2 : Lorsque (F, \leq) est un ensemble ordonné, on dit que c'est un treillis complet si et seulement si toute partie de F possède une borne supérieure.

 6°) Soit E un ensemble.

Pour la relation d'inclusion, montrer que $\mathcal{P}(E)$ est un treillis complet.

- 7°) Montrer que l'inclusion est une relation d'ordre totale sur \mathbb{R} .
- 8°) Montrer que toute partie non vide et majorée de \mathbb{R} possède une borne supérieure.
- 9°) Montrer que N, muni de la relation de divisibilité, est un treillis complet.
- 10°) On suppose que (F, \leq) est un treillis complet.

Montrer que toute partie de F possède une borne inférieure.

Partie III : L'addition dans \mathbb{R} .

Lorsque α et β sont deux réels, on pose $\alpha + \beta = \{x + y \mid x \in \alpha \text{ et } y \in \beta\}$. Ceci définit une addition entre deux réels (cf question 13), en utilisant l'addition déjà connue entre rationnels.

11°) Soit $\alpha, \beta \in \mathbb{R}$. Montrer que $\alpha + \beta = \beta + \alpha$.

De la même façon, on peut montrer (on ne demande pas de le faire) que pour tout $\alpha, \beta, \gamma \in \mathbb{R}$, $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.

- 12°) Montrer que l'addition entre réels est compatible avec la relation d'ordre sur \mathbb{R} , c'est-à-dire que, pour tout $\alpha, \beta, \gamma \in \mathbb{R}$, si $\alpha \subset \beta$, alors $(\alpha + \gamma) \subset (\beta + \gamma)$.
- 13°) Montrer que, pour tout $\alpha, \beta \in \mathbb{R}$, $\alpha + \beta$ est un réel.
- **14°)** On pose $0_{\mathbb{R}} = \{x \in \mathbb{Q} \mid x < 0\} = \mathbb{Q}_{-}^*$. Montrer que, pour tout $\alpha \in \mathbb{R}$, $0_{\mathbb{R}} + \alpha = \alpha$.
- **15°)** On suppose que α est un réel. Pour tout $\varepsilon \in \mathbb{Q}$ avec $\varepsilon > 0$, montrer qu'il existe $x \in \alpha$ et $y \in \mathbb{Q} \setminus \alpha$ tels que $y = x + \varepsilon$.
- **16°)** Soit $\alpha \in \mathbb{R}$. Montrer qu'il existe $\beta \in \mathbb{R}$ tel que $\alpha + \beta = 0_{\mathbb{R}}$.

On admettra que dans ce cas, β est unique (on l'a en fait démontré en cours). On note alors $\beta = -\alpha$.

En résumé, on a montré que $(\mathbb{R}, +)$ est un groupe commutatif.

Partie IV : Produit de deux réels.

Pour la suite de ce problème, lorsque $\alpha, \beta \in \mathbb{R}$, on notera $\alpha \leq_{\mathbb{R}} \beta$ pour dire que $\alpha \subset \beta$. La relation \leq désigne à nouveau l'ordre usuel sur \mathbb{Q} .

Lorsque $\alpha, \beta \in \mathbb{R}$, on note $\alpha <_{\mathbb{R}} \beta$ si et seulement si $\alpha \leq_{\mathbb{R}} \beta$ et $\alpha \neq \beta$. De plus on note $\alpha \geq_{\mathbb{R}} \beta$ si et seulement si $\beta \leq_{\mathbb{R}} \alpha$

et on note $\alpha >_{\mathbb{R}} \beta$ si et seulement si $\beta <_{\mathbb{R}} \alpha$.

On pose $\mathbb{R}_+^* = \{ \alpha \in \mathbb{R} / \alpha >_{\mathbb{R}} 0_{\mathbb{R}} \}.$

Définition 3 : Lorsque $\alpha, \beta \in \mathbb{R}_+^*$, on définit le produit de α par β en convenant que $\alpha\beta = \{xy \mid x \in \alpha \cap \mathbb{Q}_+^* \text{ et } y \in \beta \cap \mathbb{Q}_+^*\} \cup \mathbb{Q}_-.$

- 17°) Soit $\alpha \in \mathbb{R}$. Montrer que les propriétés suivantes sont équivalentes :
 - 1. $\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$;
 - $2. \ 0 \in \alpha$;
 - 3. $\alpha \cap \mathbb{Q}_+^*$ est non vide.
- 18°) Soit $\alpha, \beta \in \mathbb{R}_+^*$. Montrer que $\alpha\beta$ est un réel et que $\alpha\beta >_{\mathbb{R}} 0_{\mathbb{R}}$.
- 19°) Soit α un réel tel que $\alpha <_{\mathbb{R}} 0_{\mathbb{R}}$. Montrer que $-\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$.

On admettra qu'on peut démontrer de même que si $\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$, alors $-\alpha <_{\mathbb{R}} 0_{\mathbb{R}}$.

Définition 4 : Soit $\alpha, \beta \in \mathbb{R}$. On définit le réel $\alpha\beta$ en convenant que :

- Lorsque $\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$ et $\beta >_{\mathbb{R}} 0_{\mathbb{R}}$, $\alpha \beta$ est défini selon la définition 3;
- Lorsque $\alpha <_{\mathbb{R}} 0_{\mathbb{R}}$ et $\beta >_{\mathbb{R}} 0_{\mathbb{R}}$, $\alpha \beta = -[(-\alpha)\beta]$;
- Lorsque $\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$ et $\beta <_{\mathbb{R}} 0_{\mathbb{R}}$, $\alpha \beta = -[\alpha(-\beta)]$;
- Lorsque $\alpha <_{\mathbb{R}} 0_{\mathbb{R}}$ et $\beta <_{\mathbb{R}} 0_{\mathbb{R}}$, $\alpha\beta = (-\alpha)(-\beta)$;
- Lorsque $\alpha = 0_{\mathbb{R}}$ ou $\beta = 0_{\mathbb{R}}$, $\alpha\beta = 0_{\mathbb{R}}$.

Les questions précédentes garantissent qu'on associe ainsi à tout couple de réels (α, β) un nouveau réel noté $\alpha\beta$, appelé le produit de α par β . On ne demande pas de le démontrer.

20°) Montrer que, pour tout $\alpha, \beta, \gamma \in \mathbb{R}_+^*$, $(\alpha\beta)\gamma = \alpha(\beta\gamma)$.

On admettra sans démonstration que pour tout $\alpha, \beta, \gamma \in \mathbb{R}$, $(\alpha\beta)\gamma = \alpha(\beta\gamma)$, car il suffit de faire plusieurs cas selon les signes de α, β et γ et de se ramener au cas où ils sont tous dans \mathbb{R}_+^* .

De même, il est simple d'établir que, pour tout $\alpha, \beta \in \mathbb{R}$, $\alpha\beta = \beta\alpha$. On ne demande pas de le démontrer.

21°) Montrer que, pour tout $\alpha, \beta, \gamma \in \mathbb{R}_+^*$, $\alpha(\beta + \gamma) = (\alpha\beta) + (\alpha\gamma)$.

À nouveau, on admettra sans démonstration que l'égalité précédente est en fait valable pour tout $\alpha, \beta, \gamma \in \mathbb{R}$.

22°) Montrer qu'il existe un réel, que l'on notera $1_{\mathbb{R}}$, tel que, pour tout $\alpha \in \mathbb{R}$, $1_{\mathbb{R}}$ $\alpha = \alpha$.

On admettra qu'en adaptant la question 16, on peut montrer que, pour tout $\alpha \in \mathbb{R} \setminus \{0_{\mathbb{R}}\}$, il existe $\beta \in \mathbb{R}$ tel que $\alpha\beta = 1_{\mathbb{R}}$.

On a ainsi montré que \mathbb{R} , muni de son addition et de sa multiplication, est un corps totalement ordonné vérifiant la propriété de la borne supérieure.

23°) Montrer qu'on peut identifier \mathbb{Q} avec une partie de \mathbb{R} .