
DS 3 : Un corrigé

Barème

Le barème comporte 66 points dont voici la répartition :
— Partie I (11 points) : 2,2,3,4.
— Partie II (13 points) : 1,2,2,3,3,2.
— Partie III (17 points) : 1,1,4,2,3,6.
— Partie IV (25 points) : 2,4,2,2,6,3,6.

Partie I : Définition d’un réel

1◦) ⋄ a − 1 < a < a + 1, donc a − 1 ∈ α et a + 1 /∈ α. Ainsi, α est non vide et il est
différent de Q.
⋄ Soit x ∈ α et y ∈ Q \ α. Alors x < a ≤ y, donc on a bien x < y.
⋄ Supposons que α possède un maximum noté m dans Q. m ∈ α, donc m < a. Posons
b = 1

2
(m+ a) ∈ Q. On sait alors que m < b < a, donc b ∈ α et b > m, ce qui contredit

la définition de m. Ainsi, α ne possède pas de maximum dans Q.

2◦) En réduisant au même dénominateur, b−a =
a(a2 + 6)− a(3a2 + 2)

3a2 + 2
=

−2a3 + 4a

3a2 + 2
,

donc b− a =
2a(2− a2)

3a2 + 2
. On calcule ensuite

b2 − 2 =
a2(a4 + 12a2 + 36)− 2(9a4 + 12a2 + 4)

(3a2 + 2)2
=

a6 − 6a4 + 12a2 − 8

(3a2 + 2)2
,

donc b2 − 2 =
(a2 − 2)3

(3a2 + 2)2
.

3◦) ⋄ 22 = 4 > 2, donc 2 /∈ α. Ceci prouve que α ̸= Q.
0 ∈ α, donc α ̸= ∅.
⋄ Soit x ∈ α et y ∈ Q \ α.
Alors y /∈ Q−, donc y > 0. Ainsi, lorsque x ∈ Q−, on a bien x < y.
Supposons maintenant que x > 0. Alors x2 < 2 et y2 ≥ 2. Ainsi, x2 < y2 avec x et
y positifs strictement positifs. Alors 0 < y2 − x2 = (y − x)(y + x) et y + x > 0, donc
y − x > 0 puis x < y.
Ainsi, dans tous les cas, on a montré que x < y.
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⋄ Supposons que α possède dansQ un maximum noté a. 1 ∈ α, donc a > 0. a ∈ α, donc

a2 < 2. Alors, avec les notations de la question précédente, on a b−a =
2a(2− a2)

3a2 + 2
> 0,

donc a < b.

On a également b2 − 2 =
(a2 − 2)3

(3a2 + 2)2
< 0, donc b2 < 2. Or b ∈ Q, donc b ∈ α et a < b.

Ceci contredit la définition de a, donc α ne possède pas de maximum dans Q.
On a bien montré que α est un réel.

4◦) Raisonnons par l’absurde en supposant que α est de type 1. Ainsi, il existe a ∈ Q
tel que α = {x ∈ Q+ / x2 < 2} ∪Q− = {x ∈ Q / x < a}.
0 ∈ α, donc 0 < a.
⋄ Supposons que a2 < 2. Alors a ∈ α, donc a < a, ce qui est faux.
En conséquence, a2 ≥ 2.

⋄ Supposons maintenant que a2 > 2. Posons à nouveau b =
a(a2 + 6)

3a2 + 2
. Alors d’après

la question 2, b − a < 0 et b2 − 2 > 0. Alors b < a, donc b ∈ α et b2 > 2 avec b > 0
donc b /∈ α, ce qui est impossible. En conséquence, a2 ≤ 2.
⋄ Ainsi a2 = 2 et a ∈ Q. Posons a = p

q
avec p, q ∈ N∗ et p ∧ q = 1. Alors p2 = 2q2,

donc q|p2, mais q ∧ (p2) = 1, donc d’après le lemme de Gauss, q|1, puis q = 1. Alors
p2 = 2, donc 12 = 1 < p2 < 4 = 22, donc 1 < p < 2 et p ∈ N. C’est impossible.
Ceci prouve que α n’est pas de type 1.

Partie II : Propriété de la borne supérieure

5◦) Pour tout A ∈ P(E), A ⊂ A, donc ⊂ est réflexive.
Soit A,B ∈ P(E) tels que A ⊂ B et B ⊂ A. Alors, d’après l’axiome d’extensionnalité,
A = B, ce qui prouve que ⊂ est antisymétrique.
Soit A,B,C ∈ P(E) tels que A ⊂ B et B ⊂ C. Soit x ∈ A. Alors x ∈ B, puis x ∈ C,
donc A ⊂ C. Ceci prouve que ⊂ est transitive.
En conclusion, on a bien montré que ⊂ est une relation d’ordre sur P(E).

6◦) Soit A une partie incluse dans P(E). Posons S =
⋃
A∈A

A et montrons que S est la

borne supérieure de A, c’est-à-dire le plus petit des majorants.
Clairement, pour tout A ∈ A, A ⊂ S, donc S majore A.
Soit B ∈ P(E) un majorant de A. Alors, pour tout A ∈ A, A ⊂ B.
Soit x ∈ S. Il existe A ∈ A tel que x ∈ A. Alors x ∈ B. Ceci prouve que S ⊂ B. Ainsi,
S est bien le plus petit des majorants de A, ce qui conclut.

7◦) D’après la question 5, la relation d’inclusion est une relation d’ordre sur P(Q),
donc par restriction, c’est une relation d’ordre sur R.
Soit α et β deux réels. Supposons que β ̸⊂ α. Il s’agit de montrer que α ⊂ β.
Par hypothèse, il existe x0 ∈ β tel que x0 /∈ α.
Soit x ∈ α. Supposons que x /∈ β.
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On a x ∈ α et x0 ∈ Q \ α, or α est un réel, donc x < x0.
On a x0 ∈ β et x /∈ β, or β est un réel, donc x0 < x.
C’est impossible, donc x ∈ β, pour tout x ∈ α. On a montré que α ⊂ β, ce qui conclut.

8◦) Soit A une partie non vide et majorée de R. A est en particulier une partie

incluse dans P(Q). Il est donc naturel de poser S =
⋃
A∈A

A ; montrons que S est la

borne supérieure dans R de A.
⋄ Pour tout A ∈ A, A ⊂ S et, si B est un réel qui majore A, alors pour tout A ∈ A,
A ⊂ B, donc, ainsi qu’on l’a vu en question 6, S ⊂ B.
Pour conclure, il reste à montrer que S est un réel.
⋄ A est non vide, donc il existe α ∈ A. α est un réel, donc α est non vide, or α ⊂ S,
donc S est non vide.
⋄ A est majoré, donc il existe β ∈ R tel que β majore A. Alors S ⊂ β. Or β est un
réel, donc β ̸= Q. Ceci démontre que S ̸= Q.

⋄ Soit x ∈ S et y ∈ Q \ S. Il existe α ∈ A tel que x ∈ α. Mais y ∈ Q \
⋃
A∈A

A, donc

y /∈ α. Or α est un réel, donc x < y.
⋄ Supposons que S possède un maximum noté m dans Q.

Alors m ∈ S =
⋃
A∈A

A, donc il existe α ∈ A tel que m ∈ α.

α est un réel, donc m n’est pas le maximum de α. Ainsi, il existe x ∈ α tel que m < x.
Alors x ∈ S et m < x : c’est impossible par définition de m. Ainsi, S ne possède pas
de maximum.
On en déduit que S est un réel, ce qu’il fallait démontrer.

9◦) Soit B une partie de N.
Lorsque B ̸= ∅, posons G′ =

⋂
b∈B

bZ. G′ est un sous-groupe de Z en tant qu’intersection

de sous-groupes de Z, donc d’après le cours, il existe m ∈ N tel que G′ = mZ.
Soit b ∈ B. m ∈ G′ ⊂ bZ, donc b | m. Ainsi m est un majorant de B.
Soitm′ un majorant de B. Pour tout b ∈ B, b |m′, doncm′ ∈ bZ. Ainsi,m′ ∈ G′ = mZ,
donc m | m′. m est donc la borne supérieure de B.
Lorsque B = ∅, l’ensemble des majorants de B est N, qui admet 1 comme minimum,
car pour tout n ∈ N, 1 | n, donc 1 est la borne supérieure de ∅.
Ainsi, dans tous les cas, B possède une borne supérieure. Ceci prouve que N est un
treillis complet.

10◦) Soit A une partie de F .
Notons M l’ensemble des minorants de A.
M est une partie de F et (F,≤) est un treillis complet, donc M possède une borne
supérieure que l’on notera i. Il reste à montrer que i ∈ M . Alors, i sera le maximum
de M , donc la borne inférieure de A.
Soit a ∈ A. Alors, pour tout m ∈ M , m ≤ a. Ainsi, a est un majorant de M , donc
par définition de la borne supérieure, i ≤ a. Ainsi, i est un minorant de A. On a bien
prouvé que i ∈ M , ce qui conclut.
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Partie III : L’addition et la multiplication dans R.

11◦) Soit x ∈ α + β. Il existe y ∈ α et z ∈ β tels que x = y + z. L’addition dans Q
étant commutative, x = y+ z, donc x ∈ β +α. Ainsi, α+ β ⊂ β +α. Par symétrie des
rôles joués par α et β, on a aussi l’autre inclusion, donc α + β = β + α.

12◦) Soit α, β, γ ∈ R tels que α ⊂ β.
Soit x ∈ α + γ. Il existe y ∈ α et z ∈ γ tels que x = y + z.
α ⊂ β, donc y ∈ β, donc x = y + z ∈ β + γ.
Ainsi, α + γ ⊂ β + γ, ce qu’il fallait démontrer.

13◦) Soit α, β ∈ R.
⋄ α et β sont non vides, donc il existe x ∈ α et y ∈ β. Alors x+ y ∈ α+β, donc α+β
est non vide.
⋄ α et β sont différents de Q, donc il existe x ∈ Q \ α et y ∈ Q \ β.
Supposons que x+ y ∈ α + β. Alors il existe x′ ∈ α et y′ ∈ β tels que x+ y = x′ + y′.
x′ ∈ α et x /∈ α, or α est un réel, donc x′ < x. De même, y′ < y, donc en travaillant
dans Q, x + y = x′ + y′ < x + y, ce qui est faux. Ainsi, x + y ∈ Q \ (α + β), ce qui
prouve que α + β est différent de Q.
⋄ Soit x ∈ α + β et y ∈ Q \ (α + β).
Il existe z ∈ α et t ∈ β tels que x = z + t.
Posons t′ = y − z ∈ Q, de sorte que y = z + t′.
Si t′ ∈ β, alors y = z + t′ ∈ α + β, ce qui est faux, donc t′ /∈ β. Mais t ∈ β et β est un
réel, donc t < t′, puis x = z + t < z + t′ = y.
⋄ Supposons que α + β possède un maximum dans Q, noté m.
Il existe x ∈ α et y ∈ β tels que m = x+ y.
α est un réel, donc il ne possède aucun maximum. En particulier, il existe x′ ∈ α tel
que x < x′. Alors m = x + y < x′ + y, et x′ + y ∈ α + β : ceci contredit la définition
de m, donc α + β ne possède pas de maximum dans Q.

En conclusion, on a montré que α + β est bien un réel.

14◦) 0R doit correspondre au rationnel 0 vu comme un réel. Il est donc naturel de
poser 0R = {x ∈ Q / x < 0}. C’est bien un réel d’après la première question.
Soit α ∈ R. Soit x ∈ α + 0R. Il existe y ∈ α et z ∈ 0R tels que x = y + z.
z < 0, donc x = y + z < y. Si x /∈ α, α étant un réel tel que y ∈ α, alors y < x, ce qui
est faux, donc x ∈ α. Ceci démontre que α + 0R ⊂ α.
Réciproquement, supposons que x ∈ α. α est un réel, donc il ne possède pas de maxi-
mum. En particulier, il existe y ∈ α tel que x < y. Ainsi x = y + z avec z ∈ Q∗

−. Donc
z ∈ 0R puis x = y + z ∈ α + 0R. Ceci démontre que α + 0R ⊃ α.
Ainsi, on a montré que α + 0R = α, pour tout α ∈ R.

15◦) Soit ε ∈ Q∗
+.

⋄ α et Q \ α sont non vides, donc il existe x0 ∈ α et y0 ∈ Q \ α.
Posons A = {n ∈ N / x0 + nε ∈ α}.
0 ∈ A, donc A est non vide.
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⋄ Soit n ∈ N. x0 + nε ≥ y0 ⇐⇒ n ≥ y0 − x0

ε
. Or il existe p ∈ Z et q ∈ N∗ tels que

y0 − x0

ε
=

p

q
. Posons N = |p|. Alors N ≥ |p|

q
≥ p

q
, donc x0 +Nε ≥ y0.

⋄ Soit n ∈ N tel que n ∈ A. Alors x0+nε ∈ α, or y0 /∈ α, donc x0+nε < y0 ≤ x0+Nε.
En travaillant dans Q, on en déduit que n ≤ N , donc A est majoré.
⋄ A étant non vide et majoré, il possède un maximum noté m. Posons x = x0 +mε
et y = x0 + (m + 1)ε. Par construction de m, x ∈ α et y /∈ α. De plus, y = x + ε, ce
qu’il fallait démontrer.

16◦) Premier cas : On suppose que α n’est pas du type 1.
Posons β = {−x / x ∈ Q \ α} et montrons déjà que β est un réel.
On utilisera que, pour tout y ∈ Q, y ∈ β ⇐⇒ −y /∈ α.
⋄ Q \ α est non vide et différent de Q, donc β est non vide et différent de Q.
⋄ Soit x ∈ β et y ∈ Q \ β.
Alors −x ∈ Q \ α et −y ∈ α, or α est un réel, donc −y < −x, puis en travaillant dans
Q, x < y.
⋄ Supposons que β possède un maximum dans Q, noté m.
Alors −m ∈ Q \ α.
α étant un réel, pour tout x ∈ α, x < −m.
Réciproquement, supposons que x ∈ Q avec x < −m. Alors −x > m, donc −x /∈ β,
donc x ∈ α.
Ainsi, par double inclusion, on a montré que α = {x ∈ Q / x < −m}, donc α est du
type 1, ce qui est faux. Ainsi, β ne possède pas de maximum.
On a donc bien montré que β est un réel.
Montrons maintenant que α + β = 0R.
⋄ Soit x ∈ α + β. Il existe y ∈ α et z ∈ β tels que x = y + z.
−z /∈ α et α est un réel, donc y < −z. Ainsi, x = y + z < 0, donc x ∈ 0R.
⋄ Réciproquement, supposons que x ∈ 0R. Posons ε = −x ∈ Q∗

+.
D’après la question précédente, il existe x′ ∈ α et y′ /∈ α tel que y′ = x′ + ε.
Ainsi, x = −ε = x′ + (−y′) avec x′ ∈ α et −y′ ∈ β, donc x ∈ α + β.
On a donc montré par double inclusion que α + β = 0R, ce qui conclut dans ce cas.

Second cas : On suppose que α est du type 1.
Ainsi, il existe a ∈ Q tel que α = {x ∈ Q / x < a}.
Posons alors β = {x ∈ Q / x < −a}. β ∈ R d’après la première question.
Montrons que α + β = 0R.
Soit x ∈ α + β. Il existe y ∈ α et z ∈ β tels que x = y + z,
donc x < a+ (−a) = 0. Ainsi, x < 0.
Réciproquement, supposons que x < 0. Posons ε = −x

2
∈ Q∗

+.
Alors a− ε ∈ α et −a− ε ∈ β, donc x = −2ε = (a− ε) + (−a− ε) ∈ α + β.
Ainsi, par double inclusion, on a montré que α + β = 0R, ce qui conclut.
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Partie IV : Produit de deux réels.

17◦) ⋄ Montrons que 1) =⇒ 2).
Supposons que α >R 0R. Alors Q∗

− ⊂ α et Q∗
− ̸= α.

Il existe donc x ∈ α tel que x ≥ 0.
α est un réel, donc si 0 /∈ α, alors x < 0, ce qui est faux, donc 0 ∈ α, ce qu’il fallait
démontrer.
⋄ Montrons que 2) =⇒ 3) ; Supposons que 0 ∈ α.
α étant un réel, il n’admet pas de maximum, donc il existe x ∈ α tel que x > 0. Ainsi,
α ∩Q∗

+ est non vide.
⋄ Montrons que 3) =⇒ 1) ; Supposons que α ∩Q∗

+ est non vide.
Il existe y ∈ Q∗

+ ∩ α.
Soit x ∈ Q∗

−. Si x /∈ α, α étant un réel contenant y, y < x ce qui est faux. Ainsi x ∈ α,
donc Q∗

− ⊂ α, c’est-à-dire 0R ≤R α. De plus 0R ̸= α car y ∈ α et y /∈ 0R. Ainsi, α >R 0R.

18◦) On adapte la démonstration de la question 13.
⋄ Par construction, Q− ⊂ αβ, donc αβ est non vide.
⋄ Il existe x ∈ Q \ α et y ∈ Q \ β. D’après la question précédente, Q− est inclus dans
α et dans β, donc x, y ∈ Q∗

+.
Supposons que xy ∈ αβ.
xy > 0, donc il existe x′ ∈ α ∩Q∗

+ et y′ ∈ β ∩Q∗
+ tels que xy = x′y′.

x′ ∈ α et x /∈ α, donc x < x′. De même, y < y′. Or x et y sont strictement positifs,
donc en travaillant dans Q, xy < x′y′ = xy, ce qui est faux. Ainsi xy /∈ αβ, ce qui
prouve que αβ est différent de Q.
⋄ Soit x ∈ αβ et y ∈ Q \ αβ. Q− ⊂ αβ, donc y > 0.
Si x ≤ 0, alors x < y. On peut donc supposer que x > 0.
Alors il existe y′ ∈ α ∩Q∗

+ et z′ ∈ β ∩Q∗
+ tels que x = y′z′.

Posons z′′ = y
y′
, de sorte que y = y′z′′.

y /∈ αβ, donc z′′ /∈ β (sinon, z′′ ∈ β ∩Q∗
+, donc y = y′z′′ ∈ αβ). Or z′ ∈ β et β est un

réel, donc z′ < z′′. De plus, y′ > 0, donc x = y′z′ < y′z′′ = y, ce qu’il fallait démontrer.
⋄ Supposons que αβ possède un maximum noté m. D’après la question précédente, il
existe x′ ∈ Q∗

+ ∩ α et y′ ∈ Q∗
+ ∩ β, donc x′y′ ∈ Q∗

+ ∩ αβ. Ainsi, m > 0.
Il existe donc x ∈ Q∗

+ ∩ α et y ∈ Q∗
+ ∩ β tels que m = xy.

α ne possède pas de maximum, donc il existe x′ > x tel que x′ ∈ α. Alors x′y ∈ αβ et
x′y > xy = m ce qui est impossible. Ainsi, αβ ne possède pas de maximum.
En conclusion, on a bien montré que αβ est un réel.
⋄ Par construction, Q− ⊂ αβ, donc 0 ∈ αβ,
donc d’après la question précédente, αβ ∈ R∗

+.

19◦) On suppose que α <R 0R. Alors d’après la question 12, α+ (−α) ≤R 0R + (−α),
donc 0R ≤R −α. or α ̸= 0R, donc −α ̸= −0R = 0R (propriétés usuelles dans le groupe
(R,+)). Ainsi, on a montré que 0 <R (−α).

20◦) Soit α, β, γ ∈ R∗
+. D’après la question 18, αβ et βγ sont dans R∗

+, donc d’après
la définition 3, Q− ⊂ (αβ)γ et Q− ⊂ α(βγ).
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Il reste donc à montrer que Q∗
+ ∩ (αβ)γ = Q∗

+ ∩ α(βγ).
Soit x ∈ Q∗

+ ∩ (αβ)γ. Alors il existe y ∈ Q∗
+ ∩ (αβ) et z ∈ Q∗

+ ∩ γ tels que x = yz.
Toujours d’après la définition 3, il existe r ∈ Q∗

+∩α et s ∈ Q∗
+∩β tels que y = rs. Ainsi,

d’après l’associativité de la multiplication dans Q, x = (rs)z = r(sz). Or sz ∈ βγ, donc
x ∈ α(βγ) ∩Q∗

+. Ceci démontre que Q∗
+ ∩ (αβ)γ ⊂ Q∗

+ ∩ α(βγ).
L’inclusion réciproque se démontre de la même façon.

21◦) Soit α, β, γ ∈ R∗
+.

⋄ β ∈ R∗
+, donc d’après la question 17, 0 ∈ β. De même, 0 ∈ γ. Alors 0 = 0+0 ∈ β+γ,

donc β + γ ∈ R∗
+. Alors, d’après la définition 3, Q− ⊂ α(β + γ).

De même, αβ et αγ sont strictement positifs, donc 0 ∈ (αβ)+ (αγ), or (αβ)+ (αγ) est
un réel, donc Q− ⊂ (αβ) + (αγ).
Ainsi, il reste à démontrer que Q∗

+ ∩ [α(β + γ)] = Q∗
+ ∩ [(αβ) + (αγ)].

⋄ Soit x ∈ Q∗
+ ∩ [α(β + γ)]. Il existe y ∈ Q∗

+ ∩α et y′ ∈ Q∗
+ ∩ (β + γ) tels que x = yy′.

Il existe t ∈ β et z ∈ γ tels que y′ = t+ z.
Si t, z ∈ Q∗

+, alors par distributivité dansQ de la multiplication par rapport à l’addition,
x = y(t+ z) = (yt) + (yz) ∈ [(αβ) + (αγ)].
Si t ≤ 0, y′ ≤ z, or y > 0, donc x = yy′ ≤ yz, or y > 0, z > 0, y ∈ α et z ∈ γ, donc
yz ∈ αγ, mais αγ est un réel, donc x ∈ αγ, or 0 ∈ αβ, donc x ∈ (αβ) + (αγ). On
conclut de même si z ≤ 0.
Ainsi, dans tous les cas, x ∈ (αβ) + (αγ),
donc on a montré que Q∗

+ ∩ [α(β + γ)] ⊂ Q∗
+ ∩ [(αβ) + (αγ)].

⋄ Réciproquement, soit x ∈ Q∗
+ ∩ [(αβ) + (αγ)].

Il existe b ∈ αβ et g ∈ αγ tels que x = b+ g.
Si b ≤ 0, g = x− b > 0, donc g = x′y′ avec x′ ∈ Q∗

+ ∩ α et y′ ∈ Q∗
+ ∩ γ.

Posons z = x
x′ , de sorte que x = x′z.

Alors x′z = x ≤ g = x′y′, or x′ > 0, donc z ≤ y′ ∈ γ. Or γ est un réel, donc z ∈ γ, puis
z = 0 + z ∈ β + γ, or z > 0, donc x = x′z ∈ [α(β + γ)].
On conclut de la même façon lorsque g ≤ 0.
Il reste à étudier le cas où b, g ∈ Q∗

+. Dans ce cas, b ∈ Q∗
+ ∩ (αβ) et g ∈ Q∗

+ ∩ (αγ),
donc il existe a, a′ ∈ Q∗

+ ∩ α, b′ ∈ Q∗
+ ∩ β et g′ ∈ Q∗

+ ∩ γ tels que b = ab′ et g = a′g′.
Posons a′′ = max(a, a′) ∈ Q∗

+ et u = x
a′′
, de sorte que x = a′′u.

Alors a′′u = x = (ab′) + (a′g′) ≤ a′′(b′ + g′), or a′′ > 0, donc u ≤ b′ + g′ ∈ (β + γ), mais
β + γ est un réel, donc u ∈ (β + γ). De plus u > 0, donc x = a′′u ∈ [α(β + γ)].
Ainsi, dans tous les cas, on a montré que x ∈ [α(β + γ)],
ce qui montre que Q∗

+ ∩ [α(β + γ)] ⊃ Q∗
+ ∩ [(αβ) + (αγ)].

22◦) ⋄ Posons 1R = {x ∈ Q / x < 1}. D’après la première question, 1R est un réel.
De plus, 0 ∈ 1R, donc 1R ∈ R∗

+.
Soit α ∈ R. Si α = 0R, alors d’après la définition 4, 1Rα = 0R = α.
Supposons maintenant que α ̸= 0R.
⋄ Supposons d’abord que α >R 0R.
Soit x ∈ 1Rα ∩ Q∗

+. Alors il existe y ∈ 1R ∩ Q∗
+ et z ∈ α ∩ Q∗

+ tels que x = yz. On a
0 < y < 1, donc x < z ∈ α. Or α est un réel, donc x ∈ α.
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Réciproquement, soit x ∈ α∩Q∗
+. α n’admet aucun maximum, donc il existe y ∈ α tel

que x < y. Alors x = zy où z ∈ 1R ∩Q∗
+, donc x ∈ 1Rα ∩Q∗

+.
On a ainsi montré que α ∩ Q∗

+ = 1Rα ∩ Q∗
+, or α et 1Rα sont dans R∗

+, donc ils
contiennent tous les deux Q−. Ainsi, 1Rα = α.
⋄ Supposons maintenant que α /∈ R∗

+. La relation d’ordre ≤R étant totale d’après
la question 7, α ≤R 0R, or α ̸= 0R, donc α <R 0R. Alors d’après la question 19,
−α ∈ R∗

+. Ainsi, d’après le cas précédent, 1R(−α) = −α. Alors d’après la définition 4,
1Rα = −(1R(−α)) = −(−α). Or −(−α) = −(−α)+0R = −(−α)+α+(−α), donc par
commutativité et associativité de l’addition dans R, −(−α) = −(−α)+ (−α)+α = α.
Ainsi, on a montré que, pour tout α ∈ R, 1Rα = α.

23◦) Pour tout a ∈ Q, posons f(a) = {x ∈ Q / x < a}. D’après la première question,
f est une application de Q dans R.
D’après les questions 14 et 22, f(0) = 0R et f(1) = 1R.
⋄ Soit a, b ∈ Q. Soit x ∈ f(a) + f(b). Il exite y ∈ f(a) et z ∈ f(b) tels que x = y + z.
Alors x < a+ b, donc x ∈ f(a+ b).
Réciproquement, supposons que x ∈ f(a+ b). Ainsi, x < a+ b.
Posons ε = a+ b− x ∈ Q∗

+. Alors x = a+ b− ε = (a− ε
2
) + (b− ε

2
) ∈ f(a) + f(b).

Ainsi, pour tout a, b ∈ Q, f(a+ b) = f(a) + f(b).
⋄ Soit a ∈ Q. Alors f(a) + f(−a) = f(a+ (−a)) = f(0) = 0R, donc f(−a) = −f(a).
⋄ Soit a, b ∈ Q∗

+. Alors 0 ∈ f(a) et 0 ∈ f(b), donc f(a), f(b) ∈ R∗
+.

Soit x ∈ f(a)f(b) ∩Q∗
+. Alors x = yz, où y ∈ f(a) ∩Q∗

+ et z ∈ f(b) ∩Q∗
+. On a donc

0 < y < a et 0 < z < b, donc x = yz < ab. Ainsi x ∈ f(ab).
Ceci démontre que f(a)f(b) ∩Q∗

+ ⊂ f(ab) ∩Q∗
+.

Réciproquement, soit x ∈ f(ab) ∩Q∗
+. Ainsi, 0 < x < ab.

Il existe p ∈ N∗ tel que p > b
ab−x

. Alors ab− x > b
p
.

On en déduit que ab > x+ b
p
> b

p
, donc a > 1

p
.

Posons y =
x

a− 1
p

∈ Q∗
+, de sorte que x = (a− 1

p
)y.

On a (a− 1
p
)y = x < ab− b

p
= b(a− 1

p
), et a− 1

p
> 0, donc y < b. Ainsi, x = (a− 1

p
)y

avec 0 < a− 1
p
< a et 0 < y < b, donc x ∈ f(a)f(b) ∩Q∗

+.

On en déduit que f(ab) = f(a)f(b) pour tout a, b ∈ Q∗
+.

Cette égalité reste évidemment vraie si a = 0 ou b = 0.
Si a ∈ Q∗

− et b ∈ Q∗
+, f(ab) = f(−(−a)b) = −f((−a)b) = −f(−a)f(b) = f(a)f(b).

On procède de même dans les autres cas, donc pour tout a, b ∈ Q, f(ab) = f(a)f(b).
⋄ Soit a, b ∈ Q tels que a < b. Alors f(a) ⊂ f(b) et f(a) ̸= f(b), donc f est une
application strictement croissante. On en déduit facilement qu’elle est injective.
En conclusion, f |f(Q)

Q est une bijection de Q dans une partie de R, qui transporte 0,
1, l’addition, la multiplication et l’ordre usuel de Q. On peut donc identifier Q avec
f(Q) qui est une partie de R. Ceci achève la construction de R selon les coupures de
Dedekind : R est bien un sur-corps de Q, totalement ordonné et vérifiant la propriété
de la borne supérieure.
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