DS 3 : Un corrigé

Partie I: Définition d'un réel

- **1**°) $\diamond a 1 < a < a + 1$, donc $a 1 \in \alpha$ et $a + 1 \notin \alpha$. Ainsi, α est non vide et il est différent de \mathbb{Q} .
- \diamond Soit $x \in \alpha$ et $y \in \mathbb{Q} \setminus \alpha$. Alors $x < a \le y$, donc on a bien x < y.
- \diamond Supposons que α possède un maximum noté m dans \mathbb{Q} . $m \in \alpha$, donc m < a. Posons $b = \frac{1}{2}(m+a) \in \mathbb{Q}$. On sait alors que m < b < a, donc $b \in \alpha$ et b > m, ce qui contredit la définition de m. Ainsi, α ne possède pas de maximum dans \mathbb{Q} .
- **2**°) En réduisant au même dénominateur, $b-a = \frac{a(a^2+6) a(3a^2+2)}{3a^2+2} = \frac{-2a^3+4a}{3a^2+2}$,

donc
$$b-a=\frac{2a(2-a^2)}{3a^2+2}$$
. On calcule ensuite
$$b^2-2=\frac{a^2(a^4+12a^2+36)-2(9a^4+12a^2+4)}{(3a^2+2)^2}=\frac{a^6-6a^4+12a^2-8}{(3a^2+2)^2},$$
 donc $b^2-2=\frac{(a^2-2)^3}{(3a^2+2)^2}$.

- **3°)** $\diamond 2^2 = 4 > 2$, donc $2 \notin \alpha$. Ceci prouve que $\alpha \neq \mathbb{Q}$. $0 \in \alpha$, donc $\alpha \neq \emptyset$.
- \diamond Soit $x \in \alpha$ et $y \in \mathbb{Q} \setminus \alpha$.

Alors $y \notin \mathbb{Q}_-$, donc y > 0. Ainsi, lorsque $x \in \mathbb{Q}_-$, on a bien x < y.

Supposons maintenant que x > 0. Alors $x^2 < 2$ et $y^2 \ge 2$. Ainsi, $x^2 < y^2$ avec x et y positifs strictement positifs. Alors $0 < y^2 - x^2 = (y - x)(y + x)$ et y + x > 0, donc y - x > 0 puis x < y.

Ainsi, dans tous les cas, on a montré que x < y.

 \diamond Supposons que α possède dans \mathbb{Q} un maximum noté $a.\ 1 \in \alpha$, donc $a > 0.\ a \in \alpha$, donc $a^2 < 2$. Alors, avec les notations de la question précédente, on a $b-a = \frac{2a(2-a^2)}{3a^2+2} > 0$, donc a < b.

On a également $b^2 - 2 = \frac{(a^2 - 2)^3}{(3a^2 + 2)^2} < 0$, donc $b^2 < 2$. Or $b \in \mathbb{Q}$, donc $b \in \alpha$ et a < b.

Ceci contredit la définition de a, donc α ne possède pas de maximum dans \mathbb{Q} . On a bien montré que α est un réel.

- **4°)** Raisonnons par l'absurde en supposant que α est de type 1. Ainsi, il existe $a \in \mathbb{Q}$ tel que $\alpha = \{x \in \mathbb{Q}_+ \ / \ x^2 < 2\} \cup \mathbb{Q}_- = \{x \in \mathbb{Q} \ / \ x < a\}.$ $0 \in \alpha$, donc 0 < a.
- \diamond Supposons que $a^2 < 2$. Alors $a \in \alpha$, donc a < a, ce qui est faux. En conséquence, $a^2 \ge 2$.
- \diamond Supposons maintenant que $a^2 > 2$. Posons à nouveau $b = \frac{a(a^2+6)}{3a^2+2}$. Alors d'après la question 2, b-a < 0 et $b^2-2 > 0$. Alors b < a, donc $b \in \alpha$ et $b^2 > 2$ avec b > 0 donc $b \notin \alpha$, ce qui est impossible. En conséquence, $a^2 \le 2$.
- \diamond Ainsi $a^2=2$ et $a\in\mathbb{Q}$. Posons $a=\frac{p}{q}$ avec $p,q\in\mathbb{N}^*$ et $p\wedge q=1$. Alors $p^2=2q^2$, donc $q|p^2$, mais $q\wedge(p^2)=1$, donc d'après le lemme de Gauss, q|1, puis q=1. Alors $p^2=2$, donc $1^2=1< p^2<4=2^2$, donc 1< p<2 et $p\in\mathbb{N}$. C'est impossible. Ceci prouve que α n'est pas de type 1.

Partie II : Propriété de la borne supérieure

5°) Pour tout $A \in \mathcal{P}(E)$, $A \subset A$, donc \subset est réflexive.

Soit $A, B \in \mathcal{P}(E)$ tels que $A \subset B$ et $B \subset A$. Alors, d'après l'axiome d'extensionnalité, A = B, ce qui prouve que \subset est antisymétrique.

Soit $A, B, C \in \mathcal{P}(E)$ tels que $A \subset B$ et $B \subset C$. Soit $x \in A$. Alors $x \in B$, puis $x \in C$, donc $A \subset C$. Ceci prouve que \subset est transitive.

En conclusion, on a bien montré que \subset est une relation d'ordre sur $\mathcal{P}(E)$.

6°) Soit \mathcal{A} une partie incluse dans $\mathcal{P}(E)$. Posons $S = \bigcup_{A \in \mathcal{A}} A$ et montrons que S est la

borne supérieure de A, c'est-à-dire le plus petit des majorants.

Clairement, pour tout $A \in \mathcal{A}$, $A \subset S$, donc S majore \mathcal{A} .

Soit $B \in \mathcal{P}(E)$ un majorant de \mathcal{A} . Alors, pour tout $A \in \mathcal{A}$, $A \subset B$.

Soit $x \in S$. Il existe $A \in \mathcal{A}$ tel que $x \in A$. Alors $x \in B$. Ceci prouve que $S \subset B$. Ainsi, S est bien le plus petit des majorants de \mathcal{A} , ce qui conclut.

7°) D'après la question 5, la relation d'inclusion est une relation d'ordre sur $\mathcal{P}(\mathbb{Q})$, donc par restriction, c'est une relation d'ordre sur \mathbb{R} .

Soit α et β deux réels. Supposons que $\beta \not\subset \alpha$. Il s'agit de montrer que $\alpha \subset \beta$.

Par hypothèse, il existe $x_0 \in \beta$ tel que $x_0 \notin \alpha$.

Soit $x \in \alpha$. Supposons que $x \notin \beta$.

On a $x \in \alpha$ et $x_0 \in \mathbb{Q} \setminus \alpha$, or α est un réel, donc $x < x_0$.

On a $x_0 \in \beta$ et $x \notin \beta$, or β est un réel, donc $x_0 < x$.

C'est impossible, donc $x \in \beta$, pour tout $x \in \alpha$. On a montré que $\alpha \subset \beta$, ce qui conclut.

8°) Soit \mathcal{A} une partie non vide et majorée de \mathbb{R} . \mathcal{A} est en particulier une partie incluse dans $\mathcal{P}(\mathbb{Q})$. Il est donc naturel de poser $S = \bigcup_{A \in \mathcal{A}} A$; montrons que S est la

borne supérieure dans \mathbb{R} de \mathcal{A} .

♦ Pour tout $A \in \mathcal{A}$, $A \subset S$ et, si B est un réel qui majore \mathcal{A} , alors pour tout $A \in \mathcal{A}$, $A \subset B$, donc, ainsi qu'on l'a vu en question 6, $S \subset B$.

Pour conclure, il reste à montrer que S est un réel.

- \diamond \mathcal{A} est non vide, donc il existe $\alpha \in \mathcal{A}$. α est un réel, donc α est non vide, or $\alpha \subset S$, donc S est non vide.
- \diamond \mathcal{A} est majoré, donc il existe $\beta \in \mathbb{R}$ tel que β majore \mathcal{A} . Alors $S \subset \beta$. Or β est un réel, donc $\beta \neq \mathbb{Q}$. Ceci démontre que $S \neq \mathbb{Q}$.
- \diamond Soit $x \in S$ et $y \in \mathbb{Q} \setminus S$. Il existe $\alpha \in A$ tel que $x \in \alpha$. Mais $y \in \mathbb{Q} \setminus \bigcup_{A \in A} A$, donc

 $y \notin \alpha$. Or α est un réel, donc x < y.

 \diamond Supposons que S possède un maximum noté m dans \mathbb{Q} .

Alors $m \in S = \bigcup_{A \in A} A$, donc il existe $\alpha \in A$ tel que $m \in \alpha$.

 α est un réel, donc m n'est pas le maximum de α . Ainsi, il existe $x \in \alpha$ tel que m < x. Alors $x \in S$ et m < x: c'est impossible par définition de m. Ainsi, S ne possède pas de maximum.

On en déduit que S est un réel, ce qu'il fallait démontrer.

 9°) Soit B une partie de N.

Lorsque $B \neq \emptyset$, posons $G' = \bigcap_{b \in B} b\mathbb{Z}$. G' est un sous-groupe de \mathbb{Z} en tant qu'intersection

de sous-groupes de \mathbb{Z} , donc d'après le cours, il existe $m \in \mathbb{N}$ tel que $G' = m\mathbb{Z}$.

Soit $b \in B$. $m \in G' \subset b\mathbb{Z}$, donc $b \mid m$. Ainsi m est un majorant de B.

Soit m' un majorant de B. Pour tout $b \in B$, $b \mid m'$, donc $m' \in b\mathbb{Z}$. Ainsi, $m' \in G' = m\mathbb{Z}$, donc $m \mid m'$. m est donc la borne supérieure de B.

Lorsque $B = \emptyset$, l'ensemble des majorants de B est \mathbb{N} , qui admet 1 comme minimum, car pour tout $n \in \mathbb{N}$, $1 \mid n$, donc 1 est la borne supérieure de \emptyset .

Ainsi, dans tous les cas, B possède une borne supérieure. Ceci prouve que $\mathbb N$ est un treillis complet.

10°) Soit A une partie de F.

Notons M l'ensemble des minorants de A.

M est une partie de F et (F, \leq) est un treillis complet, donc M possède une borne supérieure que l'on notera i. Il reste à montrer que $i \in M$. Alors, i sera le maximum de M, donc la borne inférieure de A.

Soit $a \in A$. Alors, pour tout $m \in M$, $m \le a$. Ainsi, a est un majorant de M, donc par définition de la borne supérieure, $i \le a$. Ainsi, i est un minorant de A. On a bien prouvé que $i \in M$, ce qui conclut.

Partie III : L'addition et la multiplication dans \mathbb{R} .

11°) Soit $x \in \alpha + \beta$. Il existe $y \in \alpha$ et $z \in \beta$ tels que x = y + z. L'addition dans \mathbb{Q} étant commutative, x = y + z, donc $x \in \beta + \alpha$. Ainsi, $\alpha + \beta \subset \beta + \alpha$. Par symétrie des rôles joués par α et β , on a aussi l'autre inclusion, donc $\alpha + \beta = \beta + \alpha$.

12°) Soit $\alpha, \beta, \gamma \in \mathbb{R}$ tels que $\alpha \subset \beta$.

Soit $x \in \alpha + \gamma$. Il existe $y \in \alpha$ et $z \in \gamma$ tels que x = y + z.

 $\alpha \subset \beta$, donc $y \in \beta$, donc $x = y + z \in \beta + \gamma$.

Ainsi, $\alpha + \gamma \subset \beta + \gamma$, ce qu'il fallait démontrer.

- 13°) Soit $\alpha, \beta \in \mathbb{R}$.
- $\diamond \quad \alpha$ et β sont non vides, donc il existe $x \in \alpha$ et $y \in \beta$. Alors $x + y \in \alpha + \beta$, donc $\alpha + \beta$ est non vide.
- $\diamond \quad \alpha \text{ et } \beta \text{ sont différents de } \mathbb{Q}, \text{ donc il existe } x \in \mathbb{Q} \setminus \alpha \text{ et } y \in \mathbb{Q} \setminus \beta.$

Supposons que $x + y \in \alpha + \beta$. Alors il existe $x' \in \alpha$ et $y' \in \beta$ tels que x + y = x' + y'. $x' \in \alpha$ et $x \notin \alpha$, or α est un réel, donc x' < x. De même, y' < y, donc en travaillant dans \mathbb{Q} , x + y = x' + y' < x + y, ce qui est faux. Ainsi, $x + y \in \mathbb{Q} \setminus (\alpha + \beta)$, ce qui prouve que $\alpha + \beta$ est différent de \mathbb{Q} .

 \diamond Soit $x \in \alpha + \beta$ et $y \in \mathbb{Q} \setminus (\alpha + \beta)$.

Il existe $z \in \alpha$ et $t \in \beta$ tels que x = z + t.

Posons $t' = y - z \in \mathbb{Q}$, de sorte que y = z + t'.

Si $t' \in \beta$, alors $y = z + t' \in \alpha + \beta$, ce qui est faux, donc $t' \notin \beta$. Mais $t \in \beta$ et β est un réel, donc t < t', puis x = z + t < z + t' = y.

 \diamond Supposons que $\alpha + \beta$ possède un maximum dans \mathbb{Q} , noté m.

Il existe $x \in \alpha$ et $y \in \beta$ tels que m = x + y.

 α est un réel, donc il ne possède aucun maximum. En particulier, il existe $x' \in \alpha$ tel que x < x'. Alors m = x + y < x' + y, et $x' + y \in \alpha + \beta$: ceci contredit la définition de m, donc $\alpha + \beta$ ne possède pas de maximum dans \mathbb{Q} .

En conclusion, on a montré que $\alpha + \beta$ est bien un réel.

14°) $0_{\mathbb{R}}$ doit correspondre au rationnel 0 *vu comme* un réel. Il est donc naturel de poser $0_{\mathbb{R}} = \{x \in \mathbb{Q} \mid x < 0\}$. C'est bien un réel d'après la première question.

Soit $\alpha \in \mathbb{R}$. Soit $x \in \alpha + 0_{\mathbb{R}}$. Il existe $y \in \alpha$ et $z \in 0_{\mathbb{R}}$ tels que x = y + z.

z < 0, donc x = y + z < y. Si $x \notin \alpha$, α étant un réel tel que $y \in \alpha$, alors y < x, ce qui est faux, donc $x \in \alpha$. Ceci démontre que $\alpha + 0_{\mathbb{R}} \subset \alpha$.

Réciproquement, supposons que $x \in \alpha$. α est un réel, donc il ne possède pas de maximum. En particulier, il existe $y \in \alpha$ tel que x < y. Ainsi x = y + z avec $z \in \mathbb{Q}_{-}^{*}$. Donc $z \in \mathbb{Q}_{\mathbb{R}}$ puis $x = y + z \in \alpha + \mathbb{Q}_{\mathbb{R}}$. Ceci démontre que $\alpha + \mathbb{Q}_{\mathbb{R}} \supset \alpha$.

Ainsi, on a montré que $\alpha + 0_{\mathbb{R}} = \alpha$, pour tout $\alpha \in \mathbb{R}$.

- 15°) Soit $\varepsilon \in \mathbb{Q}_+^*$.
- $\diamond \quad \alpha \text{ et } \mathbb{Q} \setminus \alpha \text{ sont non vides, donc il existe } x_0 \in \alpha \text{ et } y_0 \in \mathbb{Q} \setminus \alpha.$

Posons $A = \{ n \in \mathbb{N} / x_0 + n\varepsilon \in \alpha \}.$

 $0 \in A$, donc A est non vide.

 \diamond Soit $n \in \mathbb{N}$. $x_0 + n\varepsilon \ge y_0 \iff n \ge \frac{y_0 - x_0}{\varepsilon}$. Or il existe $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $\frac{y_0 - x_0}{\varepsilon} = \frac{p}{\varepsilon}$. Posons N = |n|. Alors $N \ge \frac{|p|}{\varepsilon} \ge \frac{p}{\varepsilon}$ donc $x_0 + N\varepsilon \ge y_0$.

 $\frac{y_0 - x_0}{\varepsilon} = \frac{p}{q}. \text{ Posons } N = |p|. \text{ Alors } N \ge \frac{|p|}{q} \ge \frac{p}{q}, \text{ donc } x_0 + N\varepsilon \ge y_0.$

 \diamond Soit $n \in \mathbb{N}$ tel que $n \in A$. Alors $x_0 + n\varepsilon \in \alpha$, or $y_0 \notin \alpha$, donc $x_0 + n\varepsilon < y_0 \le x_0 + N\varepsilon$. En travaillant dans \mathbb{Q} , on en déduit que $n \le N$, donc A est majoré.

 \diamond A étant non vide et majoré, il possède un maximum noté m. Posons $x=x_0+m\varepsilon$ et $y=x_0+(m+1)\varepsilon$. Par construction de $m,\,x\in\alpha$ et $y\notin\alpha$. De plus, $y=x+\varepsilon$, ce qu'il fallait démontrer.

16°) Premier cas : On suppose que α n'est pas du type 1.

Posons $\beta = \{-x \mid x \in \mathbb{Q} \setminus \alpha\}$ et montrons déjà que β est un réel.

On utilisera que, pour tout $y \in \mathbb{Q}$, $y \in \beta \iff -y \notin \alpha$.

- $\diamond \mathbb{Q} \setminus \alpha$ est non vide et différent de \mathbb{Q} , donc β est non vide et différent de \mathbb{Q} .
- \diamond Soit $x \in \beta$ et $y \in \mathbb{Q} \setminus \beta$.

Alors $-x \in \mathbb{Q} \setminus \alpha$ et $-y \in \alpha$, or α est un réel, donc -y < -x, puis en travaillant dans \mathbb{Q} , x < y.

 \diamond Supposons que β possède un maximum dans \mathbb{Q} , noté m.

Alors $-m \in \mathbb{Q} \setminus \alpha$.

 α étant un réel, pour tout $x \in \alpha$, x < -m.

Réciproquement, supposons que $x \in \mathbb{Q}$ avec x < -m. Alors -x > m, donc $-x \notin \beta$, donc $x \in \alpha$.

Ainsi, par double inclusion, on a montré que $\alpha = \{x \in \mathbb{Q} \mid x < -m\}$, donc α est du type 1, ce qui est faux. Ainsi, β ne possède pas de maximum.

On a donc bien montré que β est un réel.

Montrons maintenant que $\alpha + \beta = 0_{\mathbb{R}}$.

- \diamond Soit $x \in \alpha + \beta$. Il existe $y \in \alpha$ et $z \in \beta$ tels que x = y + z.
- $-z \notin \alpha$ et α est un réel, donc y < -z. Ainsi, x = y + z < 0, donc $x \in 0_{\mathbb{R}}$.
- \diamond Réciproquement, supposons que $x \in 0_{\mathbb{R}}$. Posons $\varepsilon = -x \in \mathbb{Q}_{+}^{*}$.

D'après la question précédente, il existe $x \in \alpha$ et $y \notin \alpha$ tel que $y = x + \varepsilon$.

Ainsi, $x = -\varepsilon = x + (-y)$ avec $x \in \alpha$ et $-y \in \beta$, donc $x \in \alpha + \beta$.

On a donc montré par double inclusion que $\alpha + \beta = 0_{\mathbb{R}}$, ce qui conclut dans ce cas.

Second cas : On suppose que α est du type 1.

Ainsi, il existe $a \in \mathbb{Q}$ tel que $\alpha = \{x \in \mathbb{Q} \mid x < a\}$.

Posons alors $\beta = \{x \in \mathbb{Q} \mid x < -a\}$. $\beta \in \mathbb{R}$ d'après la première question.

Montrons que $\alpha + \beta = 0_{\mathbb{R}}$.

Soit $x \in \alpha + \beta$. Il existe $y \in \alpha$ et $z \in \beta$ tels que x = y + z,

donc x < a + (-a) = 0. Ainsi, x < 0.

Réciproquement, supposons que x < 0. Posons $\varepsilon = -\frac{x}{2} \in \mathbb{Q}_+^*$.

Alors $a - \varepsilon \in \alpha$ et $-a - \varepsilon \in \beta$, donc $x = -2\varepsilon = (a - \varepsilon) + (-a - \varepsilon) \in \alpha + \beta$.

Ainsi, par double inclusion, on a montré que $\alpha + \beta = 0_{\mathbb{R}}$, ce qui conclut.

Partie IV: Produit de deux réels.

17°) \diamond Montrons que 1) \Longrightarrow 2).

Supposons que $\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$. Alors $\mathbb{Q}_{-}^{*} \subset \alpha$ et $\mathbb{Q}_{-}^{*} \neq \alpha$.

Il existe donc $x \in \alpha$ tel que $x \geq 0$.

 α est un réel, donc si $0 \notin \alpha$, alors x < 0, ce qui est faux, donc $0 \in \alpha$, ce qu'il fallait démontrer.

 \diamond Montrons que 2) \Longrightarrow 3); Supposons que $0 \in \alpha$.

 α étant un réel, il n'admet pas de maximum, donc il existe $x \in \alpha$ tel que x > 0. Ainsi, $\alpha \cap \mathbb{Q}_+^*$ est non vide.

 $\diamond \quad \text{Montrons que 3)} \Longrightarrow 1)\,;\, \text{Supposons que } \alpha \cap \mathbb{Q}_+^* \text{ est non vide}.$

Il existe $y \in \mathbb{Q}_+^* \cap \alpha$.

Soit $x \in \mathbb{Q}_{-}^*$. Si $x \notin \alpha$, α étant un réel contenant y, y < x ce qui est faux. Ainsi $x \in \alpha$, donc $\mathbb{Q}_{-}^* \subset \alpha$, c'est-à-dire $0_{\mathbb{R}} \leq_{\mathbb{R}} \alpha$. De plus $0_{\mathbb{R}} \neq \alpha$ car $y \in \alpha$ et $y \notin 0_{\mathbb{R}}$. Ainsi, $\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$.

18°) On adapte la démonstration de la question 13.

 \diamond Par construction, $\mathbb{Q}_{-} \subset \alpha\beta$, donc $\alpha\beta$ est non vide.

 \diamond Il existe $x \in \mathbb{Q} \setminus \alpha$ et $y \in \mathbb{Q} \setminus \beta$. D'après la question précédente, \mathbb{Q}_- est inclus dans α et dans β , donc $x, y \in \mathbb{Q}_+^*$.

Supposons que $xy \in \alpha\beta$.

xy > 0, donc il existe $x' \in \alpha \cap \mathbb{Q}_+^*$ et $y' \in \beta \cap \mathbb{Q}_+^*$ tels que xy = x'y'.

 $x' \in \alpha$ et $x \notin \alpha$, donc x < x'. De même, y < y'. Or x et y sont strictement positifs, donc en travaillant dans \mathbb{Q} , xy < x'y' = xy, ce qui est faux. Ainsi $xy \notin \alpha\beta$, ce qui prouve que $\alpha\beta$ est différent de \mathbb{Q} .

 \diamond Soit $x \in \alpha\beta$ et $y \in \mathbb{Q} \setminus \alpha\beta$. $\mathbb{Q}_- \subset \alpha\beta$, donc y > 0.

Si $x \le 0$, alors x < y. On peut donc supposer que x > 0.

Alors il existe $y' \in \alpha \cap \mathbb{Q}_+^*$ et $z' \in \beta \cap \mathbb{Q}_+^*$ tels que x = y'z'.

Posons $z'' = \frac{y}{y'}$, de sorte que y = y'z''.

 $y \notin \alpha\beta$, donc $z'' \notin \beta$ (sinon, $z'' \in \beta \cap \mathbb{Q}_+^*$, donc $y = y'z'' \in \alpha\beta$). Or $z' \in \beta$ et β est un réel, donc z' < z''. De plus, y' > 0, donc x = y'z' < y'z'' = y, ce qu'il fallait démontrer.

 \diamond Supposons que $\alpha\beta$ possède un maximum noté m. D'après la question précédente, il existe $x' \in \mathbb{Q}_+^* \cap \alpha$ et $y' \in \mathbb{Q}_+^* \cap \beta$, donc $x'y' \in \mathbb{Q}_+^* \cap \alpha\beta$. Ainsi, m > 0.

Il existe donc $x \in \mathbb{Q}_+^* \cap \alpha$ et $y \in \mathbb{Q}_+^* \cap \beta$ tels que m = xy.

 α ne possède pas de maximum, donc il existe x' > x tel que $x' \in \alpha$. Alors $x'y \in \alpha\beta$ et x'y > xy = m ce qui est impossible. Ainsi, $\alpha\beta$ ne possède pas de maximum.

En conclusion, on a bien montré que $\alpha\beta$ est un réel.

 \diamond Par construction, $\mathbb{Q}_{-} \subset \alpha\beta$, donc $0 \in \alpha\beta$, donc d'après la question précédente, $\alpha\beta \in \mathbb{R}_{+}^{*}$.

19°) \diamond On suppose d'abord que α n'est pas de type 1.

Alors on a vu que $-\alpha = \{-x \mid x \notin \alpha\}$.

Par hypothèse, $\alpha <_{\mathbb{R}} 0_{\mathbb{R}}$, donc $\alpha \subset 0_{\mathbb{R}} = \mathbb{Q}_{-}^{*}$. En particulier, $0 \notin \alpha$,

donc $0 = -0 \in (-\alpha)$. D'après la question $17, -\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$.

 \diamond Supposons maintenant que α est de type 1.

Il existe $a \in \mathbb{Q}$ tel que $\alpha = \{x \in \mathbb{Q} \mid x < a\}$.

On a vu que dans ce cas, $-\alpha = \{x \in \mathbb{Q} \mid x < -a\}$.

On a encore $\alpha \subset 0_{\mathbb{R}} = \mathbb{Q}_{-}^*$, donc $a \leq 0$. Ainsi $-a \geq 0$ et $0 \in (-\alpha)$.

On a donc à nouveau $-\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$.

20°) Soit $\alpha, \beta, \gamma \in \mathbb{R}_+^*$. D'après la question 18, $\alpha\beta$ et $\beta\gamma$ sont dans \mathbb{R}_+^* , donc d'après la définition 3, $\mathbb{Q}_{-} \subset (\alpha\beta)\gamma$ et $\mathbb{Q}_{-} \subset \alpha(\beta\gamma)$.

Il reste donc à montrer que $\mathbb{Q}_+^* \cap (\alpha\beta)\gamma = \mathbb{Q}_+^* \cap \alpha(\beta\gamma)$.

Soit $x \in \mathbb{Q}_+^* \cap (\alpha\beta)\gamma$. Alors il existe $y \in \mathbb{Q}_+^* \cap (\alpha\beta)$ et $z \in \mathbb{Q}_+^* \cap \gamma$ tels que x = yz. Toujours d'après la définition 3, il existe $r \in \mathbb{Q}_+^* \cap \alpha$ et $s \in \mathbb{Q}_+^* \cap \beta$ tels que y = rs. Ainsi, d'après l'associativité de la multiplication dans \mathbb{Q} , x=(rs)z=r(sz). Or $sz\in\beta\gamma$, donc $x \in \alpha(\beta\gamma) \cap \mathbb{Q}_+^*$. Ceci démontre que $\mathbb{Q}_+^* \cap (\alpha\beta)\gamma \subset \mathbb{Q}_+^* \cap \alpha(\beta\gamma)$.

L'inclusion réciproque se démontre de la même façon.

21°) Soit $\alpha, \beta, \gamma \in \mathbb{R}_+^*$.

 $\Rightarrow \beta \in \mathbb{R}_+^*$, donc d'après la question 17, $0 \in \beta$. De même, $0 \in \gamma$. Alors $0 = 0 + 0 \in \beta + \gamma$, donc $\beta + \gamma \in \mathbb{R}_{+}^{*}$. Alors, d'après la définition 3, $\mathbb{Q}_{-} \subset \alpha(\beta + \gamma)$.

De même, $\alpha\beta$ et $\alpha\gamma$ sont strictement positifs, donc $0 \in (\alpha\beta) + (\alpha\gamma)$, or $(\alpha\beta) + (\alpha\gamma)$ est un réel, donc $\mathbb{Q}_{-} \subset (\alpha\beta) + (\alpha\gamma)$.

Ainsi, il reste à démontrer que $\mathbb{Q}_+^* \cap [\alpha(\beta + \gamma)] = \mathbb{Q}_+^* \cap [(\alpha\beta) + (\alpha\gamma)].$

 \diamond Soit $x \in \mathbb{Q}_+^* \cap [\alpha(\beta + \gamma)]$. Il existe $y \in \mathbb{Q}_+^* \cap \alpha$ et $y' \in \mathbb{Q}_+^* \cap (\beta + \gamma)$ tels que x = yy'. Il existe $t \in \beta$ et $z \in \gamma$ tels que y' = t + z.

Si $t, z \in \mathbb{Q}_+^*$, alors par distributivité dans \mathbb{Q} de la multiplication par rapport à l'addition, $x = y(t+z) = (yt) + (yz) \in [(\alpha\beta) + (\alpha\gamma)].$

Si $t \le 0$, $y' \le z$, or y > 0, donc $x = yy' \le yz$, or y > 0, z > 0, $y \in \alpha$ et $z \in \gamma$, donc $yz \in \alpha\gamma$, mais $\alpha\gamma$ est un réel, donc $x \in \alpha\gamma$, or $0 \in \alpha\beta$, donc $x \in (\alpha\beta) + (\alpha\gamma)$. On conclut de même si $z \leq 0$.

Ainsi, dans tous les cas, $x \in (\alpha\beta) + (\alpha\gamma)$,

donc on a montré que $\mathbb{Q}_+^* \cap [\alpha(\beta + \gamma)] \subset \mathbb{Q}_+^* \cap [(\alpha\beta) + (\alpha\gamma)].$

 \diamond Réciproquement, soit $x \in \mathbb{Q}_+^* \cap [(\alpha\beta) + (\alpha\gamma)].$

Il existe $b \in \alpha\beta$ et $g \in \alpha\gamma$ tels que x = b + g.

Si $b \leq 0$, g = x - b > 0, donc g = x'y' avec $x' \in \mathbb{Q}_+^* \cap \alpha$ et $y' \in \mathbb{Q}_+^* \cap \gamma$.

Posons $z = \frac{x}{x'}$, de sorte que x = x'z.

Alors $x'z = x \le g = x'y'$, or x' > 0, donc $z \le y' \in \gamma$. Or γ est un réel, donc $z \in \gamma$, puis $z = 0 + z \in \beta + \gamma$, or z > 0, donc $x = x'z \in [\alpha(\beta + \gamma)]$.

On conclut de la même façon lorsque $g \leq 0$.

Il reste à étudier le cas où $b, g \in \mathbb{Q}_+^*$. Dans ce cas, $b \in \mathbb{Q}_+^* \cap (\alpha\beta)$ et $g \in \mathbb{Q}_+^* \cap (\alpha\gamma)$, donc il existe $a, a' \in \mathbb{Q}_+^* \cap \alpha, b' \in \mathbb{Q}_+^* \cap \beta$ et $g' \in \mathbb{Q}_+^* \cap \gamma$ tels que b = ab' et g = a'g'.

Posons $a'' = \max(a, a') \in \mathbb{Q}_+^*$ et $u = \frac{x}{a''}$, de sorte que x = a''u. Alors $a''u = x = (ab') + (a'g') \le a''(b' + g')$, or a'' > 0, donc $u \le b' + g' \in (\beta + \gamma)$, mais $\beta + \gamma$ est un réel, donc $u \in (\beta + \gamma)$. De plus u > 0, donc $x = a''u \in [\alpha(\beta + \gamma)]$.

Ainsi, dans tous les cas, on a montré que $x \in [\alpha(\beta + \gamma)]$,

ce qui montre que $\mathbb{Q}_+^* \cap [\alpha(\beta + \gamma)] \supset \mathbb{Q}_+^* \cap [(\alpha\beta) + (\alpha\gamma)]$.

22°) \diamond Posons $1_{\mathbb{R}} = \{x \in \mathbb{Q} / x < 1\}$. D'après la première question, $1_{\mathbb{R}}$ est un réel. De plus, $0 \in 1_{\mathbb{R}}$, donc $1_{\mathbb{R}} \in \mathbb{R}_{+}^{*}$.

Soit $\alpha \in \mathbb{R}$. Si $\alpha = 0_{\mathbb{R}}$, alors d'après la définition 4, $1_{\mathbb{R}}\alpha = 0_{\mathbb{R}} = \alpha$.

Supposons maintenant que $\alpha \neq 0_{\mathbb{R}}$.

 \diamond Supposons d'abord que $\alpha >_{\mathbb{R}} 0_{\mathbb{R}}$.

Soit $x \in 1_{\mathbb{R}} \alpha \cap \mathbb{Q}_+^*$. Alors il existe $y \in 1_{\mathbb{R}} \cap \mathbb{Q}_+^*$ et $z \in \alpha \cap \mathbb{Q}_+^*$ tels que x = yz. On a 0 < y < 1, donc $x < z \in \alpha$. Or α est un réel, donc $x \in \alpha$.

Réciproquement, soit $x \in \alpha \cap \mathbb{Q}_+^*$. α n'admet aucun maximum, donc il existe $y \in \alpha$ tel que x < y. Alors x = zy où $z \in 1_{\mathbb{R}} \cap \mathbb{Q}_+^*$, donc $x \in 1_{\mathbb{R}} \alpha \cap \mathbb{Q}_+^*$.

On a ainsi montré que $\alpha \cap \mathbb{Q}_+^* = 1_{\mathbb{R}}\alpha \cap \mathbb{Q}_+^*$, or α et $1_{\mathbb{R}}\alpha$ sont dans \mathbb{R}_+^* , donc ils contiennent tous les deux \mathbb{Q}_- . Ainsi, $1_{\mathbb{R}}\alpha = \alpha$.

♦ Supposons maintenant que $\alpha \notin \mathbb{R}_+^*$. La relation d'ordre $\leq_{\mathbb{R}}$ étant totale d'après la question 7, $\alpha \leq_{\mathbb{R}} 0_{\mathbb{R}}$, or $\alpha \neq 0_{\mathbb{R}}$, donc $\alpha <_{\mathbb{R}} 0_{\mathbb{R}}$. Alors d'après la question 19, $-\alpha \in \mathbb{R}_+^*$. Ainsi, d'après le cas précédent, $1_{\mathbb{R}}(-\alpha) = -\alpha$. Alors d'après la définition 4, $1_{\mathbb{R}}\alpha = -(1_{\mathbb{R}}(-\alpha)) = -(-\alpha)$. Or $-(-\alpha) = -(-\alpha) + 0_{\mathbb{R}} = -(-\alpha) + \alpha + (-\alpha)$, donc par commutativité et associativité de l'addition dans \mathbb{R} , $-(-\alpha) = -(-\alpha) + (-\alpha) + \alpha = \alpha$. Ainsi, on a montré que, pour tout $\alpha \in \mathbb{R}$, $1_{\mathbb{R}}\alpha = \alpha$.

23°) Pour tout $a \in \mathbb{Q}$, posons $f(a) = \{x \in \mathbb{Q} \mid x < a\}$. D'après la première question, f est une application de \mathbb{Q} dans \mathbb{R} .

D'après les questions 14 et 22, $f(0) = 0_{\mathbb{R}}$ et $f(1) = 1_{\mathbb{R}}$.

 \diamond Soit $a, b \in \mathbb{Q}$. Soit $x \in f(a) + f(b)$. Il exite $y \in f(a)$ et $z \in f(b)$ tels que x = y + z. Alors x < a + b, donc $x \in f(a + b)$.

Réciproquement, supposons que $x \in f(a+b)$. Ainsi, x < a+b.

Posons $\varepsilon = a + b - x \in \mathbb{Q}_+^*$. Alors $x = a + b - \varepsilon = (a - \frac{\varepsilon}{2}) + (b - \frac{\varepsilon}{2}) \in f(a) + f(b)$.

Ainsi, pour tout $a, b \in \mathbb{Q}$, f(a+b) = f(a) + f(b).

- \diamond Soit $a \in \mathbb{Q}$. Alors $f(a) + f(-a) = f(a + (-a)) = f(0) = 0_{\mathbb{R}}$, donc f(-a) = -f(a).
- \diamond Soit $a, b \in \mathbb{Q}_+^*$. Alors $0 \in f(a)$ et $0 \in f(b)$, donc $f(a), f(b) \in \mathbb{R}_+^*$.

Soit $x \in f(a)f(b) \cap \mathbb{Q}_+^*$. Alors x = yz, où $y \in f(a) \cap \mathbb{Q}_+^*$ et $z \in f(b) \cap \mathbb{Q}_+^*$. On a donc 0 < y < a et 0 < z < b, donc x = yz < ab. Ainsi $x \in f(ab)$.

Ceci démontre que $f(a)f(b) \cap \mathbb{Q}_+^* \subset f(ab) \cap \mathbb{Q}_+^*$.

Réciproquement, soit $x \in f(ab) \cap \mathbb{Q}_+^*$. Ainsi, 0 < x < ab.

Il existe $p \in \mathbb{N}^*$ tel que $p > \frac{b}{ab-x}$. Alors $ab - x > \frac{b}{p}$.

On en déduit que $ab > x + \frac{b}{p} > \frac{b}{p}$, donc $a > \frac{1}{p}$.

Posons $y = \frac{x}{a - \frac{1}{p}} \in \mathbb{Q}_+^*$, de sorte que $x = (a - \frac{1}{p})y$.

On a $(a - \frac{1}{p})y = x < ab - \frac{b}{p} = b(a - \frac{1}{p})$, et $a - \frac{1}{p} > 0$, donc y < b. Ainsi, $x = (a - \frac{1}{p})y$ avec $0 < a - \frac{1}{p} < a$ et 0 < y < b, donc $x \in f(a)f(b) \cap \mathbb{Q}_+^*$.

On en déduit que f(ab) = f(a)f(b) pour tout $a, b \in \mathbb{Q}_+^*$.

Cette égalité reste évidemment vraie si a = 0 ou b = 0.

Si $a \in \mathbb{Q}_{-}^*$ et $b \in \mathbb{Q}_{+}^*$, f(ab) = f(-(-a)b) = -f((-a)b) = -f(-a)f(b) = f(a)f(b).

On procède de même dans les autres cas, donc pour tout $a, b \in \mathbb{Q}$, f(ab) = f(a)f(b).

 \diamond Soit $a, b \in \mathbb{Q}$ tels que a < b. Alors $f(a) \subset f(b)$ et $f(a) \neq f(b)$, donc f est une application strictement croissante. On en déduit facilement qu'elle est injective.

En conclusion, $f|_{\mathbb{Q}}^{f(\mathbb{Q})}$ est une bijection de \mathbb{Q} dans une partie de \mathbb{R} , qui transporte 0, 1, l'addition, la multiplication et l'ordre usuel de \mathbb{Q} . On peut donc identifier \mathbb{Q} avec $f(\mathbb{Q})$ qui est une partie de \mathbb{R} . Ceci achève la construction de \mathbb{R} selon les coupures de

Dedekind : $\mathbb R$ est bien un sur-corps de $\mathbb Q$, totalement ordonné et vérifiant la propriété de la borne supérieure.