DS 3 : Un corrigé

Bareme

Le baréeme comporte 66 points dont voici la répartition :
— Partie I (11 points) : 2,2,3,4.
— Partie IT (13 points) : 1,2,2,3,3,2.
— Partie IIT (17 points) : 1,1,4,2,3,6.
— Partie IV (25 points) : 2,4,2,2,6,3,6.

Partie I : Définition d’un réel

1°) oa—1<a<a+1,donca—1€aeta+1¢ . Ainsi, o est non vide et il est
différent de Q.

o Soitx €aetyeQ\a. Alors x < a <y, donc on a bien z < y.

© Supposons que « possede un maximum noté m dans Q. m € «, donc m < a. Posons
b= %(m +a) € Q. On sait alors que m < b < a, donc b € « et b > m, ce qui contredit
la définition de m. Ainsi, o ne possede pas de maximum dans Q.

ala? +6) —a(3a®+2 —2a3 + 4a
2°) En réduisant au méme dénominateur, b—a = (a” +6) ( ) — :

3a2 + 2 3a2 + 2
— 2
donc |p— g = M . On calcule ensuite
3a2 + 2
29— a?(a* +12a® + 36) — 2(9a* + 12a* +4)  a® — 6a* +12a*> — 8
n (3a2 + 2)2 N (3a2 + 2)2 ’
donc |p2 —2 = M )
(3a? + 2)?

3°) ©22=4>2 donc 2 ¢ a. Ceci prouve que a # Q.

0 € a, donc a # 0.

o SoitzeaetyecQ)a.

Alors y ¢ Q_, donc y > 0. Ainsi, lorsque z € Q_, on a bien = < y.

Supposons maintenant que x > 0. Alors 22 < 2 et y? > 2. Ainsi, 22 < y? avec x et
y positifs strictement positifs. Alors 0 < y*> — 2% = (y — 2)(y + ) et y + x > 0, donc
y—ax>0puszx<y.

Ainsi, dans tous les cas, on a montré que r < y.
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¢ Supposons que « possede dans Q un maximum noté a. 1 € o, donca > 0. a € «, donc

2a(2 — a?
a® < 2. Alors, avec les notations de la question précédente, on a b—a = (‘;(2—4_2) > 0,
a
donc a < b.
On a galement 1 — 2 — 1~ — 2" donc 1 <2, Orbe @, donc b e aeta<b
n a égalemen —2=—" onc . Or onc aeta .
g (3@2 + 2)2 ) 9

Ceci contredit la définition de a, donc « ne possede pas de maximum dans Q.
On a bien montré que « est un réel.

4°) Raisonnons par 'absurde en supposant que « est de type 1. Ainsi, il existe a € Q
telquea={reQ /2 <2}UQ_={reQ/z<a}.

0 € a, donc 0 < a.

o Supposons que a? < 2. Alors a € «, donc a < a, ce qui est faux.

En conséquence, a? > 2.

a(a® + 6)
3a? + 2
la question 2, b —a < 0 et b> —2 > 0. Alors b < a, donc b € o et b*> > 2 avec b > 0
donc b ¢ «, ce qui est impossible. En conséquence, a? < 2.

o Ainsi a®? =2 et a € Q. Posons a = £ avec p,qg € N" et pAg = 1. Alors p? = 2¢°,

o Supposons maintenant que a? > 2. Posons a nouveau b = . Alors d’apres

donc ¢|p?, mais ¢ A (p?) = 1, donc d’apres le lemme de Gauss, ¢|1, puis ¢ = 1. Alors
p?=2,donc 12 =1<p?*<4=2% donc1l<p<2etpeN. Cest impossible.
Ceci prouve que « n’est pas de type 1.

Partie II : Propriété de la borne supérieure

5°) Pour tout A € P(E), A C A, donc C est réflexive.

Soit A, B € P(E) tels que A C B et B C A. Alors, d’apres 'axiome d’extensionnalité,
A = B, ce qui prouve que C est antisymétrique.

Soit A, B,C € P(E) tels que A C B et B C C. Soit © € A. Alors x € B, puis z € C,
donc A C C. Ceci prouve que C est transitive.

En conclusion, on a bien montré que C est une relation d’ordre sur P(F).

6°) Soit A une partie incluse dans P(E). Posons S = U A et montrons que S est la

AeA
borne supérieure de A, c’est-a-dire le plus petit des majorants.

Clairement, pour tout A € A, A C S, donc S majore A.

Soit B € P(E) un majorant de A. Alors, pour tout A € A, A C B.

Soit x € S. Il existe A € A tel que x € A. Alors x € B. Ceci prouve que S C B. Ainsi,
S est bien le plus petit des majorants de A, ce qui conclut.

7°) D’apres la question 5, la relation d’inclusion est une relation d’ordre sur P(Q),
donc par restriction, c¢’est une relation d’ordre sur R.

Soit v et § deux réels. Supposons que § ¢ a. Il s’agit de montrer que o C 5.

Par hypothese, il existe xg € § tel que zo ¢ a.

Soit € . Supposons que x ¢ (.



Onaxz € aetzy € Q\a,oraestun réel, donc x < x.
On axg € B etz ¢ f, or §est un réel, donc zy < x.
C’est impossible, donc x € 3, pour tout x € . On a montré que o C 3, ce qui conclut.

8°) Soit A une partie non vide et majorée de R. A est en particulier une partie

incluse dans P(Q). Il est donc naturel de poser S = U A; montrons que S est la

AeA
borne supérieure dans R de A.

¢ Pour tout A € A, A C S et, si B est un réel qui majore A, alors pour tout A € A,
A C B, donc, ainsi qu’on I’a vu en question 6, S C B.

Pour conclure, il reste a montrer que S est un réel.

o A est non vide, donc il existe a € A. « est un réel, donc « est non vide, or oo C .5,
donc S est non vide.

o A est majoré, donc il existe 8 € R tel que $ majore A. Alors S C 8. Or § est un
réel, donc [ # Q. Ceci démontre que S # Q.

o Soitxe SetyeQ\S. Il existe € A tel que x € a. Mais y € Q \ U A, donc

AcA
y ¢ a. Or « est un réel, donc = < y.

©  Supposons que S possede un maximum noté m dans Q.
Alors m € S = U A, donc il existe a € A tel que m € a.

AcA
« est un réel, donc m n’est pas le maximum de «. Ainsi, il existe x € a tel que m < z.

Alors x € S et m < x : c’est impossible par définition de m. Ainsi, S ne possede pas
de maximum.
On en déduit que S est un réel, ce qu’il fallait démontrer.

9°) Soit B une partie de N.

Lorsque B # (), posons G’ = ﬂ bZ. G' est un sous-groupe de Z en tant qu’intersection

beB
de sous-groupes de Z, donc d’apres le cours, il existe m € N tel que G = mZ.

Soit b € B. m € G' C bZ, donc b | m. Ainsi m est un majorant de B.

Soit m/ un majorant de B. Pour tout b € B, b | m’/, donc m’ € bZ. Ainsi, m’ € G' = mZ,
donc m | m’. m est donc la borne supérieure de B.

Lorsque B = (), ’ensemble des majorants de B est N, qui admet 1 comme minimum,
car pour tout n € N, 1 | n, donc 1 est la borne supérieure de (.

Ainsi, dans tous les cas, B possede une borne supérieure. Ceci prouve que N est un
treillis complet.

10°) Soit A une partie de F.

Notons M l’ensemble des minorants de A.

M est une partie de F et (F, <) est un treillis complet, donc M possede une borne
supérieure que ’on notera 7. Il reste & montrer que ¢ € M. Alors, i sera le maximum
de M, donc la borne inférieure de A.

Soit a € A. Alors, pour tout m € M, m < a. Ainsi, a est un majorant de M, donc
par définition de la borne supérieure, ¢ < a. Ainsi, ¢ est un minorant de A. On a bien
prouvé que ¢ € M, ce qui conclut.



Partie III : L’addition et la multiplication dans R.

11°) Soit z € a+ (. Il existe y € a et z € (3 tels que x = y + 2. L’addition dans Q
étant commutative, z = y + z, donc x € S+ a. Ainsi, a + 8 C S+ «. Par symétrie des
roles joués par « et 3, on a aussi 'autre inclusion, donc o + 8 = 8 + a.

12°) Soit a, B,7 € R tels que o C 5.

Soit z € a4+ . Il existe y € v et z € v tels que x =y + 2.
aCp,doncy € f,doncr=y+z€+7.

Ainsi, a +v C B + 7, ce qu’il fallait démontrer.

13°) Soit a, B € R.

¢« et [ sont non vides, donc il existe x € a et y € 5. Alors z+y € a+ (5, donc a+
est non vide.

o « et B sont différents de Q, donc il existe z € Q \ a et y € Q\ 5.

Supposons que x +y € o + (3. Alors il existe 2’ € a et ¢y €  tels que x +y = 2’ + /.
¥ € aetx é a,or aestun réel, donc 2’ < x. De méme, 3y’ < y, donc en travaillant
dans Q, z +y =2’ +y < x +y, ce qui est faux. Ainsi, z +y € Q\ (a + ), ce qui
prouve que « + [ est différent de Q.

o Soitzea+pfetyeQ\ (a+p).

Il existe z € v et t € 3 tels que x = 2z + t.

Posons t' =y — z € Q, de sorte que y = z + t'.

Sit'e B, alorsy =24+t € a+ 3, ce qui est faux, donc ¢’ ¢ §. Mais ¢t € § et § est un
réel, donct <t,puisx=z+t<z+t' =y.

¢ Supposons que « + 3 possede un maximum dans Q, noté m.

Il existe x € a et y € B tels que m =z + y.

a est un réel, donc il ne posseéde aucun maximum. En particulier, il existe 2’ € « tel
que z < z'. Alorsm=x+y <2’ +y,et 2’ +y € a+ [ : ceci contredit la définition
de m, donc o + 8 ne possede pas de maximum dans Q.

En conclusion, on a montré que a + 3 est bien un réel.

14°) Og doit correspondre au rationnel 0 vu comme un réel. Il est donc naturel de
poser Og = {z € Q / x < 0}. C’est bien un réel d’apres la premiere question.

Soit o € R. Soit € o + O. Il existe y € a et z € O tels que z =y + 2.
z2<0,doncx=y+z2<y.Sixé¢a aétant un réel tel que y € a, alors y < z, ce qui
est faux, donc z € a. Ceci démontre que o + Og C «.

Réciproquement, supposons que z € a. « est un réel, donc il ne possede pas de maxi-
mum. En particulier, il existe y € a tel que x < y. Ainsi x = y + z avec z € Q* . Donc
2z € Og puis © =y + 2z € a + Or. Ceci démontre que a + Og D a.

Ainsi, on a montré que a + Og = «, pour tout a € R.

15°) Soit € € Q7.
o «aet Q)\ a sont non vides, donc il existe xg € a et yo € Q \ .

Posons A ={n € N / o+ ne € a}.
0 € A, donc A est non vide.



Yo — o

o Soitn € N. g +ne >y < n > . Or il existe p € Z et ¢ € N* tels que

€
—x
Yo 0o_2 Posons N = |p|. Alors N > ‘%;' > ’5’, donc zg + Ne > yp.
€ q

o Soit n € Ntel quen € A. Alors zp+ne € «, or yy ¢ «, donc zp+ne < yp < zo+ Ne.
En travaillant dans Q, on en déduit que n < N, donc A est majoré.

o A étant non vide et majoré, il possede un maximum noté m. Posons x = xy + me
et y = xg + (m + 1)e. Par construction de m, x € a et y ¢ a. De plus, y = x + ¢, ce
qu’il fallait démontrer.

16°) Premier cas : On suppose que « n'est pas du type 1.

Posons = {—xz / z € Q\ a} et montrons déja que 5 est un réel.

On utilisera que, pour tout y € Q, y € § < —y ¢ «.

o @\ « est non vide et différent de Q, donc § est non vide et différent de Q.

o SoitxefetyeQ\p.

Alors —z € Q\ v et —y € @, or « est un réel, donc —y < —z, puis en travaillant dans
Q z<uy.

o Supposons que (§ possede un maximum dans Q, noté m.

Alors —m € Q\ a.

a étant un réel, pour tout = € a, x < —m.

Réciproquement, supposons que x € Q avec x < —m. Alors —x > m, donc —z ¢ 3,
donc z € a.

Ainsi, par double inclusion, on a montré que a = {z € Q / * < —m}, donc «a est du
type 1, ce qui est faux. Ainsi, 5 ne possede pas de maximum.

On a donc bien montré que 5 est un réel.

Montrons maintenant que a + 3 = Og.

o Soitx€ea+ . llexistey € aet z € B tels que x =y + 2.

—2z & a et a est un réel, donc y < —z. Ainsi, z =y + z < 0, donc z € Og.

¢ Réciproquement, supposons que x € Og. Posons ¢ = —x € Q7.

D’apres la question précédente, il existe 2’ € av et /' ¢ a tel que ¢ =2’/ + ¢.

Ainsi, z = —e =2/ + (—y) avec 2’ € a et —y' € 3, donc x € a + f.

On a donc montré par double inclusion que o 4+ 8 = Og, ce qui conclut dans ce cas.
Second cas : On suppose que « est du type 1.

Ainsi, il existe a € Q tel que a ={z € Q / z < a}.

Posons alors f = {z € Q / © < —a}. f € R d’apres la premiere question.

Montrons que a + 8 = Og.

Soit x € a+ (. Il existe y € a et z € B tels que x =y + 2,

donc z < a+ (—a) = 0. Ainsi, z < 0.

Réciproquement, supposons que z < 0. Posons ¢ = —% € Q7.

Alorsa—c€aet —a—ec€f,doncer=—-2c=(a—¢e)+(—a—¢) €Ea+p.

Ainsi, par double inclusion, on a montré que a + 5 = Og, ce qui conclut.



Partie IV : Produit de deux réels.

17°) © Montrons que 1) = 2).

Supposons que a >g Og. Alors Q* C a et Q* # a.

Il existe donc x € « tel que z > 0.

a est un réel, donc si 0 ¢ a, alors < 0, ce qui est faux, donc 0 € a, ce qu'il fallait
démontrer.

o Montrons que 2) = 3) ; Supposons que 0 € a.

a étant un réel, il n’admet pas de maximum, donc il existe z € « tel que x > 0. Ainsi,
a N Q% est non vide.

o Montrons que 3) = 1) ; Supposons que o N Q? est non vide.

Il existe y € Q7 N a.

Soit x € Q*. Si x ¢ «, a étant un réel contenant y, y < x ce qui est faux. Ainsi z € a,
donc Q* C a, c’est-a-dire Og <g . De plus Og # acary € a et y ¢ Og. Ainsi, a >g Og.

18°) On adapte la démonstration de la question 13.

¢ Par construction, Q_ C af, donc aff est non vide.

o llexistez € Q\aety € Q) S. Dapres la question précédente, Q_ est inclus dans
a et dans 3, donc z,y € Q7.

Supposons que zy € af.

xy > 0, donc il existe ' € aN QY et 3y € BN Q7L tels que zy = 2"y

¥ € aetx ¢ a doncax <. Demeéme, y <y'. Or x et y sont strictement positifs,
donc en travaillant dans Q, xy < 2’y = zy, ce qui est faux. Ainsi xy ¢ af3, ce qui
prouve que «f est différent de Q.

o SoitzxeafetyecQ\af. Q. C af, doncy > 0.

Si xz <0, alors x < y. On peut donc supposer que z > 0.

Alors il existe y € a N Q% et 2/ € FN QY tels que z = y'2'.

Posons 2" = %, de sorte que y = y'2".

y ¢ af, donc 2" ¢ 8 (sinon, 2" € BN QY, donc y = y'2" € af). Or 2’ € B et B est un
réel, donc 2’ < 2”. De plus, 3/ > 0, donc x = ¢z’ < yy/2” =y, ce qu’il fallait démontrer.
o Supposons que o possede un maximum noté m. D’apres la question précédente, il
existe 2’ € Q% Naet ¢y € Q% N B, donc 2"y’ € QL NafB. Ainsi, m > 0.

Il existe donc x € QL N et y € QL N 3 tels que m = zy.

a ne possede pas de maximum, donc il existe 2’ > x tel que 2’ € a. Alors 2’y € a3 et
'y > xy = m ce qui est impossible. Ainsi, af ne possede pas de maximum.

En conclusion, on a bien montré que af est un réel.

¢ Par construction, Q_ C af, donc 0 € af,

donc d’apres la question précédente, a8 € R?.

19°) On suppose que o <g Og. Alors d’apres la question 12, a + (—a) <g Og + (—a),
donc Og <g —a. or a # O, donc —a # —0g = Or (propriétés usuelles dans le groupe
(R,+)). Ainsi, on a montré que 0 <g (—a).

20°) Soit a, 3,y € RY. D’apres la question 18, aff et By sont dans R*, donc d’apres
la définition 3, Q_ C (af)y et Q- C a(B7).
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Il reste donc a montrer que Q% N (af)y = Q% Na(By).

Soit z € Q% N (af)y. Alors il existe y € Q% N (af) et z € Q% N tels que z = yz.
Toujours d’apres la définition 3, il existe r € Q% Na et s € Q. NP tels que y = rs. Ainsi,
d’apres I'associativité de la multiplication dans Q, z = (rs)z = r(sz). Or sz € (v, donc
x € aBy) N Q7. Ceci démontre que Q% N (aB)y C QF Na(By).

L’inclusion réciproque se démontre de la méme fagon.

21°) Soit o, 8,7 € RY.

o B e RY, donc d’apres la question 17, 0 € 5. De méme, 0 € 7. Alors 0 = 0+0 € 547,
donc 8+ v € RY. Alors, d’apres la définition 3, Q_ C a8 + 7).

De méme, af3 et ary sont strictement positifs, donc 0 € (af) + (ay), or (af) + (ay) est
un réel, donc Q_ C (af) + (ay).

Ainsi, il reste a démontrer que Q% N [a(f + )] = Q% N [(af) + (ay)].

o Soit x € QF N[a(B+7v)]. N existey € QF Nacet y € Q. N(B+ ) tels que z = yy'.
[lexistet € fet z €y tels que y =1+ z.

Sit,z € Qf, alors par distributivité dans QQ de la multiplication par rapport a I’addition,
7= y(t+2) = (yt) + (y2) € [(aB) + (o).

Sit<0,y <zory>0,donce=yy <wyz,ory>0,2>0y€aetze-, donc
yz € avy, mais oy est un réel, donc x € ay, or 0 € aff, donc x € (af) + (ay). On
conclut de méme si z < 0.

Ainsi, dans tous les cas, z € (af) + (a),

donc on a montré que Q% N [a(B +7)] C QL N [(af) + ()]

o Réciproquement, soit x € Q% N [(af) + (ay)].

Il existe b € aff et g € ay tels que x = b+ g.

Sib<0,g=2—b>0,donc g=2a"y avec 2’ € Q. N et ¢y € Q% N~.

Posons z = %, de sorte que z = 2'z.

Alors 2’z =x < g=2a'y, or 2’ > 0, donc z <y € 7. Or 7 est un réel, donc z € v, puis
z2=04+z€ 4+, orz>0,doncx=2az¢c [af+7).

On conclut de la méme fagon lorsque g < 0.

Il reste a étudier le cas ot b, g € Q*. Dans ce cas, b € Q% N (af) et g € QF N (ay),
donc il existe a,a’ € Q4 Na, V' € QL. NP et ¢ € QLN tels que b=ab' et g =d'g.
Posons a” = max(a,a’) € Q} et u = 7, de sorte que z = a"u.

Alors a"u =2z = (ab') + (d'g") < a"(V' +¢'), or " > 0, donc u <V + ¢ € (6+7), mais
B+~ est un réel, donc u € (8 + ). De plus u > 0, donc x = a"u € [a(S + 7)].

Ainsi, dans tous les cas, on a montré que x € [a(8 + 7)],

ce qui montre que Q% N [a(B+ )] D Q% N [(af) + (av)].

22°) o Posons 1g = {z € Q / = < 1}. D’apres la premiere question, 1g est un réel.
De plus, 0 € 1g, donc 1g € RY.

Soit o € R. Si o = Og, alors d’apres la définition 4, lgax = Or = av.

Supposons maintenant que « # Og.

o Supposons d’abord que a >g Og.

Soit x € 1lrga N Q7. Alors il existe y € Ix N Q% et z € a N QY tels que z = yz. On a
0<y<1,donc z <z € a. Or a est un réel, donc x € a.



Réciproquement, soit € a N Q7. a n’admet aucun maximum, donc il existe y € « tel
que x < y. Alors o = zy ou z € Ir N Q7, donc x € lpa N Q7.

On a ainsi montré que a N Q7 = lga N Q7, or a et lgza sont dans R7, donc ils
contiennent tous les deux Q_. Ainsi, lzga = a.

o Supposons maintenant que o ¢ R%. La relation d’ordre <g étant totale d’apres
la question 7, a <g Ogr, or a # Or, donc o <g Or. Alors d’apres la question 19,

—a € R%. Ainsi, d’apres le cas précédent, 1g(—a) = —a. Alors d’apres la définition 4,
lga = —(1g(—a)) = =(—a). Or —(—a) = —(—a) + 0g = —(—a) + a+ (—«), donc par
commutativité et associativité de I'addition dans R, —(—a) = —(—a) + (—a) + a = a.

Ainsi, on a montré que, pour tout a € R, lgar = av.

23°) Pour tout a € Q, posons f(a) = {x € Q / © < a}. D’apres la premiere question,
f est une application de Q dans R.

D’apres les questions 14 et 22, f(0) = Og et f(1) = 1g.

o Soit a,b € Q. Soit x € f(a)+ f(b). Il exite y € f(a) et z € f(b) tels que z =y + z.
Alors x < a+ b, donc x € f(a+b).

Réciproquement, supposons que = € f(a + b). Ainsi, z < a + b.

Posonse =a+b—-—2cQ}. Alorsz=a+b—c=(a—35)+(b—35) € f(a)+ f(D).
Ainsi, pour tout a,b € Q, f(a+b) = f(a) + f(b).

o Soit a € Q. Alors f(a) + f(—a) = f(a+ (—a)) = f(0) = Og, donc f(—a) = —f(a).
o Soit a,b € Q7. Alors 0 € f(a) et 0 € f(b), donc f(a), f(b) € R

Soit x € f(a)f(b) NQ%. Alors x = yz, ot y € f(a) NQ% et z € f(b) NQ7%. On a donc
O<y<aet0<z<b doncz=yz<ab. Ainsix € f(ab).

Ceci démontre que f(a)f(b) NQ% C f(ab) N Q7.

Réciproquement, soit € f(ab) N Q7. Ainsi, 0 < z < ab.

Il existe p € N* tel que p > ﬁ. Alors ab — = > %.

On en déduit que ab > x + ]% > %, donc a > 117.

€ Q, de sorte que x = (a — %)y.

Posons y = T

p
Ona(a—%)y:x<ab—£:b(a—%), eta—% > 0, donc y < b. Ainsi, x:(a—%)y
avec0<a—%<aet0<y<b, donc z € f(a)f(b) N Q7.

On en déduit que f(ab) = f(a)f(b) pour tout a,b € Q7.

Cette égalité reste évidemment vraie si a = 0 ou b = 0.

Siae Q" et beQ, f(ab) = f(—(—a)b) = —f((—a)b) = —f(—a) f(b) = f(a)f(b).
On procede de méme dans les autres cas, donc pour tout a,b € Q, f(ab) = f(a)f(b).
o Soit a,b € Q tels que a < b. Alors f(a) C f(b) et f(a) # f(b), donc f est une
application strictement croissante. On en déduit facilement qu’elle est injective.

En conclusion, f |({2(Q) est une bijection de Q dans une partie de R, qui transporte 0,
1, I'addition, la multiplication et I'ordre usuel de Q. On peut donc identifier Q avec
f(Q) qui est une partie de R. Ceci achéve la construction de R selon les coupures de
Dedekind : R est bien un sur-corps de Q, totalement ordonné et vérifiant la propriété
de la borne supérieure.



