DM 15. Enoncé

Problème 1 : théorème du point fixe de Tarski et théorème de Cantor-Bernstein

On dit qu'un ensemble ordonné (E, \leq) est un treillis complet si et seulement si toute partie de E possède une borne supérieure et une borne inférieure dans E.

 1°)

- a) Soit $a, b \in \mathbb{R}$ avec a < b. Montrer que [a, b], muni de l'ordre usuel entre réels, est un treillis complet.
- **b)** Soit F un ensemble. On note $\mathcal{P}(F)$ l'ensemble des parties de F. Montrer que $(\mathcal{P}(F), \subset)$ est un treillis complet.
- c) Montrer que N muni de la relation de divisibilité est un treillis complet.
- 2°) Soit (E, \leq) un treillis complet.

Soit f une application croissante de E dans E.

Si $x \in E$, on dit que x est un point fixe de f si et seulement si f(x) = x.

On pose $A = \{x \in E / x \le f(x)\}$. On note α la borne supérieure de A.

- a) Montrer que $f(\alpha)$ est un majorant de A.
- b) Montrer que α est le plus grand point fixe de f.
- c) Montrer également que l'ensemble des points fixes de f possède un minimum.

Les résultats des questions b) et c) constituent le théorème du point fixe de Tarski.

 3°) Soient E et F deux ensembles.

On suppose qu'il existe une application injective f de E dans F et une application injective g de F dans E. Il s'agit de démontrer le théorème de Cantor-Bernstein qui affirme que dans ces conditions, il existe une bijection de E dans F:

Pour toute $A \in \mathcal{P}(E)$, on pose $G(A) = E \setminus g(F \setminus f(A))$.

En appliquant le théorème du point fixe de Tarski à l'application G, démontrer le théorème de Cantor-Bernstein.

Problème 2: triplets pythagoriciens

On rappelle que tout rationnel x non nul se décompose de manière unique sous la forme $x = \frac{p}{q}$, où $p \in \mathbb{Z}^*$, $q \in \mathbb{N}^*$, avec p et q premiers entre eux.

On se place dans le plan P usuel, muni d'un repère $R = (O, \vec{\imath}, \vec{\jmath})$ orthonormé direct. Dans cet exercice, on identifiera les points de P avec le couple de leurs coordonnées dans le repère R.

- 1°) On note C le cercle de centre O et de rayon 1. On pose A=(-1,0). Pour tout point $M \in C \setminus \{A\}$, montrer qu'il existe un unique $t \in \mathbb{R}$ tel que $M=(\frac{1-t^2}{1+t^2},\frac{2t}{1+t^2})$.
- 2°) Montrer que t est un rationnel si et seulement si les coordonnées de M sont toutes les deux rationnelles.
- **3°)** Soient a, b et c trois entiers naturels tous non nuls tels que $a^2 + b^2 = c^2$.
- a) Montrer qu'il existe deux entiers naturels non nuls, u et v, premiers entre eux, tels que $\frac{a}{c} = \frac{v^2 u^2}{v^2 + u^2}$ et $\frac{b}{c} = \frac{2uv}{v^2 + u^2}$.
- b) On suppose que 1 est le seul diviseur (dans \mathbb{N}) commun de a, b et c.

Montrer que a, b et c sont deux à deux premiers entre eux.

- Si l'on suppose que b est pair, montrer que $a = v^2 u^2$, b = 2uv et $c = v^2 + u^2$.
- **4°)** Expliquer comment construire tous les triplets (a, b, c) d'entiers naturels tous non nuls tels que $a^2 + b^2 = c^2$ (on les appelle les triplets pythagoriciens).

Problème 3 : parties denses dans \mathbb{R} .

Première partie : préliminaires.

On "rappelle" qu'une suite (x_n) de réels converge vers un réel ℓ lorsque n tend vers $+\infty$ si et seulement si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \ge N \ |x_n - l| \le \varepsilon.$$

1°) Soit I un intervalle contenant une infinité de réels, c'est-à-dire que I est non réduit à \emptyset ou à un singleton.

Soit D une partie de I. Montrer que les trois propriétés suivantes sont équivalentes :

- 1. $\forall x \in I, \ \forall \varepsilon > 0, \]x \varepsilon, x + \varepsilon[\cap D \neq \emptyset.$
- 2. $\forall x \in I, \ \exists (a_n)_{n \in \mathbb{N}} \in D^{\mathbb{N}}, \ a_n \underset{n \to +\infty}{\longrightarrow} x.$
- 3. $\forall x, y \in I, \ x < y \Longrightarrow [\exists z \in D, \ x < z < y].$

Lorsqu'elles sont vérifiées, on dit que D est dense dans I.

- **2°)** Soit I un intervalle non réduit à \emptyset ou à un singleton. Soit D une partie de I que l'on suppose dense dans I. Montrer que, pour tout $x \in I$ et $\varepsilon > 0$, $]x \varepsilon, x + \varepsilon[\cap D]$ est de cardinal infini.
- **3°)** Soit I et J deux intervalles non réduits à \emptyset ou à un singleton. Soit f une application continue et surjective de I dans J.

On admettra que, d'après la continuité de f, pour tout $a \in I$, pour toute suite $(a_n)_{n \in \mathbb{N}} \in I^{\mathbb{N}}$ telle que $a_n \xrightarrow[n \to +\infty]{} a$, on a $f(a_n) \xrightarrow[n \to +\infty]{} f(a)$.

Montrer que si D est une partie de I qui est dense dans I, alors f(D) est dense dans J.

Seconde partie : densité des sous-groupes de \mathbb{R} .

On suppose que G est un sous-groupe du groupe $(\mathbb{R}, +)$, c'est-à-dire que $0 \in G$ et que pour tout $x, y \in G$, $x - y \in G$.

On suppose de plus que G est différent de $\{0\}$.

- **4°)** Montrer que $G \cap \mathbb{R}_+^*$ possède une borne inférieure, que l'on notera a.
- **5°)** Si a=0, montrer que G est dense dans \mathbb{R} .
- **6°**) Dans cette question, on suppose que a > 0.
- a) On suppose que $a \notin G$.

Montrer qu'il existe $x, y \in G$ tels que a < x < y < 2a et en déduire une contradiction.

- **b)** Montrer que $G = a\mathbb{Z}$.
- **7°)** On dit qu'un point x de G est isolé si et seulement s'il existe un intervalle ouvert I tel que $I \cap G = \{x\}$.

On dit que G est discret si et seulement si tous ses points sont isolés.

Donner une condition nécessaire et suffisante, portant sur a pour que G soit discret.

- 8°) Soit $(a,b) \in \mathbb{R}^{*2}$. On pose $a\mathbb{Z} + b\mathbb{Z} = \{an + bm/(n,m) \in \mathbb{Z}^2\}$. Montrer que $a\mathbb{Z} + b\mathbb{Z}$ est dense dans \mathbb{R} si et seulement si $\frac{a}{b}$ est irrationnel.
- 9°) On dit qu'une partie A de \mathbb{R} est un sous-anneau de $(\mathbb{R}, +, \times)$ si et seulement si A est un sous-groupe de $(\mathbb{R}, +)$ tel que $1 \in A$ et, pour tout $a, b \in A$, $ab \in A$. Montrer que si A est un sous-anneau différent de \mathbb{Z} , alors A est dense dans \mathbb{R} .
- 10°) On admet que π est irrationnel.
- a) Montrer que $\{\cos n/n \in \mathbb{N}\}\$ est dense dans [-1,1].
- **b)** Soit $\ell \in [-1, 1]$. Montrer que

$$\forall \varepsilon > 0, \ \forall N \in \mathbb{N}, \ \exists n \ge N, \ |\ell - \cos n| < \varepsilon.$$

c) Montrer que, pour tout $\ell \in [-1, 1]$, il existe une application $\varphi : \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $\cos(\varphi(n)) \underset{n \to +\infty}{\longrightarrow} \ell$.