DM 15. Corrigé

Probleme 1 : théoreme du point fixe de Tarski et
théoreme de Cantor-Bernstein

1°) a) Soit A une partie de [a, b].

Si A = (), 'ensemble des majorants de A dans [a, b] est égal & [a, b]. Cet ensemble admet
a comme minimum, donc sup A est défini et sup A = a. De méme on montre que inf A
est défini et que inf A = b.

Supposons maintenant que A est non vide. Alors A est une partie non vide majorée de
R, donc d’apres la propriété de la borne supérieure, A possede une borne supérieure
dans R.

b majore A, donc b > sup A.

Il existe a € A, donc sup A > « > a. Ainsi sup A € [a, b].

Ceci démontre que sup A est un élément de [a, b] qui majore A et que c’est le plus petit.
Ainsi, A possede bien une borne supérieure en tant que partie de I’ensemble ordonné
([a, 8], <).

De méme, on montre que toute partie A de [a, b] possede une borne inférieure, donc
[a, b] est un treillis complet.

b) Soit A une partie de P(F). Les éléments de A sont donc des parties de F.

Si A = (), Pensemble des majorants de A est P(F'), donc le minimum de ’ensemble des
majorants est (). Ainsi, sup A existe et sup A = (.

De plus I’ensemble des minorants est aussi P(F'), donc le maximum de ’ensemble des
minorants est F. Ainsi, inf A existe et inf A = F'.

Supposons maintenant que A est non vide. Posons S = U Xetl= m X.

XeA XeA
Pour tout X € A, I ¢ X C 5, donc S est un majorant de A et I en est un minorant.

Soit S” un majorant de A. Pour tout X € A, X C S, donc S = U X c S Ainsi S

XeA
est le plus petit des majorants.

Soit I’ un minorant de A. Pour tout X € A, I’ ¢ X, donc I' C m X = 1. Ainsi [ est

XeA
le plus grand des minorants.

On a montré que A possede une borne supérieure et une borne inférieure, pour toute
partie A de P(F'), donc que (P(F), C) est un treillis complet.



c¢) Soit B une partie quelconque de N.

¢ Notons G le sous-groupe de Z engendré par B.

D’apres le cours, il existe n € N tel que G = nZ.

Soit be B:be B C G =nZ,donc n | b. Ainsi n est un minorant de B.

Soit d € N un minorant de B. Pour tout b € B, d | b, donc b € dZ. Ainsi dZ est un
sous-groupe de Z qui contient B, donc dZ O G = nZ ce qui prouve que d | n. Ainsi n
est le plus grand des minorants de B : B possede bien une borne inférieure.

¢ Lorsque B # (), posons G' = ﬂ bZ. GG' est un sous-groupe de Z en tant qu’inter-

beB
section de sous-groupes de Z, donc il existe m € N tel que G' = mZ.

Soit b € B. m € G' C bZ, donc b | m. Ainsi m est un majorant de B.

Soit m' un majorant de B. Pour tout b € B, b | m/, donc m’ € bZ. Ainsi, m’ € G' = mZ,
donc m | m’. m est donc la borne supérieure de B.

Lorsque B = (), ’ensemble des majorants de B est N, qui admet 1 comme minimum,
car pour tout n € N, 1 | n, donc 1 est la borne supérieure de .

2°) a) Soit z € A. @ majore A, donc x < «, mais f est croissante, donc f(x) < f(a).
De plus, z < f(x) car x € A, donc x < f(a). On a bien montré que f(a) est un
majorant de A.

b) Or « est le plus petit des majorants, donc o < f(«).

f étant croissante, f(a) < f(f(a)), donc f(a) € A puis f(a) < sup A = a.

Ainsi, f(a) = a, ce qui montre que « est un point fixe de f.

Soit 8 un second point fixe de f. Alors g € A, donc 8 < «. Ainsi, « est le plus grand
point fixe de f.

c) On définit sur F une relation binaire > en convenant que, pour tout z,y € FE,
x>y <= y < x. On vérifie que > est une relation d’ordre. De plus, si A est une
partie de E, on vérifie que la borne supérieure de A pour (E, <) est la borne inférieure
de A pour (F,>) et que la borne inférieure de A pour (E, <) est la borne supérieure
de A pour (E,>). Ainsi, (E,>) est encore un treillis complet, pour laquelle f reste
croissante. On peut donc appliquer le résultat précédent a (E, >). Ainsi 'ensemble des

points fixes de f possede un maximum pour (F,>), c’est-a~-dire un minimum pour
(B, <).

3°) @ est une application de P(E) dans lui-méme.

Soit A, B € P(FE) telles que A C B. Alors f(A) C f(B), donc F'\ f(A) D F'\ f(B),
puis g(F\ f(A)) D g(F\ f(B)) et G(A) C G(B). Ceci prouve que G est une application
croissante de (P(F), C) dans lui-méme, lequel est un treillis complet. On peut donc
appliquer le théoreme du point fixe de Tarski : il existe Ay C E telle que G(Ag) = Ay.

Ona E\ Ay = g(F\ f(Ao)). Ainsi, 'application ¢ = g|?§?&0) est définie et surjective,
or elle est injective en tant que restriction d’une application injective, donc ¢’ est une
bijection.

Lorsque x € Ay, posons h(z) = f(z). Lorsque & € E \ Ay, posons h(z) = ¢~ ' (x).
Montrons que h est une bijection de F dans F.
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o FE=AyU(E\ Ap), donc h est définie sur E. De plus, si z € Ay, f(z) € f(Ay) C F
etsixz e E\ Ay, f(z) € F\ f(Ay) C F, donc h est une application de E dans F.

o Montrons que h est injective. Soit z, 2" € E tels que h(z) = h(z').

Size Aget 2’ € E\ Ay, alors h(x) = f(z) € f(Ao) et h(z) = h(a') € F'\ f(Ap). Clest
impossible donc x, 2" € Ay ou bien x, 2’ € E '\ A,.

Lorsque z, 2" € Ay, f(z) = h(z) = h(z') = f(2') et f est injective, donc = = 2.
Lorsque z, 2’ € E\ Ay, v = g(h(z)) = g(h(2)) = 2’

Ceci démontre que h est injective.

o Montrons que h est surjective. Soit y € F.

Siy € f(Ao), il existe z € Ag tel que y = f(z) = h(x).

Sinon, y € F\ f(A), donc y = ¢’ (g(y)) = h(g(y)).

Ceci démontre que h est surjective, donc c¢’est bien une bijection de E sur F.

Probleme 2 : triplets pythagoriciens

1°) Soit M € C'\ {A}. Notons (z,y) les coordonnées de M. 2%+ y*> = 1, donc d’apres
le cours, il existe 6 € [—m, 7] tel que = cosf et y = sin 6.
M # A, donc 0 €] — 7, 7[.

Ainsi £ €] — Z,Z[, donc on peQu(;c poser ¢ = tan £. ;
1—¢2 0 sin” 2 2t 0 sin 2
Alors = cos® =(1 — 2) = cos 0 et = (cos? =) x 2—2 =siné.
1+ ¢2 2< 60825) 1+¢2 ( 2) cos §
Ceci il existe t € R tel g 2t
eci prouve qu’il existe el que x = et y =
P q q 1+ Y"1y
— 172 2t
Soit maintenant ¢’ € R tel que x = — et y = —.
E +2 YT e
Il existe §' €] — 7, 7[ tel que ¢’ = tanZ, car tan est une bijection de | — 2, Z[ dans
R. Alors d’apres le calcul précédent, x = cos® = cosf et y = sinf’ = sinf, donc
0 =0 [2r], puis t = tang = tan % = t/, ce qui prouve l'unicité.
42
2°) Si ¢ est rationnel, Q étant x = €EQety= € Q.
) Sit est rationnel, Q étant un corps, x e Qety P Q
Réciproquement, supposons que x et y sont rationnels. M # A, donc =z # —1. On
. LY : 1—t2+1+1¢2 2
peut donc considérer la quantité .Mais z 4+ 1 = = , donc
, 1 1+ ¢2 1+ ¢2
Y 2t 1+t
= X =t,d teQ.
s+l 1+ 2 onct€Q

b
3°) a)On a (%)2 + (5)2 = 1, donc le point M de coordonnées z = 2 et y = £ est un

point de C' avec x # —1 car x > 0, donc M € C'\ {A}. De plus z,y € Q, donc d’apres

1 ti scédentes, il existe t € Q tel L-t t 2t
es questions précédentes, il existe el que z = et y = ——.
d p d 1+ y2 L+
a v —u b 2uv
On peut écrire t = 2 avecu € Z,v € N* et uAv =1,donc — = ——— et — =

c  vi4u ¢ vi4u?
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Siu <0, alors IE’ < 0 ce qui est faux, donc u € N*.
b) Supposons que a et b ne sont pas premiers entre eux. Il existe alors un diviseur
premier p commun de a et b. Alors p divise a® + b* = 2. p intervient donc dans la
décomposition de ¢? en facteurs premiers, donc également dans celle de c. Ainsi, p est
un diviseur premier commun de a, b et ¢, ce qui est impossible. Ainsi, a A b = 1. De
méme, on montre que a Ac=bAc=1.

b
Supposons que b est pair. Ainsi, @ = qu .

c u? 4 v?
Supposons 'existence d'un diviseur p premier commun de uv et de u? + v?.
Alors p divise —u(uv) + v(u? + v?) = v3 et u(u?® + v*) — v(uv) = u?, donc p divise
u® Av3, mais u A v = 1, donc d’apres le cours, u® A v3 = 1. Ainsi p divise 1 cquui est

impossible avec p premier. Ceci démontre que(uv) A (u? 4+ v?) = 1, donc e est
u? +v

b

I’écriture irréductible de la fraction Q, mais elle est déja sous forme irréductible car
c

b et ¢ sont premiers entre eux, donc par unicité de la forme irréductible d’une fraction

rationnelle, on a & = uv et ¢ = u* + v?.
2 2
a vi—u

De plus, — = — 5 donc a = v? —u?.
c v+t u

4°)

¢ Choisissons v € N* puis un entier v strictement supérieur a u et premier avec u.
Posons a = v? — u? et b = 2uv, ou bien a = 2uv et b = v?> — u%. Posons ¢ = u? + v°.
Choisissons d € N* et posons A = da, B = db et C' = dc.

On vérifie que (v? —u?)? + (2uv)? = (u? +v?)?, donc A?+ B% = C?. Ainsi, (A, B, C) est
un triplet pythagoricien. On vient ainsi de fournir un procédé explicite de construction
de triplets pythagoriciens.

o Il reste a montrer que ce procédé fournit tous les triplets pythagoriciens.
Supposons que A, B,C' € N* avec A% + B? = C?.

Notons d le PGCD de A, B, C'. 1l existe a, b, c € N* tels que A = ad, B = bd et C = cd.
De plus a, b, ¢ sont globalement premiers entre eux.

Si a est pair, il existe a’ tel que a = 2d’ et a? = 4a” = 0 [4].

Si a est impair, il existe a’ tel que a =2a’ + 1 et a> = 4a? +4a+1=1 [4].

Il en est de méme pour b, donc si a et b sont tous deux impairs, ¢ = a® + b* = 2 [4],
ce qui est impossible. Ainsi, parmi a et b, seul I'un des deux est pair. Par symétrie des
roles joués par a et b, on peut supposer que b est pair.

On peut donc appliquer les questions précédentes : il existe u,v € N* tels que u < v,
uAv=1,a=v>—u? b= 2uv et c = v?+ u?, ce qu’il fallait démontrer.
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Probleme 3 : parties denses dans R.

Premieére partie : préliminaires.

1°)

¢ 1 =2 : on suppose la propriété 1.

Soit # € I. Pour tout n € N*, en posant ¢ = 1, d’apres la propriété 1,

Je — 2+ L[ND # 0, donc 11ex1stean€Dtelque lz—a,| <2 or% .0 0,
n—-+0oo
donc d’apres le principe des gendarmes, |z — a,| —> 0, c’est- a—dlre que a, — .

n—-+4o00o

© 2= 3 : on suppose la propriété 2.
Soit x,y € I avec x < y. Posons z = z;—y z € I, car I est un intervalle, donc d’apres la

propriété 2, il existe une suite (a,) d’éléments de D telle que a,, — z. En particulier,
n—-+oo

pour € = 2% > 0, il existe N € N tel que |ay — z| < e. Ainsi, |ay — 2| < 5%, donc
:U<aN<yetaN€D

¢ 3 =1 : on suppose la propriété 3.

Soit x € I. Soit € > 0. I possede une borne inférieure m et une borne supérieure M
dans R U {+00, —oo}. I n’est pas réduit a () et n’est pas un singleton, donc m < M.
Premier cas : On suppose que m < z < M.

Alors il existe & > 0 avec &/ < e, tel que e’ <x —mete < M — x.

Alorsm<zr—¢d <z <x+e <M,doncx—¢',x+¢c €l :dapres la propriété 3, il
existe z € D tel que z — &’ < z < x 4 ¢’. Par construction, z € DN|z — &,z + [.
Second cas : On suppose que m € R et que x = m.

Il existe ¢’ > 0 avec ¢’ < ¢, tel que x = m < x4+ ¢’ < M. Alors a:+%/ et © + & sont
dans I, donc il existe z € D tel que x + %/ <z<axz+e. Alors, z € DNz — e,z + €.
Troisieme cas : On suppose que M € R et que x = M.

Il existe &’ > 0 avec &’ < ¢, tel que m < x — &' < M = z. Alors m—%'et x — &' sont
dans I, donc il existe z € D tel que x — &' < z < x — %’ Alors, z € DNjz — e, + ¢l.

2°) Soit x € I et ¢ > 0. Adaptons la démonstration de la derniere implication.
Premier cas : On suppose que m <z < M.

Alors il existe ¢ > 0 avec &’ <€ tel quem<a:—5 <zx<zxz+e <M.

Soit n € N*, — +1 £ < M donc d’apres la propriété 3, il existe
anDtelqueer <zn<x+—

Pour tout n € N* zn+1 < zp, donc la famille (z,,)nen+ constitue une infinité d’éléments
situés dans DNz — e,z + €.

Second cas : On suppose que m € R et que £ = m.

Il existe ¢’ > 0 avec ¢’ < ¢, telquex—m<x+5 < M.

Soit n € N*. Onam <z + =5 <+ % < M donc on peut conclure comme lors du
premier cas.

Troisieme cas : On suppose que M € R et que xr = M.

Il existe ¢’ > 0 avec &’ < ¢, telquem<:c—5 <M =z

Soit n € N*. Onam <z — % <uw— 55 < M donc d’apres la propriété 3, il existe

!

,zneDtelquex—;<,zn<ac—n—+1
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Pour tout n € N*, z, < z,.1, donc la famille (z,),en+ constitue une infinité d’éléments
situés dans DN)z — e,z + €.

3°) Soit y € J. f étant surjective, il existe x € I tel que y = f(x).

D est dense dans I, donc il existe une suite (a,) d’éléments de D telle que a,, T x.
n—-+0oo

D’apres la continuité de f, f(ay,) - f(z), or (f(ay,)) est une suite d’éléments de
n—-+0o0

f(D), donc d’apres la propriété 2 de la question 1, f(D) est dense dans J.

Seconde partie : densité des sous-groupes de R.

4°) 1l suffit de montrer que G N R est une partie non vide et minorée de R.

o G NRY est minorée par 0.

o {0} C G, car G est un sous-groupe de (R, +), et G # {0}, donc il existe z € G tel
que x # 0. G étant un groupe, {z, —z} C G, donc |z| € (G NRY), ce qui prouve que
GNRE #0.

5°) On suppose que a = 0. D’apres la propriété 1 de la question 1,

Il faut montrer que : Yoz € R Ve € R* GNJz — ¢,z +¢[# 0.

Soient # € R et € > 0. € n’est pas un minorant de G NRR*, donc il existe « € G NRY
tel que 0 < a < e.

Posons q = LEJ.q§§<q+1, donc qa < x < g + .

Ainsi, z < (¢ + 1)a <z + a <z + ¢, ce qui montre que (¢ + 1)a € GN]x, z + €.
Ainsi, G est dense dans R.

6°) a) 2a > a, or, par définition d’'une borne inférieure, a est le plus grand des
minorants de (G N R%), donc 2a n’est pas un minorant de G N R*. Ainsi, il existe
r € GNRY tel que z < 2a. Mais a ¢ G, donc a < x. Ainsi  n’est pas un minorant de
GNRY et il existe y € (GNRY) tel que a <y <z < 2a.

Alors 0 <z —y <aet x —yc GNRYL. Cest impossible d’apres la définition de a.
Ainsi a € G.

b) On en déduit que aZ = Gr(a) C G.

Réciproquement, soit g € G. Posons ¢ = {QJ
a

q< g < q+1, donc ga < g < qa + a ce qui implique que 0 < g — ga < a.
a

Sig—qa#0,alors g —ga € GNRY et g — ga < a, ce qui est impossible.

Ainsi g = qa € aZ. On a donc montré que G = aZ.

7°) Supposons d’abord que a = 0. Alors G est dense dans R. Soit x € R et soit [
un intervalle ouvert contenant x. Il existe ¢ > 0 tel que |x — e,z + ¢[C . D’apres la
question 2, |z — e, 4+ €[NG est de cardinal infini, donc I N G n’est pas réduit a {z}.
Ainsi aucun point de G n’est isolé, donc GG n’est pas discret.

Supposons maintenant que a > 0. Alors G = aZ, donc pour tout n € Z, dans l'intervalle

a
ouvert |na — 5> na + 5[, seul na appartient a GG, donc G est discret.
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En conclusion, G est discret si et seulement si inf(G N R%) > 0. Dans tous les cas, G
est ou bien discret, ou bien dense dans R.

8°) Posons G = aZ + bZ. D’apres le cours, G est le groupe engendré par {a,b}, donc
c’est un sous-groupe de R.

© Supposons que aZ + bZ n’est pas dense dans R.

Alors il existe ¢ € R tel que aZ + bZ = cZ.

a € (aZ + bZ), donc il existe p € Z tel que a = pc. De méme, il existe ¢ € Z tel que

b:qc.AinSiEZBE@.
b ¢

- a
¢ Réciproquement, supposons que 7 € Q.
a
Ainsi, il existe (p,q) € Z x N* tel que 7= b
q
aZ, + b7 = aZ. + Yy, - 2Z, donc aZ + bZ n’est pas dense dans R.

a

p p
On a donc montré que aZ+bZ n’est pas dense dans R si et seulement si § est rationnel,
donc par contraposition, aZ+bZ est dense dans R si et seulement si § est un irrationnel.

9°) On suppose que A est un sous-anneau de R différent de Z. En particulier, A est
un sous-groupe de R. Posons a = inf(A).

1€ ANRY, donca<1. Sia=1alors A= 1Z = Z ce qui est faux, donc a < 1.
Supposons que a > 0. A étant un sous-anneau, a*> € ANR*, donc a < a?, puis 1 < q,
ce qui est faux. Ainsi a = 0 et A est dense dans R.

10°) a) 27 est irrationnel, donc d’aprés la question 8, Z + 277 est dense dans
R. L’application cos est une surjection de R sur [—1,1], donc d’apres la question 3,
cos(Z + 27Z) est dense dans [—1,1]. Or cos est 2m-périodique, donc

cos(Z + 27Z.) = cos(Z). De plus cos est paire, donc cos(Z) = cos(N).

Ainsi cos(N) = {cosn/n € N} est dense dans [—1,1].

b) Soit ¢ € [—1,1]. Soit € > 0.

D’apres la question 2, |{—¢, (4+c[N{cosn/n € N} est infini, donc {n € N/|cosn—/| < ¢}
est aussi infini. C’est une partie infinie de N, donc elle n’est pas majorée. Ainsi :
VN eN, dn> N, |l —cosn|<e.

c) Soit ¢ € [—1,1]. D’apres la question précédente, avec ¢ = 1 et N = 0, il existe un
entier n > 0 tel que |¢ — cosn| < 1. Notons ¢(0) le minimum de ces entiers.

D’apres la question précédente, avec € = % et N = p(0)+1, il existe un entier n > ¢(0)
tel que |¢ — cosn| < 3. Notons ¢(1) le minimum de ces entiers.

Soit k € N*. Supposons que nous avons construit (¢(h))o<n<r une famille d’entiers telle
que, pour tout 7, j avec 0 <1 < j <k, p(i) < ¢(j) et telle que, pour tout
h€{0,....k}, |¢ —cosp(h)] < 27" Alors, d’apres la question précédente, avec
e=2"1et N = (k) + 1, il existe un entier n > (k) tel que |¢ — cosn| < 27+1.
Notons ¢(k + 1) le minimum de ces entiers.

On construit ainsi par récurrence une application ¢, de N dans N, strictement crois-
sante, telle que pour tout n € N, [{—cos p(n)| < 27". D’apres le principe des gendarmes,

cos p(n) e L.
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