
DM 15. Corrigé

Problème 1 : théorème du point fixe de Tarski et

théorème de Cantor-Bernstein

1◦) a) Soit A une partie de [a, b].
Si A = ∅, l’ensemble des majorants de A dans [a, b] est égal à [a, b]. Cet ensemble admet
a comme minimum, donc supA est défini et supA = a. De même on montre que inf A
est défini et que inf A = b.
Supposons maintenant que A est non vide. Alors A est une partie non vide majorée de
R, donc d’après la propriété de la borne supérieure, A possède une borne supérieure
dans R.
b majore A, donc b ≥ supA.
Il existe α ∈ A, donc supA ≥ α ≥ a. Ainsi supA ∈ [a, b].
Ceci démontre que supA est un élément de [a, b] qui majore A et que c’est le plus petit.
Ainsi, A possède bien une borne supérieure en tant que partie de l’ensemble ordonné
([a, b],≤).
De même, on montre que toute partie A de [a, b] possède une borne inférieure, donc
[a, b] est un treillis complet.

b) Soit A une partie de P(F ). Les éléments de A sont donc des parties de F .
Si A = ∅, l’ensemble des majorants de A est P(F ), donc le minimum de l’ensemble des
majorants est ∅. Ainsi, supA existe et supA = ∅.
De plus l’ensemble des minorants est aussi P(F ), donc le maximum de l’ensemble des
minorants est F . Ainsi, inf A existe et inf A = F .

Supposons maintenant que A est non vide. Posons S =
⋃
X∈A

X et I =
⋂
X∈A

X.

Pour tout X ∈ A, I ⊂ X ⊂ S, donc S est un majorant de A et I en est un minorant.

Soit S ′ un majorant de A. Pour tout X ∈ A, X ⊂ S ′, donc S =
⋃
X∈A

X ⊂ S ′. Ainsi S

est le plus petit des majorants.

Soit I ′ un minorant de A. Pour tout X ∈ A, I ′ ⊂ X, donc I ′ ⊂
⋂
X∈A

X = I. Ainsi I est

le plus grand des minorants.
On a montré que A possède une borne supérieure et une borne inférieure, pour toute
partie A de P(F ), donc que (P(F ),⊂) est un treillis complet.
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c) Soit B une partie quelconque de N.
⋄ Notons G le sous-groupe de Z engendré par B.
D’après le cours, il existe n ∈ N tel que G = nZ.
Soit b ∈ B : b ∈ B ⊂ G = nZ, donc n | b. Ainsi n est un minorant de B.
Soit d ∈ N un minorant de B. Pour tout b ∈ B, d | b, donc b ∈ dZ. Ainsi dZ est un
sous-groupe de Z qui contient B, donc dZ ⊃ G = nZ ce qui prouve que d | n. Ainsi n
est le plus grand des minorants de B : B possède bien une borne inférieure.

⋄ Lorsque B ̸= ∅, posons G′ =
⋂
b∈B

bZ. G′ est un sous-groupe de Z en tant qu’inter-

section de sous-groupes de Z, donc il existe m ∈ N tel que G′ = mZ.
Soit b ∈ B. m ∈ G′ ⊂ bZ, donc b | m. Ainsi m est un majorant de B.
Soitm′ un majorant de B. Pour tout b ∈ B, b |m′, doncm′ ∈ bZ. Ainsi,m′ ∈ G′ = mZ,
donc m | m′. m est donc la borne supérieure de B.
Lorsque B = ∅, l’ensemble des majorants de B est N, qui admet 1 comme minimum,
car pour tout n ∈ N, 1 | n, donc 1 est la borne supérieure de ∅.

2◦) a) Soit x ∈ A. α majore A, donc x ≤ α, mais f est croissante, donc f(x) ≤ f(α).
De plus, x ≤ f(x) car x ∈ A, donc x ≤ f(α). On a bien montré que f(α) est un
majorant de A.
b) Or α est le plus petit des majorants, donc α ≤ f(α).
f étant croissante, f(α) ≤ f(f(α)), donc f(α) ∈ A puis f(α) ≤ supA = α.
Ainsi, f(α) = α, ce qui montre que α est un point fixe de f .
Soit β un second point fixe de f . Alors β ∈ A, donc β ≤ α. Ainsi, α est le plus grand
point fixe de f .
c) On définit sur E une relation binaire ≥ en convenant que, pour tout x, y ∈ E,
x ≥ y ⇐⇒ y ≤ x. On vérifie que ≥ est une relation d’ordre. De plus, si A est une
partie de E, on vérifie que la borne supérieure de A pour (E,≤) est la borne inférieure
de A pour (E,≥) et que la borne inférieure de A pour (E,≤) est la borne supérieure
de A pour (E,≥). Ainsi, (E,≥) est encore un treillis complet, pour laquelle f reste
croissante. On peut donc appliquer le résultat précédent à (E,≥). Ainsi l’ensemble des
points fixes de f possède un maximum pour (E,≥), c’est-à-dire un minimum pour
(E,≤).

3◦) G est une application de P(E) dans lui-même.
Soit A,B ∈ P(E) telles que A ⊂ B. Alors f(A) ⊂ f(B), donc F \ f(A) ⊃ F \ f(B),
puis g(F \f(A)) ⊃ g(F \f(B)) et G(A) ⊂ G(B). Ceci prouve que G est une application
croissante de (P(E),⊂) dans lui-même, lequel est un treillis complet. On peut donc
appliquer le théorème du point fixe de Tarski : il existe A0 ⊂ E telle que G(A0) = A0.

On a E \A0 = g(F \ f(A0)). Ainsi, l’application g′ = g|E\A0

F\f(A0)
est définie et surjective,

or elle est injective en tant que restriction d’une application injective, donc g′ est une
bijection.
Lorsque x ∈ A0, posons h(x) = f(x). Lorsque x ∈ E \ A0, posons h(x) = g′−1(x).
Montrons que h est une bijection de E dans F .
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⋄ E = A0 ⊔ (E \ A0), donc h est définie sur E. De plus, si x ∈ A0, f(x) ∈ f(A0) ⊂ F
et si x ∈ E \ A0, f(x) ∈ F \ f(A0) ⊂ F , donc h est une application de E dans F .
⋄ Montrons que h est injective. Soit x, x′ ∈ E tels que h(x) = h(x′).
Si x ∈ A0 et x

′ ∈ E \A0, alors h(x) = f(x) ∈ f(A0) et h(x) = h(x′) ∈ F \ f(A0). C’est
impossible donc x, x′ ∈ A0 ou bien x, x′ ∈ E \ A0.
Lorsque x, x′ ∈ A0, f(x) = h(x) = h(x′) = f(x′) et f est injective, donc x = x′.
Lorsque x, x′ ∈ E \ A0, x = g(h(x)) = g(h(x′)) = x′.
Ceci démontre que h est injective.
⋄ Montrons que h est surjective. Soit y ∈ F .
Si y ∈ f(A0), il existe x ∈ A0 tel que y = f(x) = h(x).
Sinon, y ∈ F \ f(A0), donc y = g′−1(g(y)) = h(g(y)).
Ceci démontre que h est surjective, donc c’est bien une bijection de E sur F .

Problème 2 : triplets pythagoriciens

1◦) Soit M ∈ C \ {A}. Notons (x, y) les coordonnées de M . x2 + y2 = 1, donc d’après
le cours, il existe θ ∈ [−π, π] tel que x = cos θ et y = sin θ.
M ̸= A, donc θ ∈]− π, π[.
Ainsi θ

2
∈]− π

2
, π
2
[, donc on peut poser t = tan θ

2
.

Alors
1− t2

1 + t2
= cos2

θ

2
(1−

sin2 θ
2

cos2 θ
2

) = cos θ et
2t

1 + t2
= (cos2

θ

2
)× 2

sin θ
2

cos θ
2

= sin θ.

Ceci prouve qu’il existe t ∈ R tel que x =
1− t2

1 + t2
et y =

2t

1 + t2
.

Soit maintenant t′ ∈ R tel que x =
1− t′2

1 + t′2
et y =

2t′

1 + t′2
.

Il existe θ′ ∈] − π, π[ tel que t′ = tan θ′

2
, car tan est une bijection de ] − π

2
, π
2
[ dans

R. Alors d’après le calcul précédent, x = cos θ′ = cos θ et y = sin θ′ = sin θ, donc
θ ≡ θ′ [2π], puis t = tan θ

2
= tan θ′

2
= t′, ce qui prouve l’unicité.

2◦) Si t est rationnel, Q étant un corps, x =
1− t2

1 + t2
∈ Q et y =

2t

1 + t2
∈ Q.

Réciproquement, supposons que x et y sont rationnels. M ̸= A, donc x ̸= −1. On

peut donc considérer la quantité
y

x+ 1
. Mais x + 1 =

1− t2 + 1 + t2

1 + t2
=

2

1 + t2
, donc

y

x+ 1
=

2t

1 + t2
× 1 + t2

2
= t, donc t ∈ Q.

3◦) a) On a (
a

c
)2 + (

b

c
)2 = 1, donc le point M de coordonnées x = a

c
et y = b

c
est un

point de C avec x ̸= −1 car x ≥ 0, donc M ∈ C \ {A}. De plus x, y ∈ Q, donc d’après

les questions précédentes, il existe t ∈ Q tel que x =
1− t2

1 + t2
et y =

2t

1 + t2
.

On peut écrire t = u
v
avec u ∈ Z, v ∈ N∗ et u∧v = 1, donc

a

c
=

v2 − u2

v2 + u2
et

b

c
=

2uv

v2 + u2
.
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Si u ≤ 0, alors b
c
≤ 0 ce qui est faux, donc u ∈ N∗.

b) Supposons que a et b ne sont pas premiers entre eux. Il existe alors un diviseur
premier p commun de a et b. Alors p divise a2 + b2 = c2. p intervient donc dans la
décomposition de c2 en facteurs premiers, donc également dans celle de c. Ainsi, p est
un diviseur premier commun de a, b et c, ce qui est impossible. Ainsi, a ∧ b = 1. De
même, on montre que a ∧ c = b ∧ c = 1.

Supposons que b est pair. Ainsi,
( b
2
)

c
=

uv

u2 + v2
.

Supposons l’existence d’un diviseur p premier commun de uv et de u2 + v2.
Alors p divise −u(uv) + v(u2 + v2) = v3 et u(u2 + v2) − v(uv) = u3, donc p divise
u3 ∧ v3, mais u ∧ v = 1, donc d’après le cours, u3 ∧ v3 = 1. Ainsi p divise 1 ce qui est

impossible avec p premier. Ceci démontre que(uv) ∧ (u2 + v2) = 1, donc
uv

u2 + v2
est

l’écriture irréductible de la fraction
( b
2
)

c
, mais elle est déjà sous forme irréductible car

b et c sont premiers entre eux, donc par unicité de la forme irréductible d’une fraction
rationnelle, on a b

2
= uv et c = u2 + v2.

De plus,
a

c
=

v2 − u2

v2 + u2
donc a = v2 − u2.

4◦)
⋄ Choisissons u ∈ N∗ puis un entier v strictement supérieur à u et premier avec u.
Posons a = v2 − u2 et b = 2uv, ou bien a = 2uv et b = v2 − u2. Posons c = u2 + v2.
Choisissons d ∈ N∗ et posons A = da, B = db et C = dc.
On vérifie que (v2−u2)2+(2uv)2 = (u2+v2)2, donc A2+B2 = C2. Ainsi, (A,B,C) est
un triplet pythagoricien. On vient ainsi de fournir un procédé explicite de construction
de triplets pythagoriciens.
⋄ Il reste à montrer que ce procédé fournit tous les triplets pythagoriciens.
Supposons que A,B,C ∈ N∗ avec A2 +B2 = C2.
Notons d le PGCD de A,B,C. Il existe a, b, c ∈ N∗ tels que A = ad, B = bd et C = cd.
De plus a, b, c sont globalement premiers entre eux.
Si a est pair, il existe a′ tel que a = 2a′ et a2 = 4a′2 ≡ 0 [4].
Si a est impair, il existe a′ tel que a = 2a′ + 1 et a2 = 4a′2 + 4a+ 1 ≡ 1 [4].
Il en est de même pour b, donc si a et b sont tous deux impairs, c2 = a2 + b2 ≡ 2 [4],
ce qui est impossible. Ainsi, parmi a et b, seul l’un des deux est pair. Par symétrie des
rôles joués par a et b, on peut supposer que b est pair.
On peut donc appliquer les questions précédentes : il existe u, v ∈ N∗ tels que u < v,
u ∧ v = 1, a = v2 − u2, b = 2uv et c = v2 + u2, ce qu’il fallait démontrer.
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Problème 3 : parties denses dans R.
Première partie : préliminaires.

1◦)
⋄ 1 =⇒ 2 : on suppose la propriété 1.
Soit x ∈ I. Pour tout n ∈ N∗, en posant ε = 1

n
, d’après la propriété 1,

]x− 1
n
, x+ 1

n
[∩D ̸= ∅, donc il existe an ∈ D tel que |x− an| ≤ 1

n
, or 1

n
−→

n→+∞
0,

donc d’après le principe des gendarmes, |x− an| −→
n→+∞

0, c’est-à-dire que an −→
n→+∞

x.

⋄ 2 =⇒ 3 : on suppose la propriété 2.
Soit x, y ∈ I avec x < y. Posons z = x+y

2
. z ∈ I, car I est un intervalle, donc d’après la

propriété 2, il existe une suite (an) d’éléments de D telle que an −→
n→+∞

z. En particulier,

pour ε = y−x
4

> 0, il existe N ∈ N tel que |aN − z| ≤ ε. Ainsi, |aN − x+y
2
| < y−x

2
, donc

x < aN < y et aN ∈ D.
⋄ 3 =⇒ 1 : on suppose la propriété 3.
Soit x ∈ I. Soit ε > 0. I possède une borne inférieure m et une borne supérieure M
dans R ∪ {+∞,−∞}. I n’est pas réduit à ∅ et n’est pas un singleton, donc m < M .
Premier cas : On suppose que m < x < M .
Alors il existe ε′ > 0 avec ε′ < ε, tel que ε′ < x−m et ε′ < M − x.
Alors m < x− ε′ < x < x+ ε′ < M , donc x− ε′, x+ ε′ ∈ I : d’après la propriété 3, il
existe z ∈ D tel que x− ε′ < z < x+ ε′. Par construction, z ∈ D∩]x− ε, x+ ε[.
Second cas : On suppose que m ∈ R et que x = m.
Il existe ε′ > 0 avec ε′ < ε, tel que x = m < x + ε′ < M . Alors x + ε′

2
et x + ε′ sont

dans I, donc il existe z ∈ D tel que x+ ε′

2
< z < x+ ε′. Alors, z ∈ D∩]x− ε, x+ ε[.

Troisième cas : On suppose que M ∈ R et que x = M .
Il existe ε′ > 0 avec ε′ < ε, tel que m < x − ε′ < M = x. Alors x − ε′

2
et x − ε′ sont

dans I, donc il existe z ∈ D tel que x− ε′ < z < x− e′

2
. Alors, z ∈ D∩]x− ε, x+ ε[.

2◦) Soit x ∈ I et ε > 0. Adaptons la démonstration de la dernière implication.
Premier cas : On suppose que m < x < M .
Alors il existe ε′ > 0 avec ε′ < ε, tel que m < x− ε′ < x < x+ ε′ < M .
Soit n ∈ N∗. On a m < x + ε′

n+1
< x + ε′

n
< M donc d’après la propriété 3, il existe

zn ∈ D tel que x+ ε′

n+1
< zn < x+ ε′

n
.

Pour tout n ∈ N∗, zn+1 < zn, donc la famille (zn)n∈N∗ constitue une infinité d’éléments
situés dans D∩]x− ε, x+ ε[.
Second cas : On suppose que m ∈ R et que x = m.
Il existe ε′ > 0 avec ε′ < ε, tel que x = m < x+ ε′ < M .
Soit n ∈ N∗. On a m < x + ε′

n+1
< x + ε′

n
< M donc on peut conclure comme lors du

premier cas.
Troisième cas : On suppose que M ∈ R et que x = M .
Il existe ε′ > 0 avec ε′ < ε, tel que m < x− ε′ < M = x.
Soit n ∈ N∗. On a m < x − ε′

n
< x − ε′

n+1
< M donc d’après la propriété 3, il existe

zn ∈ D tel que x− ε′

n
< zn < x− ε′

n+1
.
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Pour tout n ∈ N∗, zn < zn+1, donc la famille (zn)n∈N∗ constitue une infinité d’éléments
situés dans D∩]x− ε, x+ ε[.

3◦) Soit y ∈ J . f étant surjective, il existe x ∈ I tel que y = f(x).
D est dense dans I, donc il existe une suite (an) d’éléments de D telle que an −→

n→+∞
x.

D’après la continuité de f , f(an) −→
n→+∞

f(x), or (f(an)) est une suite d’éléments de

f(D), donc d’après la propriété 2 de la question 1, f(D) est dense dans J .

Seconde partie : densité des sous-groupes de R.

4◦) Il suffit de montrer que G ∩ R∗
+ est une partie non vide et minorée de R.

⋄ G ∩ R∗
+ est minorée par 0.

⋄ {0} ⊂ G, car G est un sous-groupe de (R,+), et G ̸= {0}, donc il existe x ∈ G tel
que x ̸= 0. G étant un groupe, {x,−x} ⊂ G, donc |x| ∈ (G ∩ R∗

+), ce qui prouve que
G ∩ R∗

+ ̸= ∅.

5◦) On suppose que a = 0. D’après la propriété 1 de la question 1,
Il faut montrer que : ∀x ∈ R ∀ε ∈ R∗

+ G∩]x− ε, x+ ε[ ̸= ∅.
Soient x ∈ R et ε > 0. ε n’est pas un minorant de G ∩ R∗

+, donc il existe α ∈ G ∩ R∗
+

tel que 0 < α < ε.

Posons q =
⌊x
α

⌋
. q ≤ x

α
< q + 1, donc qα ≤ x < qα + α.

Ainsi, x < (q + 1)α ≤ x+ α < x+ ε, ce qui montre que (q + 1)α ∈ G∩]x, x+ ε[.
Ainsi, G est dense dans R.

6◦) a) 2a > a, or, par définition d’une borne inférieure, a est le plus grand des
minorants de (G ∩ R∗

+), donc 2a n’est pas un minorant de G ∩ R∗
+. Ainsi, il existe

x ∈ G ∩R∗
+ tel que x < 2a. Mais a /∈ G, donc a < x. Ainsi x n’est pas un minorant de

G ∩ R∗
+ et il existe y ∈ (G ∩ R∗

+) tel que a < y < x < 2a.
Alors 0 < x− y < a et x− y ∈ G ∩ R∗

+. C’est impossible d’après la définition de a.
Ainsi a ∈ G.
b) On en déduit que aZ = Gr(a) ⊂ G.

Réciproquement, soit g ∈ G. Posons q =
⌊g
a

⌋
.

q ≤ g

a
< q + 1, donc qa ≤ g < qa+ a ce qui implique que 0 ≤ g − qa < a.

Si g − qa ̸= 0, alors g − qa ∈ G ∩ R∗
+ et g − qa < a, ce qui est impossible.

Ainsi g = qa ∈ aZ. On a donc montré que G = aZ.

7◦) Supposons d’abord que a = 0. Alors G est dense dans R. Soit x ∈ R et soit I
un intervalle ouvert contenant x. Il existe ε > 0 tel que ]x − ε, x + ε[⊂ I. D’après la
question 2, ]x − ε, x + ε[∩G est de cardinal infini, donc I ∩ G n’est pas réduit à {x}.
Ainsi aucun point de G n’est isolé, donc G n’est pas discret.
Supposons maintenant que a > 0. Alors G = aZ, donc pour tout n ∈ Z, dans l’intervalle
ouvert ]na− a

2
, na+

a

2
[, seul na appartient à G, donc G est discret.
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En conclusion, G est discret si et seulement si inf(G ∩ R∗
+) > 0. Dans tous les cas, G

est ou bien discret, ou bien dense dans R.

8◦) Posons G = aZ+ bZ. D’après le cours, G est le groupe engendré par {a, b}, donc
c’est un sous-groupe de R.
⋄ Supposons que aZ+ bZ n’est pas dense dans R.
Alors il existe c ∈ R∗

+ tel que aZ+ bZ = cZ.
a ∈ (aZ + bZ), donc il existe p ∈ Z tel que a = pc. De même, il existe q ∈ Z tel que

b = qc. Ainsi
a

b
=

p

q
∈ Q.

⋄ Réciproquement, supposons que
a

b
∈ Q.

Ainsi, il existe (p, q) ∈ Z× N∗ tel que
a

b
=

p

q
.

aZ+ bZ = aZ+
aq

p
Z ⊂ a

p
Z, donc aZ+ bZ n’est pas dense dans R.

On a donc montré que aZ+bZ n’est pas dense dans R si et seulement si a
b
est rationnel,

donc par contraposition, aZ+bZ est dense dans R si et seulement si a
b
est un irrationnel.

9◦) On suppose que A est un sous-anneau de R différent de Z. En particulier, A est
un sous-groupe de R. Posons a = inf(A).
1 ∈ A ∩ R∗

+, donc a ≤ 1. Si a = 1 alors A = 1.Z = Z ce qui est faux, donc a < 1.
Supposons que a > 0. A étant un sous-anneau, a2 ∈ A ∩ R∗

+, donc a ≤ a2, puis 1 ≤ a,
ce qui est faux. Ainsi a = 0 et A est dense dans R.

10◦) a) 2π est irrationnel, donc d’après la question 8, Z + 2πZ est dense dans
R. L’application cos est une surjection de R sur [−1, 1], donc d’après la question 3,
cos(Z+ 2πZ) est dense dans [−1, 1]. Or cos est 2π-périodique, donc
cos(Z+ 2πZ) = cos(Z). De plus cos est paire, donc cos(Z) = cos(N).
Ainsi cos(N) = {cosn/n ∈ N} est dense dans [−1, 1].

b) Soit ℓ ∈ [−1, 1]. Soit ε > 0.
D’après la question 2, ]ℓ−ε, ℓ+ε[∩{cosn/n ∈ N} est infini, donc {n ∈ N/| cosn−ℓ| < ε}
est aussi infini. C’est une partie infinie de N, donc elle n’est pas majorée. Ainsi :
∀N ∈ N, ∃n > N, |ℓ− cosn| < ε.
c) Soit ℓ ∈ [−1, 1]. D’après la question précédente, avec ε = 1 et N = 0, il existe un
entier n ≥ 0 tel que |ℓ− cosn| < 1. Notons φ(0) le minimum de ces entiers.
D’après la question précédente, avec ε = 1

2
et N = φ(0)+1, il existe un entier n > φ(0)

tel que |ℓ− cosn| < 1
2
. Notons φ(1) le minimum de ces entiers.

Soit k ∈ N∗. Supposons que nous avons construit (φ(h))0≤h≤k une famille d’entiers telle
que, pour tout i, j avec 0 ≤ i < j ≤ k, φ(i) < φ(j) et telle que, pour tout
h ∈ {0, . . . , k}, |ℓ− cosφ(h)| < 2−h. Alors, d’après la question précédente, avec
ε = 2−k−1 et N = φ(k) + 1, il existe un entier n > φ(k) tel que |ℓ − cosn| < 2−k−1.
Notons φ(k + 1) le minimum de ces entiers.
On construit ainsi par récurrence une application φ, de N dans N, strictement crois-
sante, telle que pour tout n ∈ N, |ℓ−cosφ(n)| < 2−n. D’après le principe des gendarmes,
cosφ(n) −→

n→+∞
ℓ.
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