Feuille d'exercices 7. Corrigé de quelques exercices.

Exercice 7.11:

Soit $x \in E$. Notons y son symétrique à droite et notons z le symétrique à droite de y. Alors yx = yxe = (yx)(yz) = y(xy)z = yez = yz = e et ex = (xy)x = x(yx) = xe = x, donc y est le symétrique de x et e est l'élément neutre, ce qui prouve que E est un groupe.

Exercice 7.17:

1°) \diamond Supposons qu'il existe une application h de E dans F telle que $g = f \circ h$. On conseille de représenter les ensembles E, F, G et les applications f, g, h sur un diagramme.

Alors $g(E) = f(h(E)) \subset f(F)$.

 \diamond Réciproquement, supposons que $g(E) \subset f(F)$.

Soit $x \in E$. Alors $g(x) \in f(F)$, donc il existe $h(x) \in F$ tel que g(x) = f(h(x)). Alors, en utilisant l'axiome du choix, il existe $h \in \mathcal{F}(E, F)$ telle que $g = f \circ h$.

En conclusion, la CNS cherchée est $g(E) \subset f(F)$.

2°) Supposons que $g(E) \subset f(F)$.

Lorsque $x \in E$, g(x) = f(h(x)) si et seulement si h(x) est un antécédent par f de g(x), donc h(x) est unique si et seulement si g(x) admet un unique antécédent par f. Ainsi, h est unique si et seulement si pour tout $x \in E$, g(x) admet un unique antécédent par f. Montrons que cette dernière propriété est équivalente à l'injectivité de $f|_{f^{-1}(g(E))}$. Supposons qu'il existe $x \in E$ tel que g(x) = f(t) = f(t') avec $t, t' \in F$ et $t \neq t'$. $f(t) = g(x) \in g(E)$, donc $t \in f^{-1}(g(E))$. De même $t' \in f^{-1}(g(E))$, donc $f|_{f^{-1}(g(E))}$ n'est pas injective.

Réciproquement, si $f|_{f^{-1}(g(E))}$ n'est pas injective, il existe $t, t' \in f^{-1}(g(E))$ tels que f(t) = f(t') et $t \neq t'$. Alors $f(t) \in g(E)$, donc il existe $x \in E$ tel que g(x) = f(t) = f(t'). Alors g(x) admet 2 antécédents au moins par f.

En conclusion, la CNS d'unicité de h est l'injectivité de $f|_{f^{-1}(g(E))}$.

 3°) \diamond Supposons qu'il existe une application h de F dans G telle que $g = h \circ f$. On pourra à nouveau représenter les ensembles E, F, G et les applications f, g, h sur un diagramme.

Alors, pour tout $x, y \in E$, $f(x) = f(y) \Longrightarrow g(x) = g(y)$.

 \diamond Réciproquement, supposons que : $\forall x, y \in E \ (f(x) = f(y) \Longrightarrow g(x) = g(y))$.

Soit $y \in F$. Si $y \in f(E)$, il existe $x \in E$ tel que y = f(x). On peut alors poser h(y) = g(x), car pour tout autre élément $x' \in E$ tel que y = f(x'), par hypothèse, g(x) = g(x').

Si $y \notin f(E)$, on pose h(y) = g, où g est un élément quelconque G, ce qui nécessite de supposer que G est non vide.

On a ainsi défini, une application h de F dans G telle que, pour tout $x \in E$, h(f(x)) = g(x), donc telle que $g = h \circ f$.

Dans le cas où G est vide, l'existence de l'application g implique que E est aussi vide, donc f est l'application vide de E dans F. Alors pour tout application h de F dans G, $h \circ f$ et g sont égales, car égales à l'application vide de E dans G, donc la CNS cherchée est l'existence d'une application de F dans $\emptyset = G$, ce qui est vrai si et seulement si F est vide.

En conclusion, on a montré que la CNS cherchée est $G = F = \emptyset$ ou bien $[G \neq \emptyset$ et $\forall x, y \in E \ (f(x) = f(y) \Longrightarrow g(x) = g(y))].$

 \diamond On suppose que cette condition est remplie et on étudie l'unicité de h.

Lors de la construction précédente de h, pour $y \in f(E)$, la valeur de h(y) est unique, donc lorsque f est surjective, h est unique.

Si f n'est pas surjective et que G possède au moins deux éléments g et g', lorsque $g \in F \setminus f(E)$, on peut choisir h(y) = g ou h(y) = g', donc il n'y a pas unicité de h.

Si f n'est pas surjective mais que G est un singleton, alors h reste unique car de toute façon, dans ce cas, il existe une unique application de F dans G.

Enfin, si $E = F = G = \emptyset$, h est unique, égale à la bijection vide.

Exercice 7.18:

On conseille de commencer par représenter les différents ensembles et les différentes applications sur un diagramme.

D'après le cours, s étant surjective, elle est inversible à droite : il existe $s': F \longrightarrow E$ telle que $ss' = Id_F$.

Si l'on suppose que $G \neq \emptyset$, alors i étant injective, elle est inversible à gauche : il existe $i': H \longrightarrow G$ telle que $i'i = Id_H$.

Supposons qu'il existe $h: F \longrightarrow G$ telle que f = hs et g = ih. Alors h = hss' = fs' et h = i'ih = i'g. Ceci prouve l'unicité sous condition d'existence.

On sait que if = gs, donc i'ifs' = i'gss', puis fs' = i'g.

On peut donc poser $h = fs' = i'g \in \mathcal{F}(F, G)$.

On vérifie que hs = i'gs = i'if = f et ih = ifs' = gss' = g, donc h est une solution.

Etudions le cas où $G = \emptyset$. On en déduit successivement que $E = \emptyset$ car f existe, $F = \emptyset$ car s est surjective, h est nécessairement l'application vide car elle part de $F = \emptyset$, donc il y a déjà unicité, g est l'application vide également, donc on a bien f = hs et g = ih.