Feuille d'exercices 8: Dénombrement, ensembles dénombrables, sommes finies.

Exercice 8.1 : (niveau 1) Les dominos sont des pièces rectangulaires sur lesquelles figurent, sur une de leurs faces, deux ensembles de points séparés par un trait. Chaque ensemble contient entre 0 et 6 points. Une boîte de dominos contient tous les dominos différents qu'il est possible de constituer. Combien y a-t-il de dominos dans une boîte?

Exercice 8.2: (niveau 1) Vérifier que
$$\frac{2}{k(k+1)(k+2)} = \frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2}$$
, puis calculer $\sum_{k=1}^{n} \frac{2}{k(k+1)(k+2)}$.

Exercice 8.3: (niveau 1) Soient $n \in \mathbb{N}^*$.

- 1°) Dénombrer les bijections f, de $\{1,\ldots,n\}$ dans lui-même, qui respectent la parité, c'est-à-dire telles que, pour tout $k\in\{1,\ldots,n\},$ k pair $\iff f(k)$ pair.
- $\mathbf{2}^{\circ})$ Dénombrer les applications de $\{1,\dots,n\}$ dans lui-même, qui respectent la parité.

Exercice 8.4 : (niveau 1) On suppose que I et J sont deux ensembles.

S'il existe une application injective de I dans J et si J est fini ou dénombrable, montrer que I est fini ou dénombrable.

S'il existe une application surjective de I dans J et si I est fini ou dénombrable, montrer que J est fini ou dénombrable.

Exercice 8.5: (niveau 1) Soit $n \in \mathbb{N}$ et $a, b \in \mathbb{R}$ avec $b \neq 0$.

Calculer
$$\sum_{k=0}^{n} a^k 2^{3k} b^{-k}$$
 et $\sum_{k=2}^{n^2} (1-a^2)^{2k+1}$.

Exercice 8.6: (niveau 2) Montrer que, pour tout $n \in \mathbb{N}^*$, $n^{\frac{1}{n}} \leq 1 + \sqrt{\frac{2}{n}}$.

Exercice 8.7 : (niveau 2) Soit
$$n \in \mathbb{N}$$
 avec $n \ge 2$. Calculer $\sum_{k=0}^{n} k^2 \binom{n}{k}$ et $\sum_{k=0}^{n} \frac{1}{k+1} \binom{n}{k}$.

Exercice 8.8: (niveau 2) Combien de mains de 13 cartes peut-on constituer dans un jeu de 52 cartes telles que :

- 1°) Elles contiennent exactement un roi?
- **2**°) Elles contiennent au plus un roi?
- 3°) elles contiennent le roi de trèfle et au moins 2 piques?
- 4°) elles contiennent 5 cartes d'une couleur, 4 cartes d'une autre et 4 cartes d'une troisième?

Exercice 8.9: (niveau 2) Pour le 14 juillet, un artificier s'occupe d'un feu d'artifice composé de 8 blocs comportant chacun quatre fusées. Le pupitre de commande de mise à feu possède 32 boutons, correspondant chacun à une fusée. L'artificier appuie simultanément et au hasard sur 5 boutons.

- 1°) Dénombrer tous les cas possibles.
- 2°) Dénombrer tous les cas où les 5 fusées partent de 5 blocs différents.
- 3°) Dénombrer tous les cas où 3 fusées partent d'un même bloc et les deux autres d'un même bloc, différent du précédent.
- 4°) Dénombrer tous les cas où 2 fusées partent d'un même bloc, 1 d'un autre bloc et 2 d'un autre encore.

Exercice 8.10: (niveau 2) Soit
$$n \in \mathbb{N}^*$$
. Calculer $S = \sum_{p=0}^{n-1} (-1)^p \cos^n \left(\frac{p\pi}{n}\right)$.

Exercice 8.11: (niveau 2) Soit E un ensemble infini, c'est-à-dire un ensemble qui n'est en bijection avec aucun des ensembles \mathbb{N}_n où $n \in \mathbb{N}$.

- 1°) Montrer qu'il existe une application injective de \mathbb{N} dans E.
- **2°**) Montrer que, pour tout $x \in E$, il existe une bijection de $E \setminus \{x\}$ dans E.

Exercice 8.12: (niveau 2)

Soit E un ensemble fini et f une application de $\mathcal{P}(E)$ dans \mathbb{C} .

Pour tout
$$A \in \mathcal{P}(E)$$
, on pose $F(A) = \sum_{A \in \mathcal{A}} f(B)$.

$$B \in \mathcal{P}(A)$$

Pour tout $A \in \mathcal{P}(E)$, on pose $F(A) = \sum_{B \in \mathcal{P}(A)} f(B)$. Montrer que, pour tout $A \in \mathcal{P}(E)$, $f(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A \setminus B|} F(B)$.

Exercice 8.13: (niveau 2) Soit E un ensemble de cardinal $n \in \mathbb{N}^*$.

- 1°) Déterminer le nombre de couples $(A, B) \in \mathcal{P}(E)^2$ tels que $A \subset B$.
- **2°)** Déterminer le nombre de couples $(A, B) \in \mathcal{P}(E)^2$ tels que $A \cap B = \emptyset$.
- **3°)** Déterminer le nombre de triplets $(A, B, C) \in \mathcal{P}(E)^3$ tels que $E = A \sqcup B \sqcup C$.

Exercice 8.14 : (niveau 2) Formule d'inversion de Pascal :

Soit (x_n) et (y_n) deux suites de réels telles que, pour tout $n \in \mathbb{N}$, $x_n = \sum_{k=0}^n \binom{n}{k} y_k$.

Montrer que, pour tout $n \in \mathbb{N}$, $y_n = (-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} x_k$.

Exercice 8.15: (niveau 2) Soit $n \in \mathbb{N}^*$.

- 1°) Pour tout $k \in \mathbb{N}_n$ tel que $k \mid n$, on pose $A_k = \{m \in \mathbb{N}_n \mid m\}$. Lorsque $k_1, \ldots, k_r \in \mathbb{N}_n$ sont r diviseurs de n deux à deux premiers entre eux, déterminer le cardinal de $A_{k_1} \cap \cdots \cap A_{k_r}$.
- **2°)** On note $\varphi(n)$ le nombre d'entier $h \in \mathbb{N}_n$ tel que $h \wedge n = 1$: c'est l'indicatrice d'Euler. Déduire de la question précédente que $\varphi(n) = n \prod_{p \in \mathbb{P}} (1 \frac{1}{p})$.

Exercice 8.16: (niveau 2)

Montrer par une méthode combinatoire que $\sum_{k=0}^{n} k \binom{n}{k}^2 = n \binom{2n-1}{n-1}$.

Exercice 8.17 : (niveau 3) On note $E = \{n^k \mid n, k \in \mathbb{N}^*, k \geq 2\}$. Montrer que $\frac{|E \cap \{1, \dots, N\}|}{\sqrt{N}} \xrightarrow[N \to +\infty]{} 1$, où |A| désigne le cardinal de l'ensemble A.

Exercice 8.18 : (niveau 3) Fournir une preuve combinatoire de l'identité de Vandermonde :

pour tout
$$n, N, M \in \mathbb{N}$$
, $\sum_{k=0}^{n} \binom{N}{k} \times \binom{M}{n-k} = \binom{N+M}{n}$,

en convenant que $\binom{a}{b}$ est nul dès que $\neg [0 \le b \le a]$.

Formaliser cette preuve en une preuve rigoureuse si ce n'est déjà fait. En déduire une formule plus générale.

Exercice 8.19: (niveau 3) On note $\mathbb{N}_n = \{1, \dots, n\}$ où n est un entier naturel fixé non nul. Pour tout $k \in \mathbb{N}$, on note $A_{n,k} = \{f : \mathbb{N}_n \longrightarrow \mathbb{N} / \sum_{1 \le x \le n} f(x) \le k\}$

et
$$B_{n,k} = \{ f : \mathbb{N}_n \longrightarrow \mathbb{N} / \sum_{1 \le x \le n} f(x) = k \}.$$

Pour tout $(n,k) \in \mathbb{N}^2$, on pose $a_{n,k} = card(A_{n,k})$ et $b_{n,k} = card(B_{n,k})$.

1°) Montrez que pour tout $(n,k) \in (\mathbb{N}^*)^2$,

$$b_{n,k} = a_{n-1,k}$$
 et $a_{n,k} = b_{n,k} + a_{n,k-1}$.

2°) En déduire que pour tout $(n,k) \in \mathbb{N}^* \times \mathbb{N}$,

$$a_{n,k} = C_{n+k}^k$$
 et $b_{n,k} = C_{n+k-1}^k$.

3°) Donner une preuve combinatoire de ces formules.

Exercice 8.20 : (niveau 3) Soit A une partie de $\{1,\ldots,n\}$ telle que, pour tout $(x,y,z)\in A^3, \ x+y\neq z.$

Majorer le cardinal de A. Cette majoration est-elle optimale?

Exercice 8.21 : (niveau 3) Soit $p \in \mathbb{N}^*$, $n \in \mathbb{N}$ et E un ensemble de cardinal n.

Déterminer le nombre d'applications croissantes de $\{1, \ldots, p\}$ dans $\mathcal{P}(E)$.

Exercice 8.22: (niveau 3) Les ensembles suivants sont-ils dénombrables?

1°) L'ensemble $\mathcal{P}_f(\mathbb{N})$ des parties finies de \mathbb{N} .

L'ensemble $\mathcal{P}_{\omega}(\mathbb{N})$ des parties dénombrables de \mathbb{N} .

L'ensemble $\mathcal{P}(\mathbb{N})$ des parties de \mathbb{N} .

 2°) L'ensemble $\mathbb{N}^{\mathbb{N}}$ des suites entières.

L'ensemble $A \subset \mathbb{N}^{\mathbb{N}}$ des suites ne prenant qu'un nombre fini de valeurs.

L'ensemble $B \subset \mathbb{N}^{\mathbb{N}}$ des suites stationnaires à partir d'un certain rang.

3°) L'ensemble $\sigma(\mathbb{N})$ des bijections de \mathbb{N} dans lui-même.

L'ensemble $\sigma_0(\mathbb{N})$ des bijections de \mathbb{N} dans lui-même coïncidant avec l'identité en dehors d'un ensemble fini.

Exercice 8.23: (niveau 3)

1°) Donner une preuve combinatoire de la formule

$$\sum_{k=0}^{p} \binom{n+k}{k} = \binom{n+p+1}{n+1}, \text{ où } p, n \in \mathbb{N}.$$

2°) Donner une preuve combinatoire de la formule

$$\sum_{k=0}^{n} \binom{k}{N} \binom{n-k}{M} = \binom{n+1}{N+M+1},$$

où $M, N, n \in \mathbb{N}$, en convenant que $\binom{b}{a} = 0$ dès que $\neg [0 \le a \le b]$.

Exercices supplémentaires

Exercice 8.24: (niveau 1)

Calculer
$$S = \sum_{k=0}^{n} \frac{1}{\sqrt{k+1} + \sqrt{k}}$$
.

Exercice 8.25: (niveau 1)

Soit $a, b \in \mathbb{Z}$ et p un nombre premier. Montrer que $(a+b)^p \equiv a^p + b^p$ [p].

Exercice 8.26: (niveau 1)

Soient $n, p \in \mathbb{N}^*$. Quel est le nombre de suites strictement croissantes constituées de p nombres de l'intervalle [1; n]?

Exercice 8.27: (niveau 1)

Calculez le nombre de lois internes commutatives sur un ensemble de cardinal n.

Exercice 8.28: (niveau 1)

Pour tout
$$n \in \mathbb{N}^*$$
, calculer $\sum_{1 \leq i,j \leq n} \min(i,j)$ et $\sum_{1 \leq i,j \leq n} \max(i,j)$.

Exercice 8.29: (niveau 2)

On considère un rectangle de dimension $n \times 2$, avec $n \in \mathbb{N}^*$. On note A(n) le nombre de façons de recouvrir sans chevauchement ce rectangle à l'aide de rectangles élémentaires de dimension 1×2 , appelés des pièces. Déterminer A(n).

Exercice 8.30: (niveau 2)

Soit
$$x \in \mathbb{R}$$
. Pour tout $n \in \mathbb{N}$, on pose $u_n = \prod_{k=0}^n (1 + x^{(2^k)})$.

Exprimer u_n en fonction de n puis calculer la limite de u_n .

Exercice 8.31: (niveau 2)

Soit $n \in \mathbb{N}$. Une grenouille grimpe un escalier de n marches. À chaque bond, elle peut sauter ou bien de la marche k à la marche k+1 ou bien de la marche k à la marche k+2. On note u_n le nombre de façons différentes pour la grenouille de grimper l'escalier. On convient que $u_0 = 1$.

- 1°) Justifier que, pour tout $n \in \mathbb{N}$, on a $u_{n+2} = u_{n+1} + u_n$.
- $\mathbf{2}^{\circ})$ Indépendamment de la première question, justifier que,

pour tout
$$n \in \mathbb{N}^*$$
, $u_n = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n-k}{k}$.

Préciser ce que représente cette somme dans le triangle de Pascal et retrouver ainsi le résultat de la première question.

Exercice 8.32: (niveau 2)

1°) Montrer que, pour tout $n \in \mathbb{N}$, il existe $a_n, b_n \in \mathbb{N}$ tels que $(1 + \sqrt{2})^n = a_n + b_n \sqrt{2}$ et $(1 - \sqrt{2})^n = a_n - b_n \sqrt{2}$.

 2°) a) Calculer $a_n^2 - 2b_n^2$.

b) Montrer que, pour tout $n \in \mathbb{N}$, il existe $\alpha_n \in \mathbb{N}$ tel que $(1+\sqrt{2})^n = \sqrt{\alpha_n} + \sqrt{\alpha_n+1}$.

Exercice 8.33: (niveau 2)

Soit $n \in \mathbb{N}$.

$$\mathbf{1}^{\circ}) \quad \text{Calculer } S_1 = \sum_{0 \le 2k \le n} \binom{2k}{n} \text{ et } S_2 = \sum_{0 \le 2k+1 \le n} \binom{2k+1}{n}.$$

$$\mathbf{2}^{\circ}$$
) Calculer $\sum_{0 \le 3k \le n} {3k \choose n}$.

Exercice 8.34: (niveau 2)

Soit E un ensemble de cardinal $n \in \mathbb{N}$. Calculer $S = \sum_{A,B \subset E} |A \cap B|$.

Exercice 8.35: (niveau 2)

Un triomino est une pièce triangulaire comportant un chiffre compris entre 0 et 5 à chacun de ses sommets. Combien existe-t-il de triominos différents?

Exercice 8.36: (niveau 2)

Combien y a-t-il de parties de \mathbb{N}_n de cardinal k, où k est fixé entre 1 et n, ne contenant pas deux éléments consécutifs?

Exercice 8.37: (niveau 2)

Formule du crible:

1°) Si E_1, \ldots, E_n sont n ensembles finis, montrer que

$$\#\left(\bigcup_{i=1}^{n} E_{i}\right) = \sum_{i=1}^{n} \#E_{i} - \sum_{1 \leq i < j \leq n} \#(E_{i} \cap E_{j}) + \dots + (-1)^{k+1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq n} \#\left(\bigcap_{j=1}^{k} E_{i_{j}}\right) + \dots + (-1)^{n+1} \#\left(\bigcap_{i=1}^{k} E_{i}\right).$$

 2°) Une soirée dansante réunit n couples mariés (hétérosexuels). Chaque homme invite au hasard une femme masquée. Quelle est la probabilité qu'aucun mari ne danse avec sa femme?

Exercice 8.38: (niveau 2)

Soit $k, n \in \mathbb{N}^*$.

Donner le nombre de solutions dans $(\mathbb{N}^*)^k$ de l'équation $x_1 + x_2 + \cdots + x_k = n$.

Exercice 8.39: (niveau 2)

On définit l'opérateur de dérivation discrète $T: \mathbb{R}^{\mathbb{R}} \longrightarrow \mathbb{R}^{\mathbb{R}}$ où pour tout $f \in \mathbb{R}^{\mathbb{R}}$, pour tout $x \in \mathbb{R}$, T(f)(x) = f(x+1) - f(x). Pour tout $x \in \mathbb{R}$ on pote $T^n - T \in T$.

Pour tout $n \in \mathbb{N}^*$, on note $T^n = \underline{T \circ T \circ \cdots \circ T}$.

$$_n$$
 fois

Pour tout $f \in \mathbb{R}^{\mathbb{R}}$, pour tout $x \in \mathbb{R}$, pour tout $n \in \mathbb{N}^*$, calculer $T^n(f)(x)$.

Exercice 8.40: (niveau 2)

Montrer que, pour tout $n \in \mathbb{N}$, $|(2+\sqrt{3})^n|$ est impair.

Exercice 8.41: (niveau 2)

Soit E un ensemble. Montrer que E est infini si et seulement si, pour tout $f: E \longrightarrow E$, il existe $A \subset E$ tel que $A \neq \emptyset$, $A \neq E$ et $f(A) \subset A$.

Exercice 8.42: (niveau 2)

Soit n un entier supérieur ou égal à 2. On place autour d'une table ronde un groupe de 2n personnes, n hommes et n femmes, qui constituent n couples. Combien existe-t-il de dispositions différentes (on considèrera que deux configurations qui diffèrent par une rotation sont différentes):

- 1. au total?
- 2. en respectant l'alternance des sexes?
- 3. sans séparer les couples?
- 4. en remplissant les deux conditions précédentes?

Exercice 8.43: (niveau 3)

Calculez
$$\sum_{k=0}^{n} k(k+1)$$
 et $\sum_{k=0}^{n} k(k+1)(k+2)$.

Proposez une formule plus générale puis démontrez-la, d'une part par le calcul, d'autre part de manière combinatoire (i.e : en utilisant un argument de dénombrement).

Exercice 8.44: (niveau 3)

- 1°) Montrer que $\{0,1\}^{\mathbb{N}} = \{(x_i)_{i \in \mathbb{N}} / \forall i \in \mathbb{N} \ x_i \in \{0,1\}\}$ n'est pas dénombrable.
- 2°) Montrer que l'ensemble des involutions sur \mathbb{N} n'est pas dénombrable.

Exercice 8.45: (niveau 3)

Soit $n \in \mathbb{N}^*$.

1°) Lorsque $x=(x_i)_{1\leq i\leq n}$ et $y=(y_i)_{1\leq i\leq n}$ sont deux éléments de \mathbb{N}^n , on convient de noter $x \leq_n y$ si et seulement si $\forall i \in \mathbb{N}_n, \ x_i \leq y_i$.

Montrer que \leq_n est une relation d'ordre sur \mathbb{N}^n .

2°) Soit A une partie de \mathbb{N}^n . On suppose que, pour tout $x,y\in A$ avec $x\neq y, x$ et yne sont pas comparables avec \leq_n . Montrer que A est finie.

Exercice 8.46: (niveau 3)

1°) Soit $n \in \mathbb{N}^*$ et $(a_k)_{1 \le k \le n} \in \mathbb{R}^n$. Simplifier l'expression

$$\frac{1}{2^n} \sum_{(\varepsilon_k)_{1 < k < n} \in \{-1,1\}^n} \cos\left(\sum_{k=1}^n \varepsilon_k a_k\right).$$

2°) Déterminer les entiers $n \in \mathbb{N}^*$ tels que $\int_{-\pi}^{\pi} \prod_{k=1}^{n} \cos(kx) \ dx = 0$.

Exercice 8.47: (niveau 3)

Soit $m \in \mathbb{N}^*$. Calculer $\sum_{k=0}^{(2m)^2-1} (-1)^{\lfloor \sqrt{k} \rfloor}$.

En déduire que, pour tout $n \in \mathbb{N}^*$, $\left| \sum_{k=0}^n (-1)^{\lfloor \sqrt{k} \rfloor} \right| \leq 2\sqrt{n}$.

Exercice 8.48: (niveau 3)

Montrer que pour tout $n \in \mathbb{N}^*$, $(1 + \frac{1}{n})^n < 3$.

Exercice 8.49: (niveau 3)

Soit E un ensemble infini et F un sous-ensemble de E, infini dénombrable, tel que $E \setminus F$ est infini. Montrer qu'il existe une bijection de E sur $E \setminus F$.

Exercice 8.50: (niveau 3)

Soit $n \in \mathbb{N}^*$. Soit A un sous ensemble de [1, 2n] contenant n+1 éléments. Montrer qu'il existe $p, q \in A$ tel que $p \neq q$ et p divise q.

Exercice 8.51: (niveau 3)

On choisit 19 nombres différents dans la suite arithmétique 1, 4, 7, 10, ..., 100. Démontrer que deux de ces nombres ont une somme égale à 104.

Exercice 8.52: (niveau 3)

Soit $n \in \mathbb{N}^*$ et $r \in \{1, ..., n\}$. Montrer que la moyenne des minimums des parties de $\{1, ..., n\}$ de cardinal r est égale à $\frac{n+1}{r+1}$.