Résumé de cours : Semaine 10, du 17 au 21 novembre.

1 Sommes finies (suite et fin)

1.1 Les coefficients binomiaux (suite et fin)

Formule du binôme de Newton : On se place dans un anneau $(A, +, \times)$. Soit a_1 et a_2 deux éléments de A qui commutent, c'est-à-dire tels que $a_1a_2 = a_2a_1$. Alors

$$\forall n \in \mathbb{N}, \ (a_1 + a_2)^n = \sum_{k=0}^n \binom{n}{k} a_1^k \ a_2^{n-k}.$$

Les deux preuves sont à connaître.

Formule du multinôme : (Hors programme). Soit $p, n \in \mathbb{N}^*$. Soit a_1, \ldots, a_p p éléments d'un anneau A qui commutent deux à deux. Alors

$$(a_1 + \dots + a_p)^n = \sum_{\substack{i_1, \dots, i_p \in \mathbb{N} \\ \text{tel que } i_1 + \dots + i_p = n}} \frac{n!}{i_1! \times \dots \times i_p!} \ a_1^{i_1} \times \dots \times a_p^{i_p}.$$

Il faut savoir le démontrer.

Formule de Leibniz : Soient f et g deux applications d'un intervalle I dans \mathbb{R} . Si f et g sont n fois dérivables sur I, alors fg est n fois dérivable sur I et $(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$.

Il faut savoir le démontrer.

1.2 Quelques techniques

1.2.1 Télescopage

$$\sum_{k=m}^{n} (u_{k+1} - u_k) = u_{n+1} - u_m \text{ et } \sum_{k=m+1}^{n+1} (u_{k-1} - u_k) = u_m - u_{n+1}.$$

1.2.2 Séparation des indices pairs et impairs

$$\sum_{k=0}^{n} u_k = \sum_{\substack{0 \le k \le n \\ k \text{ pair}}} u_k + \sum_{\substack{0 \le k \le n \\ k \text{ impair}}} u_k = \sum_{p=0}^{\lfloor \frac{n}{2} \rfloor} u_{2p} + \sum_{p=0}^{\lfloor \frac{n-1}{2} \rfloor} u_{2p+1}.$$

1.2.3 Fonction génératrice

Soit $m, n \in \mathbb{N}$ avec $m \leq n$ et soit $(u_k)_{m \leq k \leq n}$ une famille de complexes. La fonction génératrice de cette famille est l'application polynomiale $P: x \longmapsto \sum_{k=1}^{n} u_k x^k$.

Si P est connu, on peut en déduire plusieurs sommes : $\sum_{k=m}^{n} u_k = P(1)$, $\sum_{k=-m}^{n} k u_k = P'(1)$,

$$\sum_{k=m}^{n} k(k-1)u_k = P''(1), \sum_{k=m}^{n} \frac{u_k}{k+1} = \int_{0}^{1} P(t)dt \text{ etc.}$$

Quelques formules

Formule de Bernoulli : Soit $(A, +, \times)$ un anneau. Soit a et b deux éléments de A qui commutent (i.e ab = ba). Alors, pour tout $n \in \mathbb{N}$, $a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^k b^{n-k}$.

Il faut savoir le démontrer.

Somme géométrique : Une suite (u_n) de complexes est géométrique de raison r si et seulement si $\forall n \in \mathbb{N}, \ u_{n+1} = ru_n.$ Dans ce cas, $u_n = u_0 r^n$ et $\sum_{k=m}^n u_k = \frac{u_{n+1} - u_m}{r-1}.$

1.2.5 Sommes doubles

$$\sum_{\substack{m \le k \le n \\ p \le \ell \le q}} u_{k,\ell} = \sum_{k=m}^{n} \sum_{\ell=p}^{q} u_{k,\ell} = \sum_{\ell=p}^{q} \sum_{k=m}^{n} u_{k,\ell}.$$

Propriété. Dans un anneau, $\sum_{\substack{m \leq k \leq n \\ k \neq \ell}} v_k w_\ell = \left(\sum_{k=m}^n v_k\right) \left(\sum_{\ell=p}^q w_\ell\right)$.

1.2.6 Sommes triangulaires

$$\sum_{m \le k \le \ell \le n} u_{k,\ell} = \sum_{k=m}^{n} \sum_{\ell=k}^{n} u_{k,\ell} = \sum_{\ell=m}^{n} \sum_{k=m}^{\ell} u_{k,\ell}.$$

Produits

1.2.7

Toutes les propriétés précédentes, lorsqu'elles étaient valables dans un monoïde commutatif (G, +)sont valables en notation multiplicative dans un monoïde commutatif (G, \times) .

2 Construction de \mathbb{C}

2.1Structure de corps

Propriété. \mathbb{C} est un corps, dont \mathbb{R} est un sous-corps et dont les lois sont définies par

$$\forall a, b, c, d \in \mathbb{R}, \quad \begin{cases} (a+ib) + (c+id) &= (a+c) + i(b+d) \\ (a+ib) \times (c+id) &= (ac-bd) + i(ad+bc) \end{cases}$$

Si
$$z \neq 0$$
, l'inverse de $z = a + ib$ est $\frac{a - ib}{a^2 + b^2}$.

Définition. $\forall z \in \mathbb{C}, \exists !a, b \in \mathbb{R}, z = a + ib. \text{ On note } a = \text{Re}(z) \text{ et } b = \text{Im}(z).$

L'écriture du complexe z sous la forme z = Re(z) + iIm(z) s'appelle l'écriture algébrique de z.

Définition. Les imaginaires purs sont les ib où $b \in \mathbb{R}$.

Propriété. Comme pour tout corps, $\mathbb C$ est intègre, c'est-à-dire que, pour tout $z, z' \in \mathbb C$, si zz' = 0, alors z = 0 ou z' = 0.

Propriété.
$$\frac{1}{i} = -i$$
.

Linéarité des parties réelle et imaginaire : Pour tout $z, z' \in \mathbb{C}$ et $\alpha \in \mathbb{R}$,

 $\operatorname{Re}(\alpha z + z') = \alpha \operatorname{Re}(z) + \operatorname{Re}(z')$ et $\operatorname{Im}(\alpha z + z') = \alpha \operatorname{Im}(z) + \operatorname{Im}(z')$.

3 Le plan complexe

Définition. On considère un plan P affine euclidien orienté, rapporté à un repère orthonormé direct $R = (O, \vec{i}, \vec{j})$. Soit $(x, y) \in \mathbb{R}^2$. On peut alors définir le complexe z = x + iy et le point M de P dont les coordonnées dans le repère R sont (x, y). On dit que z est l'affixe du point M et que M est l'image du complexe z.

Si l'on note M(z) l'image du complexe z, l'application $z \mapsto M(z)$ est une bijection de $\mathbb C$ dans P qui permet parfois d'identifier $\mathbb C$ avec P (muni de son repère R).

On dit également que z est l'affixe du vecteur \overrightarrow{OM} et que \overrightarrow{OM} est le vecteur image de z.

Si l'on note $\overrightarrow{u(z)}$ le vecteur image de z, l'application $z \longmapsto \overrightarrow{u(z)}$ est une bijection de $\mathbb C$ dans l'ensemble des vecteurs de P.

Pour ces raisons, C est souvent appelé le plan complexe.

Interprétation géométrique de l'addition entre complexes :

Soit $z, z' \in \mathbb{C}$. Avec les notations précédentes, notons $\overrightarrow{u_z}$ et $\overrightarrow{u_{z'}}$ les vecteurs images de z et z'. Alors le vecteur $\overrightarrow{u_z} + \overrightarrow{u_{z'}}$ a pour affixe z + z'.

Ainsi, si l'on identifie $\mathbb C$ avec l'ensemble des vecteurs de P, l'addition entre complexes correspond à l'addition entre vecteurs du plan.

Si l'on visualise les deux complexes z et z' par deux points M_z et $M_{z'}$ du plan P, le complexes z + z' est donc le point qui complète $O, M_z, M_{z'}$ en un parallélogramme.

Interprétation géométrique de la différence de deux complexes :

Avec les mêmes notations, z'-z est l'affixe du vecteur $\overrightarrow{M(z)M(z')}$.

Définition. L'homothétie de centre Ω et de rapport $\lambda \in \mathbb{R}$ est la transformation suivante du plan : $P \longrightarrow P$ $M \longmapsto \Omega + \lambda \overrightarrow{\Omega M}$.

Interprétation géométrique du produit d'un complexe par un réel :

Soit $z \in \mathbb{C}$ et $\alpha \in \mathbb{R}$. Alors αz est l'affixe du vecteur $\alpha \overrightarrow{OM(z)}$.

Ainsi, αz est aussi l'affixe de l'image de M(z) par l'homothétie de centre O et de rapport α .

4 La conjugaison

Définition. Soit $x, y \in \mathbb{R}$. Le conjugué du complexe z est le complexe $\overline{z} \stackrel{\triangle}{=} x - iy$.

Géométriquement, \overline{z} est le symétrique de z selon l'axe Ox des réels.

Propriété. $z \in \mathbb{R} \iff z = \overline{z} \text{ et } z \in i\mathbb{R} \iff \overline{z} = -z.$

Propriété. Pour tout $z \in \mathbb{C}$, $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ et $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$.

Propriété. Pour tout $z, z' \in \mathbb{C}$, $\overline{\overline{z}} = z$, $\overline{z + z'} = \overline{z} + \overline{z'}$ et $\overline{zz'} = \overline{z} \times \overline{z'}$, $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$.

Corollaire. Pour tout $n \in \mathbb{Z}$ et $z \in \mathbb{C}^*$, $\overline{z^n} = \overline{z}^n$.

5 Le module

Définition. Soit $x, y \in \mathbb{R}$. Le module du complexe z = x + iy est $|z| \stackrel{\Delta}{=} \sqrt{x^2 + y^2}$.

Interprétation géométrique:

|z| désigne la distance du point M(z) à l'origine, ainsi que la norme du vecteur $\overrightarrow{u(z)}$. La distance entre M(z) et M(z') est égale à |z-z'|.

Propriété. $\forall z \in \mathbb{C}, |z|^2 = z\overline{z}.$

Propriété. Pour tout $z \in \mathbb{C}^*$, $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}$.

Propriété. Pour tout $z, z' \in \mathbb{C}$,

- $-|z|=|\overline{z}|$ (compatibilité du module avec la conjugaison);
- $-|zz'| = |z| \times |z'|$ (compatibilité du module avec la multiplication);
- pour tout $n \in \mathbb{N}$, $|z^n| = |z|^n$;
- $-\sin z \neq 0, \left|\frac{z'}{z}\right| = \frac{|z'|}{|z|}.$

Propriété. Le module est une norme sur \mathbb{C} , c'est-à-dire que l'application $|.|:\mathbb{C} \longrightarrow \mathbb{R}$ vérifie les propriétés suivantes : Pour tout $z, z' \in \mathbb{C}$ et $\alpha \in \mathbb{R}$,

- $|z| \ge 0$ (positivité),
- $-|z|=0 \iff z=0$ (séparation),
- $|\alpha z| = |\alpha| \times |z|$ (homogénéité),
- $-|z+z'| \le |z| + |z'|$ (inégalité triangulaire).

Il faut savoir le démontrer.

Distance entre complexes : Lorsque $x,y\in\mathbb{C}$, la quantité d(x,y)=|x-y| est appelée la distance entre les deux complexes x et y.

La fonction distance vérifie les propriétés suivantes : pour tout $x, y, z \in \mathbb{C}$,

- Positivité : $d(x,y) \in \mathbb{R}_+$.
- $-d(x,y) = 0 \iff x = y : d$ permet de séparer les complexes.
- Symétrie : d(x, y) = d(y, x).
- Inégalité triangulaire : $d(x, z) \le d(x, y) + d(y, z)$.

Définition. Soit $a \in \mathbb{C}$ et $r \in \mathbb{R}_+$.

- La boule fermée de centre a et de rayon r est $B_f(a,r) = \{z \in \mathbb{C}/|z-a| \leq r\}$. C'est le disque de centre a et de rayon r.
- Lorsque r > 0, la boule ouverte de centre a et de rayon r est
 - $B_o(a,r) = \{z \in \mathbb{C}/d(a,z) < r\}$. C'est le disque ouvert de centre a et de rayon r.
- La sphère de centre a et de rayon r est $S(a,r) = \{z \in \mathbb{C}/d(a,z) = r\}$. C'est le cercle de centre a et de rayon r.

Définition. S(0,1) s'appelle la sphère unité ou bien le cercle unité. Il est noté \mathbb{U} .

Propriété. Pour tout
$$z \in \mathbb{C}, z \in \mathbb{U} \Longleftrightarrow \overline{z} = \frac{1}{z}$$
.

Théorème.

Pour tout $z, z' \in \mathbb{C}$, $|z + z'| \le |z| + |z'|$, avec égalité si et seulement si z' = 0 ou bien $\frac{z}{z'} \in \mathbb{R}_+$.

Il faut savoir le démontrer.

Généralisation : (hors programme) $|z_1 + \cdots + z_n| \le |z_1| + \cdots + |z_n|$, avec égalité si et seulement si, pour tout i, j tels que $1 \le i < j \le n$, $(z_j = 0) \lor (\frac{z_i}{z_j} \in \mathbb{R}_+)$.

Il faut savoir le démontrer.

Corollaire de l'inégalité triangulaire :

- Pour tout $z, z' \in \mathbb{C}$, $||z| |z'|| \le |z z'|$.
- Pour tout $a, b, c \in \mathbb{C}$, $|d(a, b) d(b, c)| \le d(a, c)$.

Il faut savoir le démontrer.

Définition. Une partie A de \mathbb{C} est bornée si et seulement si il existe $R \in \mathbb{R}_+$ tel que, pour tout $a \in A$, |a| < R, c'est-à-dire si et seulement si A est incluse dans un disque centré en 0.

Fonctions à valeurs dans \mathbb{C} 6

Fonctions bornées 6.1

Définition. Soit E un ensemble quelconque et f une application de E dans \mathbb{C} . On dit que f est bornée sur E si et seulement si $\{f(x)/x \in E\}$ est une partie bornée de \mathbb{C} .

Notation. Soit f une application d'un ensemble E dans \mathbb{C} . On note $\operatorname{Re}(f): E \longrightarrow \mathbb{R}$ $\operatorname{Re}(f(x))$ et $\operatorname{Im}(f): E \longrightarrow \mathbb{R}$ $\operatorname{Im}(f(x))$. On les appelle les parties réelle et imaginaire de l'application f.

Propriété. Avec ces notations, f est bornée sur E si et seulement si Re(f) et Im(f) sont bornées.

Dérivation 6.2

Définition. Soit I un intervalle inclus dans \mathbb{R} et $f:I\longrightarrow \mathbb{C}$ une application. On verra plus loin que f est continue (resp : dérivable, k fois dérivable, de classe C^k où $k \in \mathbb{N}^* \cup \{\infty\}$) si et seulement si les applications Re(f) et Im(f) sont continues (resp : dérivables, k fois dérivables, de classe C^k où $k \in \mathbb{N}^* \cup \{\infty\}$). De plus, lorsque f est k fois dérivable, où $k \in \mathbb{N}^*$, on verra que, pour tout $t \in I$, $f^{(k)}(t) = [\text{Re}(f)]^{(k)}(t) + i[\text{Im}(f)]^{(k)}(t)$.

Propriété. Les formules suivantes, déjà admises pour des fonctions de $\mathbb R$ dans $\mathbb R$ sont aussi valables pour des fonctions de \mathbb{R} dans \mathbb{C} , ainsi que nous le démontrerons plus tard.

Les fonctions qui interviennent dans ces formules sont toutes supposées dérivables sur un intervalle. On se limite éventuellement à un sous-intervalle pour s'assurer que les quantités qui interviennent dans les formules sont bien définies. :

$$\begin{split} & - \text{ Pour tout } \alpha, \beta \in \mathbb{C}, \ (\alpha f + \beta g)' = \alpha f' + \beta g'. \\ & - (fg)' = f'g + fg'. \\ & - \left(\frac{1}{f}\right)' = -\frac{f'}{f^2}. \\ & - \left(\frac{f}{g}\right) = \frac{f'g - g'f}{g^2}. \\ & - \text{ Si } g \ : \ \mathbb{R} \longrightarrow \mathbb{R}, \ \text{alors } (f \circ g)' = g' \times (f' \circ g). \\ & - \text{ Pour tout } n \in \mathbb{Z}, \ (f^n)' = nf' \times f^{n-1}. \end{split}$$

Formule de Leibniz : Soient f et g deux applications d'un intervalle I dans \mathbb{C} . Si f et g sont n fois dérivables sur I, alors fg est n fois dérivable sur I et

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}.$$

6.3 Intégration

Définition. Soit I un intervalle de \mathbb{R} . Soit $f:I\longrightarrow \mathbb{C}$ une application continue. Pour tout $a,b\in I$, on pose

$$\int_a^b f(t) dt = \int_a^b \operatorname{Re}(f(t)) dt + i \int_a^b \operatorname{Im}(f(t)) dt.$$

Remarque. Ainsi,
$$\operatorname{Re}\left(\int_a^b f(t) \ dt\right) = \int_a^b \operatorname{Re}(f(t)) \ dt$$
 et $\operatorname{Im}\left(\int_a^b f(t) \ dt\right) = \int_a^b \operatorname{Im}(f(t)) \ dt$.

On admettra pour le moment que les intégrales vérifient les propriétés suivantes :

Propriété. Soit I un intervalle inclus dans \mathbb{R} .

Soit f et g deux applications continues de I dans \mathbb{C} . Soit $a,b\in I$.

— Linéarité : Pour tout
$$\alpha, \beta \in \mathbb{C}$$
, $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$.

— Relation de Chasles : Pour tout
$$c \in I$$
, $\int_a^b f(t)dt = \int_a^c f + \int_c^b f$.

— Inégalité triangulaire :
$$\left| \int_a^b f(t) \ dt \right| \leq \int_{\min(a,b)}^{\max(a,b)} |f(t)| \ dt.$$

Définition. Soit I un intervalle de \mathbb{R} et f une application de I dans \mathbb{C} que l'on suppose continue. On dit que F est une primitive de f sur I si et seulement si F est dérivable et F' = f. Si F_0 est une primitive de f, alors les autres primitives de f sont exactement les applications $F_0 + k$, où k est une fonction constante.

Théorème : Soit I un intervalle de \mathbb{R} et f une application de I dans \mathbb{C} que l'on suppose continue. Soit $x_0 \in I$. Alors $x \longmapsto \int_{x_0}^x f(t)dt$ est l'unique primitive de f qui s'annule en x_0 .

Corollaire. Soit f une application continue d'un intervalle I dans \mathbb{C} .

Si F est une primitive de f, alors pour tout $a, b \in I$, $\int_a^b f(t)dt = F(b) - F(a) \stackrel{\Delta}{=} [F(t)]_a^b$

Corollaire. Si f est C^1 de I dans \mathbb{C} , pour tout $a,b\in I$, $\int_a^b f'(t)dt=f(b)-f(a)$.

Notation. L'écriture " $\int f(t) dt = F(t) + k, t \in I$ " signifiera que f est continue de I dans \mathbb{C} et que l'ensemble des primitives de f est $\{F + k/k \in \mathbb{C}\}$.

Changement de variable:

si
$$f: I \longrightarrow \mathbb{C}$$
 est continue et si $\varphi: J \longrightarrow I$ est de classe C^1 , alors $\forall (\alpha, \beta) \in J^2$
$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx.$$
 Cette égalité correspond au changement de variable $x = \varphi(t)$.

Intégration par parties : soit
$$u: I \longrightarrow \mathbb{C}$$
 et $v: I \longrightarrow \mathbb{C}$ deux applications de classe C^1 sur I . Pour tout $(a,b) \in I^2$, $\int_a^b u(t)v'(t) \ dt = [u(t)v(t)]_a^b - \int_a^b u'(t)v(t) \ dt$.

On a aussi : $\int u(t)v'(t) dt = u(t)v(t) - \int u'(t)v(t) dt, \ t \in I.$

Théorème. Formule de Taylor avec reste intégral.

Soient $k \in \mathbb{N}$ et $f:[a,b] \longrightarrow \mathbb{C}$ une application de classe C^{k+1} sur [a,b]. Alors

$$f(b) = f(a) + \sum_{h=1}^{k} \frac{(b-a)^h}{h!} f^{(h)}(a) + \int_a^b \frac{(b-t)^k}{k!} f^{(k+1)}(t) dt.$$

Il faut savoir le démontrer.

Propriété. Pour tout $t \in \mathbb{R}$, $e^t = \sum_{n=1}^{+\infty} \frac{t^n}{n!}$.

Il faut savoir le démontrer.

L'exponentielle complexe

Définition. Une suite $(z_n)_{n\in\mathbb{N}}$ de complexes converge vers $\ell\in\mathbb{C}$ si et seulement si

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n \ge N, \ |z_n - \ell| \le \varepsilon.$$

On dit que $(z_n)_{n\in\mathbb{N}}$ est convergente si et seulement si il existe $\ell\in\mathbb{C}$ tel que $z_n\underset{n\to+\infty}{\longrightarrow}\ell$.

Définition. La série de complexes $\sum z_n$ converge si et seulement si la suite de ses sommes partielles $\left(\sum_{k=0}^{n} z_{k}\right)_{n\in\mathbb{N}}$ est une suite convergente. On note alors $\sum_{k=0}^{+\infty} z_{k} = \lim_{n\to+\infty} \sum_{k=0}^{n} z_{k}$.

Propriété. Si $\sum z_n$ est une série convergente de complexes, alors $z_n \xrightarrow[n \to +\infty]{} 0$.

La réciproque est fausse : on peut avoir $z_n \xrightarrow[n \to +\infty]{} 0$ alors que la série $\sum z_n$ diverge.

Il faut savoir le démontrer.

Théorème. Si $\sum |z_n|$ converge alors $\sum z_n$ est une série convergente. On dit alors que la série $\sum z_n$ est absolument convergente.

Il faut savoir le démontrer.

Définition. Pour tout complexe $z \in \mathbb{C}$, la série $\sum \frac{z^n}{n!}$ est absolument convergente. Ceci permet de prolonger l'exponentielle réelle sur \mathbb{C} , en convenant que $\forall z \in \mathbb{C}, \ e^z = \lim_{n \to +\infty} \sum_{k=0}^n \frac{z^k}{k!}$

Propriété. Soit $(z_n)_{n\in\mathbb{N}}$ une suite de complexes qui converge vers $\ell\in\mathbb{C}$. Alors $\overline{z_n} \longrightarrow \overline{\ell}$. Il faut savoir le démontrer.

Propriété. Pour tout $z \in \mathbb{C}$, $\overline{(e^z)} = e^{\overline{z}}$.

Il faut savoir le démontrer.

Propriété. Pour tout $u, v \in \mathbb{C}$, $e^u e^v = e^{u+v}$.

Il faut savoir le démontrer.

Corollaire. Pour tout $z \in \mathbb{C}$, $e^z \neq 0$ et $\frac{1}{e^z} = e^{-z}$.

Propriété. $|e^z| = e^{\operatorname{Re}(z)}$.

Il faut savoir le démontrer.

Théorème. $e^z \in \mathbb{U} \iff z \in i\mathbb{R}$.