MPSI 2

Programme des colles de mathématiques.

Semaine 8: du lundi 24 au vendredi 28 novembre.

Liste des questions de cours

- $\mathbf{1}^{\circ}$) Montrer que $\mathbb{Q}[X]$ est dénombrable.
- $\mathbf{2}^{\circ}$) Montrer qu'une réunion au plus dénombrable d'ensembles au plus dénombrables est au plus dénombrable.
- $\mathbf{3}^{\circ}$) Montrer que \mathbb{R} n'est pas dénombrable.
- $\mathbf{4}^{\circ}$) Exprimez le cardinal de $\mathcal{P}(E)$ en fonction de celui de E. Démontrez-le.
- $\mathbf{5}^{\circ}$) Soit (G, \times) un groupe commutatif fini. Montrer que, pour tout $g \in G$, $g^{|G|} = 1_G$.
- 6°) Enoncer et démontrer le principe des bergers.
- 7°) Déterminer la probabilité que 2 élèves au moins aient la même date d'anniversaire dans une classe de 47 élèves.
- 8°) Donner une preuve combinatoire de la formule "comité-président".
- 9°) Donner une preuve combinatoire de la formule du triangle de Pascal.
- 10°) Combien le mot MISSISSIPPI possède-t-il d'anagrammes, qu'ils aient un sens ou non?
- 11°) Enoncer et démontrer la formule du binôme de Newton.
- 12°) Enoncer et démontrer la formule du multinôme.
- 13°) Enoncer et démontrer le petit théorème de Fermat.
- 14°) Pour une famille $(u_{k,\ell})$ d'éléments d'un monoïde commutatif (G,+), écrire en justifiant la somme $\sum_{m \le k \le \ell \le n} u_{k,\ell} \text{ sous la forme "} \sum_k \sum_{\ell} \text{" puis sous la forme "} \sum_{\ell} \sum_{k} \text{"}.$

Les thèmes de la semaine

Ensembles dénombrables, dénombrement et sommes finies

Ensembles dénombrables

Un ensemble est au plus dénombrable si et seulement s'il est en bijection avec une partie de N.

Lemme technique : I est fini ou dénombrable si et seulement s'il existe une suite croissante $(J_n)_{n\in\mathbb{N}}$ de parties finies de I dont la réunion est égale à I. On dit alors que $(J_n)_{n\in\mathbb{N}}$ est une suite adaptée à I.

 \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$ et \mathbb{Q} sont dénombrables.

Une réunion au plus dénombrable d'ensembles au plus dénombrables est au plus dénombrable. Un produit cartésien fini d'ensembles dénombrables est dénombrable.

 \mathbb{R} n'est pas dénombrable.

 $\mathcal{P}(\mathbb{N})$ n'est pas dénombrable.

Cardinaux d'ensembles usuels

Cardinal d'une réunion disjointe finie.

Cardinal du complémentaire.

Cardinal de $A \cup B$.

Formule du crible (hors programme).

Propriété. Si E est fini, alors E/R est aussi de cardinal fini, inférieur à celui de E.

Cardinal d'un produit cartésien d'ensembles finis.

$$|\mathcal{F}(E,F)| = |F|^{|E|}.$$

$$|\mathcal{P}(E)| = 2^{|E|}.$$

Sommes et produits finis

Les termes des sommes considérées sont des éléments d'un monoïde commutatif (G, +).

Commutativité généralisée : Soit
$$n \in \mathbb{N}$$
 et $x_1, \ldots, x_n \in G$. Alors, $\forall \sigma \in \mathcal{S}_n, \ \sum_{i=1}^n x_i = \sum_{j=1}^n x_{\sigma(j)}$.

Définition. Soit A un ensemble fini et $(x_a)_{a\in A}$ une famille de G indexée par A.

Notons
$$n = |A|$$
. Il existe une bijection f de \mathbb{N}_n dans A . On pose $\sum_{a \in A} x_a \stackrel{\triangle}{=} \sum_{i=1}^n x_{f(i)}$.

Cette quantité ne dépend pas de la bijection f.

$$\mathbf{Propri\acute{e}t\acute{e}}\ \mathbf{d'additivit\acute{e}}: \sum_{a \in A} (x_a + y_a) = \Bigl(\sum_{a \in A} x_a\Bigr) + \Bigl(\sum_{a \in A} y_a\Bigr).$$

Distributivité généralisée : Dans un anneau,
$$\sum_{a \in A} (\lambda x_a) = \lambda \sum_{a \in A} x_a$$
.

Changement de variable dans une somme finie : Soit B un ensemble fini, $(x_b)_{b\in B}$ une famille d'éléments de G. Soit φ une bijection d'un ensemble A dans B. Alors $\sum_{b\in B} x_b = \sum_{a\in A} x_{\varphi(a)}$.

Sommation par paquets : Soit A un ensemble fini et $(x_a)_{a\in A}$ une famille d'éléments de G. On suppose qu'il existe un ensemble fini B et une famille $(A_b)_{b\in B}$ de parties de A telles que $A = \bigsqcup_{b\in B} A_b$.

Alors
$$\sum_{a \in A} x_a = \sum_{b \in B} \sum_{a \in A_b} x_a$$
.

Sommation par paquets, seconde formulation : Soit A un ensemble fini et $(x_a)_{a \in A}$ une famille d'éléments de G. Soit R une relation d'équivalence sur A. Alors $\sum_{a \in A} x_a = \sum_{c \in A/R} \sum_{a \in c} x_a$.

Applications et cardinaux

Propriété. Soit E un ensemble fini et $f: E \longrightarrow F$. Alors f(E) est fini. De plus,

 $|f(E)| \leq |E|$, avec égalité si et seulement si f est injective, et

 $|f(E)| \leq |F|$, avec égalité si et seulement si f est surjective.

Propriété. Si $f: E \longrightarrow F$ avec $|E| = |F| < \infty$, alors f injective $\iff f$ surjective $\iff f$ bijective.

Propriété. S'il existe une injection de A dans B et si B est fini, alors A est fini et $|A| \leq |B|$. S'il existe une surjection de A dans B et si A est fini, alors B est fini et $|A| \geq |B|$.

Principe des tiroirs.

Principe des bergers.

Listes et combinaisons

p-listes, p-arrangements, p-combinaisons.

Bijection entre les p-arrangements de E et les injections de \mathbb{N}_p dans E.

Nombre de *p*-arrangements dans un ensemble de cardinal $n: n(n-1)\cdots(n-p+1)=\frac{n!}{(n-p)!}$. $|\mathcal{S}_n|=n!$.

Nombre de p-combinaisons d'éléments d'un ensemble de cardinal $n: \binom{n}{p} \stackrel{\Delta}{=} \frac{A_{n,p}}{p!} = \frac{n!}{(n-p)!p!}$.

Coefficients binomiaux

Formule:
$$\forall n, p \in \mathbb{N} \text{ avec } 0 \leq p \leq n, \binom{n}{p} = \binom{n}{n-p}.$$

Formule comité-président : Pour tout $n, k \in \mathbb{N}^*$ avec $k \le n, k \binom{n}{k} = n \binom{n-1}{k-1}$.

Formule comité-bureau : si
$$p \le k \le n$$
, $\binom{k}{p} \times \binom{n}{k} = \binom{n}{p} \times \binom{n-p}{k-p}$.

Formule du triangle de Pascal : Si
$$n \ge 1$$
, $\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$.

Remarque. On convient parfois que, pour tout $n, p \in \mathbb{Z}$ tels que $\neg (0 \le p \le n), \binom{n}{p} = 0$.

Formule du binôme de Newton : On se place dans un anneau $(A, +, \times)$. Soit a_1 et a_2 deux éléments de A qui commutent, c'est-à-dire tels que $a_1a_2 = a_2a_1$. Alors

$$\forall n \in \mathbb{N}, \ (a_1 + a_2)^n = \sum_{k=0}^n \binom{n}{k} a_1^k \ a_2^{n-k}.$$

Formule du multinôme : (Hors programme). Soit $p, n \in \mathbb{N}^*$. Soit a_1, \ldots, a_p p éléments d'un anneau A qui commutent deux à deux. Alors

$$(a_1 + \dots + a_p)^n = \sum_{\substack{i_1, \dots, i_p \in \mathbb{N} \\ \text{tel que } i_1 + \dots + i_p = n}} \frac{n!}{i_1! \times \dots \times i_p!} \ a_1^{i_1} \times \dots \times a_p^{i_p}.$$

Petit théorème de Fermat : Soit $p \in \mathbb{P}$ et $n \in \mathbb{N}$. Alors $n^p \equiv n$ modulo p. En particulier, si $n \notin p\mathbb{Z}$, alors $n^{p-1} \equiv 1$ modulo p.

Sommes et produits : quelques techniques

Sommes et produits télescopiques.

Séparation des indices pairs et impairs.

Fonction génératrice d'une famille de complexes $(u_k)_{m \le k \le n} : x \longmapsto \sum_{k=m}^n u_k x^k$.

Sommes des termes d'une suite arithmétique, d'une suite géométrique.

Formule de Bernoulli : Si a et b commutent dans un anneau A, $a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^k b^{n-k}$.

Sommes doubles :
$$\sum_{m \leq k \leq n \atop p \leq \ell \leq q} u_{k,\ell}.$$

Sommes triangulaires:
$$\sum_{m \le k \le \ell \le n} u_{k,\ell}.$$

Prévisions pour la semaine prochaine :

Les complexes.