DM 17. Corrigé

Partie I: Nombre de surjections entre ensembles finis

1°)

 \diamond Notons S l'ensemble des surjections de \mathbb{N}_n sur \mathbb{N}_m et notons P l'ensemble des partitions ordonnées de \mathbb{N}_n en m classes.

Soit $f \in S$. Pour tout $x, y \in \mathbb{N}_n$, convenons que x R y si et seulement si f(x) = f(y). D'après l'exemple canonique du cours, R est une relation d'équivalence sur \mathbb{N}_n , donc ses classes d'équivalence constituent une partition de \mathbb{N}_n . Or la classe d'équivalence de x est $f^{-1}(\{f(x)\})$. f étant surjective, $\mathbb{N}_n/R = \{f^{-1}(\{i\})/i \in \mathbb{N}_m\}$. Ainsi, si l'on pose $\varphi(f) = (f^{-1}(\{1\}), \ldots, f^{-1}(\{m\}))$, on définit une application de S dans P.

 \diamond Montrons que φ est bijective.

Soit $f, g \in S$ telles que $\varphi(f) = \varphi(g)$.

Soit $x \in \mathbb{N}_n$. $x \in f^{-1}(\{f(x)\}) = g^{-1}(\{f(x)\})$, donc g(x) = f(x). Ainsi, f = g. Ceci prouve que φ est injective.

Soit $A = (A_1, ..., A_m) \in P$. Si $x \in \mathbb{N}_n$, il existe un unique $i \in \mathbb{N}_m$ tel que $x \in A_i$. On peut donc poser i = f(x). Ceci définit une application f de \mathbb{N}_n dans \mathbb{N}_m , surjective car chaque A_i est non vide. Pour tout $i \in \mathbb{N}_m$, par définition de f,

 $f^{-1}(\{i\}) = \{x \in \mathbb{N}_n/f(x) = i\} = A_i$, donc $\varphi(f) = A$, ce qui prouve que φ est surjective. \diamond Notons P' l'ensemble des partitions de \mathbb{N}_n en m classes. Notons Ψ l'application de P dans P' définie par $\Psi(A_1, \ldots, A_m) = \{A_1, \ldots, A_m\}$.

Soit $E = \{A_1, \ldots, A_m\} \in P'$ et $B = (B_1, \ldots, B_m) \in P$. A_1, \ldots, A_m sont deux à deux distincts, ainsi que B_1, \ldots, B_m , donc $\Psi(B) = E \iff [\exists \sigma \in \mathcal{S}_m, \forall i \in \mathbb{N}_m, B_i = A_{\sigma(i)}]$. On en déduit que $|\Psi^{-1}(E)| = |\mathcal{S}_m| = m!$, donc d'après le principe des bergers, |P| = m! |P'|.

En conclusion, le nombre de surjections de \mathbb{N}_n sur \mathbb{N}_m est égal à $|S| = m! S_n^m$.

2°) D'après le cours, $|\mathbb{N}_m^{\mathbb{N}_n}| = m^n$. D'autre part, pour construire une application quelconque f de \mathbb{N}_n dans \mathbb{N}_m , on peut choisir le nombre $k \in \{1, \ldots, m\}$ de valeurs atteintes par f dans \mathbb{N}_m , puis l'ensemble A de ces valeurs atteintes, ce qui revient à choisir kéléments parmi m ($\binom{m}{k}$ choix), puis on choisit f parmi les surjections de \mathbb{N}_n dans A,

au nombre de $k!S_n^k$ d'après la question précédente. Ainsi, $m^n = \sum_{k=1}^m \binom{m}{k} (k!S_n^k)$.

 $\mathbf{3}^{\circ}$) a) Pour tout $f \in \mathbb{N}_n^{\mathbb{N}_m}$,

 $f \in E_{k_1} \cap \cdots \cap E_{k_\ell} \iff \forall j \in \mathbb{N}_\ell, \ k_j \notin f(\mathbb{N}_n) \iff f(\mathbb{N}_n) \subset \mathbb{N}_m \setminus \{k_1, \dots, k_\ell\}, \text{ donc le}$ cardinal de $E_{k_1} \cap \cdots \cap E_{k_\ell}$ est égal à celui de l'ensemble des applications de \mathbb{N}_n dans $\mathbb{N}_m \setminus \{k_1, \dots, k_\ell\}$. Ainsi, d'après le cours, $|E_{k_1} \cap \dots \cap E_{k_\ell}| = (m-\ell)^n$. b)

 \diamond Formule du crible : Soit $n \in \mathbb{N}^*$. Notons R(n) l'assertion suivante : pour toute famille

$$(F_1,\ldots,F_n)$$
 de n ensembles finis, $|\bigcup_{k=1}^n F_k| = \sum_{A\subset\mathcal{P}(\mathbb{N}_n)\setminus\{\emptyset\}} (-1)^{|A|+1} |\bigcap_{i\in A} F_i|$.

Lorsque n = 1, $\mathcal{P}(\mathbb{N}_1) \setminus \{\emptyset\} = \{1\}$, donc R(1) se résume à $|F_1| = |F_1|$.

Lorsque n = 2, R(2) est une formule du cours : $|F_1 \cup F_2| = |F_1| + |F_2| - |F_1 \cap F_2|$.

Supposons R(n) (et $n \geq 2$) et montrons R(n+1). Soit (F_1, \ldots, F_{n+1}) une famille de

$$n+1$$
 ensembles finis. $|\bigcup_{k=1}^{n+1} F_k| = |F_{n+1} \cup \bigcup_{k=1}^{n} F_k|$ donc d'après $R(2)$,

$$n+1 \text{ ensembles finis. } |\bigcup_{k=1}^{n+1} F_k| = |F_{n+1} \cup \bigcup_{k=1}^{n} F_k| \text{ donc d'après } R(2),$$

$$|\bigcup_{k=1}^{n+1} F_k| = |\bigcup_{k=1}^{n} F_k| + |F_{n+1}| - |F_{n+1} \cap \bigcup_{k=1}^{n} F_k| = |\bigcup_{k=1}^{n} F_k| + |F_{n+1}| - |\bigcup_{k=1}^{n} (F_{n+1} \cap F_k)|,$$
donc d'après $R(n)$ appliqué deux fois,

$$|\bigcup_{k=1}^{n+1} F_{k}| = \sum_{A \subset \mathcal{P}(\mathbb{N}_{n}) \setminus \{\emptyset\}} (-1)^{|A|+1} |\bigcap_{i \in A} F_{i}| + |F_{n+1}| - \sum_{A \subset \mathcal{P}(\mathbb{N}_{n}) \setminus \{\emptyset\}} (-1)^{|A|+1} |\bigcap_{i \in A} (F_{i} \cap F_{n+1})|$$

$$= \sum_{A \subset \mathcal{P}(\mathbb{N}_{n+1}) \setminus \{\emptyset\}} (-1)^{|A|+1} |\bigcap_{i \in A} F_{i}| + \sum_{A \subset \mathcal{P}(\mathbb{N}_{n+1}) \setminus \{\emptyset\}} (-1)^{|A|+1} |\bigcap_{i \in A} F_{i}|$$

$$= \sum_{A \subset \mathcal{P}(\mathbb{N}_{n+1}) \setminus \{\emptyset\}} (-1)^{|A|+1} |\bigcap_{i \in A} F_{i}|,$$
see qui prouve $R(n+1)$

ce qui prouve R(n+1).

 \diamond f n'est pas une surjection de \mathbb{N}_n dans \mathbb{N}_m si et seulement si il existe $k \in \mathbb{N}_m$ tel que $k \notin f(\mathbb{N}_n)$, donc l'ensemble des surjections de \mathbb{N}_n dans \mathbb{N}_m est égal à $\mathbb{N}_m^{\mathbb{N}_n} \setminus \bigcup_{k \in \mathbb{N}_m} E_k$.

Ainsi, d'après la formule du crible,

$$m!S_n^m = m^n - |\bigcup_{k \in \mathbb{N}_m} E_k|$$

$$= m^n - \sum_{k=1}^m (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le m} |E_{i_1} \cap \dots \cap E_{i_k}|$$

$$= m^n - \sum_{k=1}^m (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le m} (m-k)^n$$

$$= m^n - \sum_{k=1}^m (-1)^{k-1} (m-k)^n |\{(i_1, \dots, i_k) \in \mathbb{N}^k / 1 \le i_1 < i_2 < \dots < i_k \le m\}|,$$

$$\operatorname{donc} m!S_n^m = m^n + \sum_{k=1}^m (-1)^k (m-k)^n \binom{m}{k} = \sum_{k=0}^m (-1)^k (m-k)^n \binom{m}{k}.$$

Partie II: Formule d'inversion de Möbius

4°) Soit $f, g \in A$. Soit $n \in \mathbb{N}^*$.

Notons $E_1 = \{d \in \mathbb{N}_n/d \mid n\}$ et $E_2 = \{(d, d') \in \mathbb{N}_n^2/dd' = n\}$. L'application φ de E_1 dans E_2 définie par $\varphi(d)=(d,\frac{n}{d})$ est une bijection, dont l'application réciproque est $(d, d') \longmapsto d$. Pour tout $(d, d') \in E_2$, posons $a_{(d,d')} = f(d)g(d')$.

Ainsi,
$$(f T g)(n) = \sum_{\substack{1 \le d \le n \\ d \text{ divise } n}} a_{(d,\frac{n}{d})} = \sum_{d \in E_1} a_{\varphi(d)}$$
, donc en posant $c = \varphi(d)$, on obtient que

$$(f T g)(n) = \sum_{c \in E_2} a_c = \sum_{\substack{1 \le d, d' \le n \\ dd' = n}}^{d \text{ divise } n} f(d)g(d').$$

$$\diamond$$
 $(f T g)(n) = \sum_{\substack{1 \le d, d' \le n \\ d' = n}} f(d)g(d')$, donc en posant $(e, e') = (d', d)$, on obtient

$$(f T g)(n) = \sum_{1 \le e', e \le n} f(e')g(e)$$
, puis en renommant les variables,

$$(f\ T\ g)(n) = \sum_{\substack{1 \leq e', e \leq n \\ e'e=n}}^{da'=n} f(e')g(e), \text{ puis en renommant les variables,}$$

$$(f\ T\ g)(n) = \sum_{\substack{1 \leq d', d \leq n \\ dd'=n}}^{da'=n} f(d')g(d) = (g\ T\ f)(n). \text{ Ainsi, } f\ T\ g = g\ T\ f, \text{ donc } T \text{ est une loi}$$

interne commutative sur A.

 \diamond Notons $e: \mathbb{N}^* \longrightarrow \mathbb{Z}$ l'unique application telle que e(1) = 1 et e(n) = 0 pour tout

$$n \ge 2$$
. Soit $f \in A$ et $n \in \mathbb{N}^*$.
 $(f \ T \ e)(n) = \sum_{\substack{1 \le d, d' \le n \\ dd' = n}} f(d)e(d') = f(n)e(1) = f(n)$, donc $f \ T \ e = f = e \ T \ f$.

Ainsi e est l'élément neutre pour la loi T.

Affisi
$$e$$
 est l'element heutre pour la for T .

 \Rightarrow Il reste à montrer que T est associative. Soit $f, g, h \in A$, soit $n \in \mathbb{N}^*$.

$$[f \ T \ (g \ T \ h)](n) = \sum_{\substack{1 \leq d, d' \leq n \\ dd' = n}} f(d)(g \ T \ h)(d')$$

$$= \sum_{\substack{1 \leq d, d' \leq n \\ dd' = n}} f(d) \sum_{\substack{1 \leq \alpha, \beta \leq d' \\ \alpha \beta = d'}} g(\alpha)h(\beta)$$

$$= \sum_{\substack{1 \leq d, d', \alpha, \beta \leq n \\ dd' = n, \alpha \beta = d'}} f(d)g(\alpha)h(\beta) \quad \text{(par sommation par paquets)}.$$

Posons $F_1 = \{(d, d', \alpha, \beta) \in \mathbb{N}_n^4 / dd' = n, \alpha\beta = d'\}$ et $F_2 = \{(d, \alpha, \beta) \in \mathbb{N}_n^3 / d\alpha\beta = n\}$. L'application φ de F_1 dans F_2 définie par $\varphi(d, d', \alpha, \beta) = (d, \alpha, \beta)$ est une bijection, donc en posant $a_{(d,\alpha,\beta)} = f(d)g(\alpha)h(\beta)$ pour tout $(d,\alpha,\beta) \in F_2$, on obtient

$$[f \ T \ (g \ T \ h)](n) = \sum_{(d,d',\alpha,\beta) \in F_1} a_{\varphi(d,d',\alpha,\beta)} = \sum_{c \in F_2} a_c.$$

donc en posant
$$a_{(d,\alpha,\beta)} = f(a)g(\alpha)h(\beta)$$
 pour tout $(a,\alpha,\beta) \in I$

$$[f \ T \ (g \ T \ h)](n) = \sum_{\substack{(d,d',\alpha,\beta) \in F_1}} a_{\varphi(d,d',\alpha,\beta)} = \sum_{\substack{c \in F_2 \\ dd'd''=n}} a_c.$$
Ceci montre que $[f \ T \ (g \ T \ h)](n) = \sum_{\substack{1 \le d,d',d'' \le n \\ dd'd'''=n}} f(d)g(d')h(d'').$

Ainsi f T (g T h) ne dépend pas de l'ordre de (f, g, h).

En particulier, f T (g T h) = h T (f T g), puis par commutativité, f T (g T h) = (f T g) T h. Ceci prouve l'associativité.

6°) **a)** Soit $n \in \mathbb{N}^*$ avec $n \geq 2$.

Soit d un diviseur de n. Ainsi, il existe $\beta_1, \ldots, \beta_k \in \mathbb{N}$ tels que $d = \prod_{i=1}^k p_i^{\beta_i}$ avec $\beta_i \leq \alpha_i$ pour tout $i \in \mathbb{N}_k$. S'il existe $i \in \mathbb{N}_k$ tel que $\beta_i \geq 2$, alors $\mu(d) = 0$, donc les seuls diviseurs d de n pour lesquels $\mu(d) \neq 0$ sont de la forme $d = \prod_{i \in I} p_i$, où $I \subset \mathbb{N}_k$, et dans

ce cas, $\mu(d) = (-1)^{|I|}$.

L'application $I \longmapsto \prod_{i \in I} p_i$ est donc une bijection de $\mathcal{P}(\mathbb{N}_k)$ dans l'ensemble des diviseurs

d de n tels que $\mu(d) \stackrel{\text{\tiny{i-1}}}{\neq} 0.$ Ainsi, par changement de variable,

$$(\mu \ T \ z)(n) = \sum_{\substack{1 \le d \le n \\ d \mid n}} \mu(d) = \sum_{I \subset \mathbb{N}_k} (-1)^{|I|}, \text{ puis par sommation par paquets},$$

$$(\mu \ T \ z)(n) = \sum_{h=0}^{k} \sum_{\substack{I \subset \mathbb{N}_k \\ |I| = h}} (-1)^h = \sum_{h=0}^{k} {k \choose h} (-1)^h = (1-1)^k$$
 d'après la formule du binôme

de Newton. Or $k \ge 1$, car $n \ge 2$, donc $(\mu T z)(n) = 0$.

De plus $(\mu \ T \ z)(1) = \mu(1)z(1) = 1$, donc $\mu \ T \ z = e$.

T étant commutative, ceci prouve que z est l'inverse de μ pour la loi T.

b) Soit $f, g \in A$. Il s'agit de montrer que $f = g T z \iff g = \mu T f$:

Si f = g T z, alors $\mu T f = \mu T (z T g) = (\mu T z) Tg = e T g = g$ et réciproquement, si $g = \mu T f$, alors $g T z = (f T \mu) T z = f T (\mu T z) = f T e = f$.

- **7°)** a) \diamond Soit φ un mot de longueur n. Alors pour tout $i \in \mathbb{N}_n$, $\varphi(i+n) = \varphi(i)$, donc $\varphi R \varphi : R$ est une relation réflexive.
- \diamond Soit φ et φ' deux mots de longueur n tels que φ R φ' . Ainsi, il existe $p \in \mathbb{N}^*$ tel que, pour tout $i \in \mathbb{N}_n$, $\varphi'(i) = \varphi(i+p)$.

Il existe $q \in \mathbb{N}^*$ tel que $-p \equiv q$ [n]. Alors, pour tout $i \in \mathbb{N}_n$, $\varphi(i) = \varphi'(i-p) = \varphi'(i+q)$, donc $\varphi' R \varphi : R$ est une relation symétrique.

- \diamond Soit φ, φ' et φ'' trois mots de longueur n tels que φ R φ' et φ' R φ'' . Il existe $p, q \in \mathbb{N}^*$ tels que, pour tout $i \in \mathbb{N}_n$, $\varphi'(i) = \varphi(i+p)$ et $\varphi''(i) = \varphi'(i+q)$. Alors, pour tout $i \in \mathbb{N}_n$, $\varphi''(i) = \varphi(i+q+p)$, donc φ R φ'' : R est une relation transitive.
- \diamond En conclusion, R est une relation d'équivalence.
- **b)** \diamond Lors de la définition d'une période p d'un mot circulaire $\overline{\varphi}$, l'énoncé sous-entend que la propriété " $\forall i \in \mathbb{N}_n, \ \varphi(i) = \varphi(i+p)$ " ne dépend que de $\overline{\varphi}$. Démontrons-le : Soit φ, φ' deux mots de longueur n tels que $\varphi R \varphi'$: il existe $q \in \mathbb{N}^*$ tel que, pour tout $i \in \mathbb{N}_n, \ \varphi'(i) = \varphi(i+q)$.

Supposons de plus qu'il existe $p \in \mathbb{N}^*$ tel que, pour tout $i \in \mathbb{N}_n$, $\varphi(i) = \varphi(i+p)$. Alors, pour tout $i \in \mathbb{N}_n$, $\varphi'(i) = \varphi(i+q) = \varphi(i+q+p) = \varphi'(i+p)$, ce qui fallait démontrer.

- \diamond Notons P l'ensemble des périodes de φ . D'après les définitions de l'énoncé, $n \in P$, donc P est une partie non vide de \mathbb{N}^* . À ce titre, elle possède bien un minimum, que l'on note p_0 .
- \diamond Par division euclidienne de n par p_0 , on peut écrire $n=p_0q+r$ avec $q\in\mathbb{N}$ et $0\leq r\leq p_0$.

Pour tout $i \in \mathbb{N}_n$, $\varphi(i) = \varphi(i+n) = \varphi(i+r+p_0q) = \varphi(i+r)$, car on peut montrer par récurrence sur q que, pour tout $q \in \mathbb{N}^*$, p_0q est une période. Ainsi, si r est non nul, c'est un élément de P avec $r < p_0 = \min(P)$. C'est impossible, donc r = 0 et p_0 divise p_0

c) Notons $\mathcal{M}_{p,n}$ l'ensemble des mots circulaires de longueur n et de période primitive p. Alors on peut vérifier que l'application $f: \mathcal{M}_{p,n} \longrightarrow \mathcal{M}_{p,p} \longrightarrow \mathcal{M}_{p,p}$ est correctement définie et que c'est une bijection. Ainsi, le nombre de mots circulaires de longueur n et de période primitive p ne dépend pas de n, tant que n est un multiple de p. On peut donc le noter M(p), et $M \in A$.

Notons $f: \mathbb{N}^* \longrightarrow \mathbb{Z}$ définie par $f(n) = m^n$ et $g: \mathbb{N}^* \longrightarrow \mathbb{Z}$ définie par g(p) = pM(p). Il s'agit donc de montrer que $g = \mu$ T f, ou bien d'après la question 6.b, que f = g T z, c'est-à-dire que, pour tout $n \in \mathbb{N}^*$, $m^n = \sum_{\substack{1 \le d \le n \\ d \mid n}} dM(d)$.

Soit $n \in \mathbb{N}^*$. Pour tout $d \in \mathbb{N}^*$ tel que $d \mid n$, notons $M_{d,n}$ l'ensemble des éléments de $\mathbb{N}_m^{\mathbb{N}_n}$ dont le mot circulaire associé admet d pour période primitive.

Alors (1) :
$$\mathbb{N}_m^{\mathbb{N}_n} = \bigsqcup_{\substack{1 \le d \le n \\ d \mid n}} M_{d,n}$$
.

Par ailleurs, si l'on note F l'application $M_{d,n} \longrightarrow \mathcal{M}_{d,n}$, pour tout $r \in \mathcal{M}_{d,n}$, $F^{-1}(\{r\})$ est de cardinal d: en effet, si $\overline{\varphi} = r$, les mots de la classe d'équivalence sont les $\varphi_k : i \longmapsto \varphi(i+k)$, où $k \in \{0, \ldots, n-1\}$, mais $\varphi_k = \varphi_h$ avec $k \neq h$ si et seulement si |k-h| est une période de $\overline{\varphi}$, donc $\overline{\varphi} = \{\varphi_0, \varphi_1, \ldots, \varphi_{d-1}\}$ et ces éléments sont deux à deux distincts.

Ainsi, d'après le principe des bergers, $|M_{d,n}| = d|\mathcal{M}_{d,n}| = dM(d)$. Alors la formule (1) donne, en passant aux cardinaux, $m^n = \sum_{\substack{1 \leq d \leq n \\ d \mid n}} dM(d)$, ce qu'il fallait démontrer.

Partie III: Utilisation de fonctions génératrices

8°) Soit $m \in \mathbb{N}^*$ et $x \in \mathbb{R}$. Soit $N \in \mathbb{N}^*$.

D'après la question 3.b, qui est également valable lorsque m > n, car l'hypothèse $m \le n$ n'est pas utilisée pour montrer cette question,

The set pass utilisee point mointrer cette question,
$$\sum_{n=0}^{N} S_n^m \frac{x^n}{n!} = \frac{1}{m!} \sum_{n=0}^{N} \frac{x^n}{n!} \sum_{k=0}^{m} (-1)^k \binom{m}{k} (m-k)^n = \frac{1}{m!} \sum_{k=0}^{m} (-1)^k \binom{m}{k} \sum_{n=0}^{N} \frac{[x(m-k)]^n}{n!},$$

$$\sum_{n=0}^{N} S_n^m \frac{x^n}{n!} \xrightarrow[N \to +\infty]{} \frac{1}{m!} \sum_{k=0}^{m} (-1)^k \binom{m}{k} e^{x(m-k)}$$

$$= \frac{1}{m!} \sum_{k=0}^{m} (-1)^k \binom{m}{k} (e^x)^{m-k}$$

$$= \frac{1}{m!} (e^x - 1)^m$$

d'après la formule du binôme de Newton. Ceci prouve que la série $\sum S_n^m \frac{x^n}{n!}$ est conver-

gente et que
$$\sum_{n=0}^{+\infty} S_n^m \frac{x^n}{n!} = \frac{1}{m!} (e^x - 1)^m$$
.

9°) Soit $n \geq 3$. Notons \mathcal{I}_n l'ensemble des injections de \mathbb{N}_n . Alors

(2):
$$\mathcal{I}_n = \bigsqcup_{1 \le i \le n} \mathcal{I}_{i,n}$$
 où $\mathcal{I}_{i,n} = \{ f \in \mathcal{I}_n / f(n) = i \}.$

Lorsque i=n, pour construire une involution f de $\mathcal{I}_{n,n}$, telle que f(n)=n, il suffit de construire sa restriction à \mathbb{N}_{n-1} qui est une involution de \mathcal{I}_{n-1} , donc $|\mathcal{I}_{n,n}|=I_{n-1}$. Lorsque $i \in \{1, \ldots, n-1\}$, pour construire une involution f de $\mathcal{I}_{i,n}$, telle que f(n)=i et donc f(i)=n, il suffit de construire sa restriction à $\mathbb{N}_{n-1}\setminus\{i\}$ qui est une involution sur un ensemble de cardinal n-2, donc $|\mathcal{I}_{i,n}|=I_{n-2}$. Ainsi, en passant aux cardinaux dans la formule (2), on obtient que $I_n=I_{n-1}+(n-1)I_{n-2}$.

10°) Soit
$$n \in \mathbb{N}$$
. D'après l'énoncé, $f^{(n)}(x) = \sum_{k=0}^{+\infty} a_k \frac{d^n}{dx^n}(x^k) = \sum_{k=n}^{+\infty} a_k \frac{k!}{(k-n)!} x^{k-n}$, donc $f^{(n)}(0) = n! a_n$.

11°) Soit $n \in \mathbb{N}$. L'ensemble des involutions de \mathbb{N}_n est inclus dans l'ensemble \mathcal{S}_n des permutations de \mathbb{N}_n , donc $I_n \leq |\mathcal{S}_n| = n!$.

Soit
$$r \in]0,1[$$
. Soit $N \in \mathbb{N}$. $\sum_{n=0}^{N} \frac{I_n}{n!} r^n \leq \sum_{n=0}^{N} r^n = \frac{1-r^{N+1}}{1-r} \leq \frac{1}{1-r}$, donc la suite

 $\left(\sum_{n=0}^{N} \frac{I_n}{n!} r^n\right)_{N \in \mathbb{N}}$ est une suite majorée, mais elle est aussi croissante car $\frac{I_n}{n!} r^n \geq 0$, donc elle est convergente, ce qui prouve que S(r) est défini.

12°) Soit $x \in]-1,1[$. Il existe $r \in]|x|,1[$. D'après la question précédente, S(r) est défini, donc d'après la question 10, l'application S est de classe C^{∞} sur]-r,r[. En

particulier, S est dérivable en x et, toujours d'après la question 10,

$$S'(x) = \sum_{n=0}^{+\infty} \frac{I_n}{n!} \frac{d}{dx}(x^n) = \sum_{n=1}^{+\infty} I_n \frac{x^{n-1}}{(n-1)!} = \sum_{n=0}^{+\infty} I_{n+1} \frac{x^n}{n!}, \text{ donc}$$

$$S'(x) = I_1 + I_2 x + \sum_{n=2}^{+\infty} (I_n + nI_{n-1}) \frac{x^n}{n!} = I_1 + I_2 x + \sum_{n=2}^{+\infty} I_n \frac{x^n}{n!} + x \sum_{n=1}^{+\infty} I_n \frac{x^n}{n!}, \text{ or } I_1 = 1 \text{ et}$$

$$I_2 = 2$$
, donc $S'(x) = 1 + 2x + (S(x) - x) + xS(x) = (1 + x) + S(x)(1 + x) = (1 + x)(S(x) + 1)$.

13°) Notons $g: x \mapsto (S(x)+1)e^{-x-\frac{x^2}{2}}$. g est dérivable sur]-1,1[et $g'(x) = e^{-x-\frac{x^2}{2}}(S'(x)+(S(x)+1)(-1-x)) = 0$, donc g est une application constant.

 $g'(x) = e^{-x-\frac{x^2}{2}}(S'(x) + (S(x) + 1)(-1 - x)) = 0$, donc g est une application constante sur]-1,1[. Or g(0)=1, donc pour tout $x \in]-1,1[$, $S(x)=e^{x+\frac{x^2}{2}}-1$.

14°) Soit $n \in \mathbb{N}^*$.

Pour tout $x \in]-1, 1[, e^{x+\frac{x^2}{2}}-1=S(x)=\sum_{n=0}^{+\infty}\frac{I_n}{n!}x^n$, donc d'après la question 10,

 $I_n = S^{(n)}(0)$, puis d'après la formule de Leibniz,

$$I_n = \sum_{k=0}^n \binom{n}{k} \left[\frac{d^{n-k}}{dx^{n-k}} (e^x) \times \frac{d^k}{dx^k} (e^{\frac{x^2}{2}}) \right] (0) = \sum_{k=0}^n \binom{n}{k} \left[\frac{d^k}{dx^k} (e^{\frac{x^2}{2}}) \right] (0).$$

Par ailleurs, $e^{\frac{x^2}{2}} = \sum_{n=0}^{+\infty} \left(\frac{x^2}{2}\right)^n \frac{1}{n!} = \sum_{n=0}^{+\infty} a_n x^n$, avec $a_{2n} = \frac{1}{2^n n!}$ et $a_{2n+1} = 0$, pour tout

 $n \in \mathbb{N}$. Ainsi, toujours d'après la question 10, pour tout $k \in \mathbb{N}$, $\left[\frac{d^k}{dx^k}(e^{\frac{x^2}{2}})\right](0) = k!a_k$,

donc
$$I_n = \sum_{0 \le 2k \le n} \binom{n}{2k} (2k)! \frac{1}{2^k k!} = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{n!}{2^k k! (n-2k)!}.$$

15°) Lorsque f est une involution de \mathbb{N}_n ,

le nombre d'éléments de \mathbb{N}_n non fixes par f est pair.

En effet, informellement, si a est un élément de \mathbb{N}_n non fixe par f,

alors $f(a) \neq a$ et $f(f(a)) = a \neq f(a)$, donc f(a) est un second élément de \mathbb{N}_n non fixe par f. Ainsi on peut regrouper par paires les éléments non fixes de f.

On peut formaliser ce raisonnement en utilisant la relation binaire R suivante sur \mathbb{N}_n : lorsque $x, y \in \mathbb{N}_n$, on convient que x R y si et seulement si il existe $k \in \mathbb{Z}$ tel que $y = f^k(x)$, où f^k désigne f composée avec elle-même k fois lorsque $k \geq 0$ et où $f^k = (f^{-1})^{-k}$ lorsque k est négatif.

On vérifie que R est une relation d'équivalence. Lorsque x est un point fixe de f, la classe d'équivalence est égale à $\{x\}$ et sinon, $\overline{x} = \{x, f(x)\}$. Or les classes d'équivalence sont disjointes, donc si l'on note k le nombre de classes d'équivalence de cardinal 2, le nombre de points non fixes par f est égal à 2k.

Ainsi, pour construire une involution f quelconque de \mathbb{N}_n , on commence par choisir $k \in \mathbb{N}$ tel que $2k \leq n$, où 2k va désigner le nombre d'éléments de \mathbb{N}_n non fixes par f, puis on choisit l'ensemble I de ces points non fixes, ce qui revient à choisir 2k éléments

parmi n, soit $\binom{n}{2k}$ choix. Ensuite, on prend le minimum de I noté m_1 et on choisit son image par f dans I, notée m_2 (il y a 2k-1 choix de m_2), puis on applique le même procédé en remplaçant I par $I \setminus \{m_1, m_2\}$ (il y a 2k-3 choix) et l'on continue jusqu'à ce que l'ensemble des points non fixes restants soit vide. On obtient par ce

procédé de construction toutes les involutions exactement une fois, donc $I_n = \sum_{k=0}^{\lfloor r/2 \rfloor} \alpha_k$,

où
$$\alpha_k = \binom{n}{2k} (2k-1)(2k-3) \cdots 3.$$

Or, pour tout $k \in \{0, \dots, \lfloor \frac{n}{2} \rfloor\}$, $a_k = \frac{n!}{(2k)!(n-2k)!} \times \frac{(2k)!}{(2k)(2k-2)\cdots 2} = \frac{n!}{(n-2k)!2^k k!}$. On retrouve bien ainsi la formule de la question précédente.