DM 18 : ensembles équipotents

Il s'agit d'un sujet supplémentaire pour votre travail personnel. Il n'est pas à rendre.

Un corrigé sera fourni jeudi 27 novembre.

Lorsque E est un ensemble, on note $\mathcal{P}(E)$ l'ensemble des parties de E. Si E et F sont des ensembles, on note F^E l'ensemble des applications de E dans F.

 ${\mathcal E}$ désigne un ensemble dont les éléments sont eux-mêmes des ensembles.

On suppose que \mathcal{E} contient tous les ensembles usuels $(\mathbb{N}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$.

Lorsque $E, F \in \mathcal{E}$, on supppose que $\mathcal{P}(E)$ et F^E sont des éléments de \mathcal{E} .

Plus généralement, on considère que \mathcal{E} admet parmi ses éléments tous les ensembles considérés dans la suite de ce problème, même lorsque ce n'est pas explicitement signalé.

Partie I : Équipotence

Lorsque F et G sont deux éléments de \mathcal{E} , on dit que F et G sont équipotents si et seulement si il existe une bijection de F dans G.

 1°) Montrer que la relation "être équipotent" est une relation d'équivalence sur \mathcal{E} .

Pour la suite, cette relation sera appelée la relation d'équipotence. Lorsque $E \in \mathcal{E}$, la classe d'équivalence de E pour la relation d'équipotence sera appelée la classe d'équipotence de E.

 2°) Soit $E \in \mathcal{E}$.

Soit $n \in \mathbb{N}$. Lorsque E est de cardinal n, quelle est la classe d'équipotence de E? Lorsque E est une partie de \mathbb{N} , quelle est la classe d'équipotence de E?

- **3°)** Soit $n, p \in \mathbb{N}^*$. Déterminer un entier $N \in \mathbb{N}$ tel que \mathbb{N}_N est équipotent à l'ensemble des applications croissantes de \mathbb{N}_n dans \mathbb{N}_p .
- **4**°) On note α l'application de]0,1[dans $\mathbb R$ définie par :

pour tout
$$x \in]0,1[, \alpha(x) = \frac{2x-1}{4x(1-x)}.$$

En utilisant α , montrer que]0,1[et \mathbb{R} sont équipotents.

 5°) Montrer que \mathbb{N}^2 et \mathbb{N} sont équipotents.

- **6°)** Soit $n \in \mathbb{N}^*$. On considère 2n éléments de \mathcal{E} , notés E_1, \ldots, E_n et F_1, \ldots, F_n . On suppose que, pour tout $i \in \mathbb{N}_n$, E_i est équipotent à F_i . Montrer que $E_1 \times \cdots \times E_n$ est équipotent à $F_1 \times \cdots \times F_n$.
- 7°) On suppose que A, B, E et F sont quatre éléments de \mathcal{E} . On suppose que A et E sont équipotents. On suppose que B et F sont équipotents. Montrer que B^A et F^E sont équipotents.
- 8°) Soit A, B et C trois éléments de \mathcal{E} . Montrer que $(A^B)^C$ est équipotent à $A^{B \times C}$.
- 9°) Soit I un ensemble. Montrer que I et $\mathcal{P}(I)$ ne sont pas équipotents.
- 10°) Soit I un ensemble. Montrer que $\mathcal{P}(I)$ est équipotent à $\{0,1\}^I$.

Partie II: Subpotence

Lorsque F et G sont deux éléments de \mathcal{E} , on dit que F est subpotent à G si et seulement si il existe une injection de F dans G.

- 11°) Montrer que \mathbb{N} est subpotent à tout ensemble infini E tel que $E \in \mathcal{E}$.
- 12°) Soit $F, G \in \mathcal{E}$ avec $F \neq \emptyset$. Montrer que F est subpotent à G si et seulement si il existe une surjection de G dans F.

On admet le théorème de Cantor-Bernstein selon lequel, pour tout $E, F \in \mathcal{E}$, E et F sont équipotents si et seulement si E est subpotent à F et F est subpotent à E.

- 13°) Lorsque $E \in \mathcal{E}$, on note \overline{E} la classe d'équipotence de E. Si $E, F \in \mathcal{E}$, on convient que $\overline{E} \leq \overline{F}$ si et seulement si E est subpotent à F. Démontrer que " \leq " est une relation d'ordre sur l'ensemble des classes d'équipotence de \mathcal{E} .
- 14°) Soit $E \in \mathcal{E}$. On suppose que E est infini. Soit $x \in E$. On suppose que $E \setminus \{x\} \in \mathcal{E}$.

Montrer que E et $E \setminus \{x\}$ sont équipotents.

- **15°)** Soit E un ensemble (élement de \mathcal{E}). On suppose qu'il existe une partie F de E telle que F est dénombrable et $E \setminus F$ est infini. Montrer que E et $E \setminus F$ sont équipotents.
- **16°)** En utilisant la notion de développement d'un réel en base a (où a est un entier tel que $a \ge 2$), montrer que]0,1[et $\{0,1\}^{\mathbb{N}}$ sont équipotents. En déduire que $]0,1[^2$ est équipotent à]0,1[.
- 17°) En déduire que $\mathbb{R}^{\mathbb{R}}$ est équipotent à $\mathcal{P}(\mathbb{R})$ (sans utiliser la partie III).
- 18°) On note \mathcal{C} l'ensemble des applications continues de \mathbb{R} dans \mathbb{R} . Montrer que \mathcal{C} est équipotent à \mathbb{R} (*Indication*: on pourra penser à restreindre les éléments de \mathcal{C} sur \mathbb{Q}).

Partie III : Equipotence entre E et E^2

Dans cette partie, E désigne un élément de $\mathcal E$ tel que E est équipotent à E^2 .

19°) Que peut-on dire de E s'il est fini?

Pour toute la suite, on suppose que E est infini.

- **20°)** Montrer que E^E est subpotent à $\mathcal{P}(E^2)$.
- **21**°) Soit $A, B \in \mathcal{E}$. On suppose que A est subpotent à B. Montrer que $\mathcal{P}(A)$ est subpotent à $\mathcal{P}(B)$. En déduire que $\mathcal{P}(E^2)$ est subpotent à $\mathcal{P}(E)$.
- **22**°) Montrer que $\mathcal{P}(E)$ est subpotent à E^E .
- 23°) En déduire que E^E et $\mathcal{P}(E)$ sont équipotents.