
DM 19 : Formule d’inversion de Rota

Lorsque A est un ensemble fini, on notera |A| son cardinal.
Pour tout n ∈ N, on note Nn l’ensemble des entiers naturels compris entre 1 et n.

Partie I : Démonstration de la formule de Rota

Soit N ∈ N. On suppose que E est un ensemble fini de cardinal N , muni d’une relation
d’ordre notée ”≤” éventuellement partielle.
Lorsque x, y ∈ E, on convient que x < y si et seulement si x ≤ y et x ̸= y.

1◦) Montrer que la relation binaire ”<” est transitive.

Soit p ∈ N et x, y ∈ E. Lorsque (xi)0≤i≤p ∈ Ep+1, on dit que (xi)0≤i≤p est une châıne
de E de longueur p joignant x à y si et seulement si x0 = x, xp = y et, pour tout
i ∈ {0, . . . , p− 1}, xi < xi+1.
On note Cp(x, y) l’ensemble des châınes de longueur p joignant x à y et cp(x, y) le
cardinal de Cp(x, y).

2◦) Soit x ∈ E et p ∈ N avec p ≥ 1. Montrer que cp(x, x) = 0 et que c0(x, x) = 1.

3◦) Soit x, y ∈ E et p ∈ N.
Calculer cp(x, y) lorsque ¬(x < y) (on rappelle que ”¬” désigne le connecteur logique
de négation).
Calculer c1(x, y) dans tous les cas.

4◦) Soit x, y ∈ E tels que x ≤ y. Soit p ∈ N.
Construire une bijection de Cp+1(x, y) dans

⋃
z∈E tel que

x≤z<y

Cp(x, z).

Montrer que cp+1(x, y) =
∑

x≤z<y

cp(x, z) et que cp+1(x, y) =
∑

x<z≤y

cp(z, y).

5◦) Soit x, y ∈ E. On rappelle que N = |E|.
Montrer que pour tout p ≥ N , cp(x, y) = 0.

Pour tout x, y ∈ E, on pose µ(x, y) =
N−1∑
p=0

(−1)pcp(x, y). Ainsi, µ est une application de

E2 dans Z, que l’on appelle la fonction de Möbius associée au couple (E,≤).
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6◦) Pour tout x ∈ E, calculer µ(x, x).

Pour tout x, y ∈ E avec x < y, montrer que
∑

x≤z≤y

µ(x, z) = 0 =
∑

x≤z≤y

µ(z, y).

7◦) Soit f une application de E dans C.
Pour tout x ∈ E, on pose g(x) =

∑
y∈E tel que y≤x

f(y).

Montrer que, pour tout x ∈ E, f(x) =
∑
y≤x

µ(y, x)g(y).

Pour tout x ∈ E, on pose h(x) =
∑
x≤y

f(y).

Montrer que, pour tout x ∈ E, f(x) =
∑
x≤y

µ(x, y)h(y).

Il s’agit des formules d’inversion de Rota.

Partie II : Applications

8◦) On fixe n ∈ N∗ et, pour cette question seulement, on pose E = Nn. On munit E
de la relation d’ordre usuelle entre entiers et on utilise les définitions et les notations
de la première partie.

8.a : Soit i, j ∈ Nn tels que j > i+ 1. Soit p ∈ N∗ tel que p ≤ j − i.

Montrer que cp(i, j) est égal au coefficient binomial

(
j − i− 1
p− 1

)
.

8.b : Montrer que la fonction de Möbius sur E est définie par :

pour tout i, j ∈ Nn, µ(i, j) =

 1 si j = i
−1 si j = i+ 1
0 dans les autres cas

.

Que devient dans ce cas la formule de Rota ?

9◦) Soit S un ensemble fini. Pour cette question, on suppose que E est l’ensemble des
parties de S, que l’on ordonne par la relation d’inclusion.

9.a : Soit A,B ∈ E avec A ⊂ B. Montrer que µ(A,B) = (−1)|B|−|A|. Indication : On
pourra raisonner par récurrence sur k = |B| − |A| en utilisant la question 6.
Que devient la formule de Rota dans ce cas ?

9.b : Soit (xn)n∈N une suite de complexes. Pour tout n ∈ N, on pose yn =
n∑

k=0

(
n
k

)
xk.

Déduire de la question 9.a que, pour tout n ∈ N, xn = (−1)n
n∑

k=0

(
n
k

)
(−1)kyk.

Il s’agit de la formule d’inversion de Pascal.
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10◦) Soit m ∈ N∗. On suppose dans cette question que E = {0, 1}m.
Lorsque u = (u1, . . . , um) ∈ E, on note supp(u) = {i ∈ Nm / ui = 1}.
Lorsque u, v ∈ E, on convient que u ≤ v si et seulement si supp(u) ⊂ supp(v).
Montrer que ≤ est bien une relation d’ordre sur E.
Que devient la formule de Rota dans ce cas ?

11◦) Lorsque x, y ∈ {0, 1}, on note x ⊕ y le reste de la division euclidienne de x + y
par 2. Ainsi, ⊕ est une loi interne sur {0, 1}. En interprétant 0 et 1 comme les valeurs
booléennes ”faux” et ”vrai”, à quel opérateur logique correspond cette loi interne ?
Soit f une application de {0, 1}m dans {0, 1} : c’est une application qui prend la valeur
vraie ou fausse en fonction de m booléens.
Avec les notations de la question précédente, Pour tout u ∈ {0, 1}m = E, on pose

g(u) =
⊕
v≤u

f(v). Montrer que, pour tout u ∈ {0, 1}m, f(u) =
⊕
v≤u

g(v).

12◦) Soit F un ensemble fini non vide. Soit P1, . . . , Pn n parties de F , où n ∈ N∗.

On pose S = Nn et E = P(S). On convient que, lorsque I = ∅,
⋂
i∈I

Pi = F .

Pour tout I ∈ E, on pose f(I) =
∣∣∣(⋂

i∈I

Pi

)⋂( ⋂
i∈Nn\I

(F \ Pi)
)∣∣∣ et g(I) = ∣∣∣(⋂

i∈I

Pi

)∣∣∣.
Montrer que, pour tout I ∈ E, g(I) =

∑
I⊂J

f(J).

En déduire la formule du crible :
∣∣∣ ⋃
1≤i≤n

Pi

∣∣∣ = n∑
k=1

(−1)k+1
∑
J⊂Nn

tel que |J|=k

g(J).

Partie III : La fonction de Möbius arithmétique

Dans cette partie, on fixe n ∈ N∗, on choisit E = Nn, que l’on ordonne avec la relation
de divisibilité (on ne demande pas de montrer que c’est bien une relation d’ordre).
On emploie à nouveau dans ce cas les définitions et les notations de la première partie.

13◦) Soit r, s ∈ Nn tels que r divise s.
Pour tout p ∈ N, construire une bijection de Cp(r, s) dans Cp(1,

s
r
).

En déduire que µ(r, s) = µ(1, s
r
).

Pour tout r ∈ Nn, on pose µ(r) = µ(1, r). µ est la fonction de Möbius arithmétique.

14◦) Pour tout r ∈ Nn, posons m(r) = (−1)k s’il existe k nombres premiers deux à

deux distincts p1, . . . , pk tels que r =
k∏

i=1

pi (donc en particulier, m(1) = 1) et posons

m(r) = 0 dans les autres cas.
Montrer que, pour tout r ∈ Nn, µ(r) = m(r). Indication : on pourra raisonner par
récurrence forte sur r en utilisant la question 6.
Que devient la formule de Rota dans ce cadre ?
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Lorsque a, b ∈ Nn, on note a ∧ b le pgcd de a et b.

15◦) Montrer que, pour tout r ∈ Nn, µ(r) =
∑

d∈{1,...,r}
tel que d∧r=1

e2iπ
d
r .

16◦) Soit r ∈ Nn. Montrer que le nombre d’entiers k compris entre 1 et r tels que

k ∧ r = 1 est égal à
∑

d∈{1,...,r}
tel que d divise r

µ(d)
r

d
.
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