DM 19 : Formule d'inversion de Rota

Lorsque A est un ensemble fini, on notera |A| son cardinal.

Pour tout $n \in \mathbb{N}$, on note \mathbb{N}_n l'ensemble des entiers naturels compris entre 1 et n.

Partie I : Démonstration de la formule de Rota

Soit $N \in \mathbb{N}$. On suppose que E est un ensemble fini de cardinal N, muni d'une relation d'ordre notée " \leq " éventuellement partielle.

Lorsque $x, y \in E$, on convient que x < y si et seulement si $x \le y$ et $x \ne y$.

1°) Montrer que la relation binaire "<" est transitive.

Soit $p \in \mathbb{N}$ et $x, y \in E$. Lorsque $(x_i)_{0 \le i \le p} \in E^{p+1}$, on dit que $(x_i)_{0 \le i \le p}$ est une chaîne de E de longueur p joignant x à y si et seulement si $x_0 = x$, $x_p = y$ et, pour tout $i \in \{0, \ldots, p-1\}$, $x_i < x_{i+1}$.

On note $C_p(x,y)$ l'ensemble des chaînes de longueur p joignant x à y et $c_p(x,y)$ le cardinal de $C_p(x,y)$.

- **2°)** Soit $x \in E$ et $p \in \mathbb{N}$ avec $p \geq 1$. Montrer que $c_p(x, x) = 0$ et que $c_0(x, x) = 1$.
- **3**°) Soit $x, y \in E$ et $p \in \mathbb{N}$.

Calculer $c_p(x,y)$ lorsque $\neg(x < y)$ (on rappelle que "¬" désigne le connecteur logique de négation).

Calculer $c_1(x, y)$ dans tous les cas.

4°) Soit $x, y \in E$ tels que $x \leq y$. Soit $p \in \mathbb{N}$.

Construire une bijection de $C_{p+1}(x,y)$ dans $\bigcup_{\substack{z \in E \text{ tel que} \\ x \leq z < y}} C_p(x,z)$.

Montrer que
$$c_{p+1}(x,y) = \sum_{x \le z < y} c_p(x,z)$$
 et que $c_{p+1}(x,y) = \sum_{x < z \le y} c_p(z,y)$.

5°) Soit $x, y \in E$. On rappelle que N = |E|.

Montrer que pour tout $p \ge N$, $c_p(x, y) = 0$.

Pour tout $x, y \in E$, on pose $\mu(x, y) = \sum_{p=0}^{N-1} (-1)^p c_p(x, y)$. Ainsi, μ est une application de

 E^2 dans \mathbb{Z} , que l'on appelle la fonction de Möbius associée au couple (E,\leq) .

6°) Pour tout
$$x \in E$$
, calculer $\mu(x, x)$.

Pour tout
$$x, y \in E$$
 avec $x < y$, montrer que $\sum_{x \le z \le y} \mu(x, z) = 0 = \sum_{x \le z \le y} \mu(z, y)$.

7°) Soit
$$f$$
 une application de E dans \mathbb{C}

Pour tout
$$x \in E$$
, on pose $g(x) = \sum_{y \in E \text{ tel que } y \le x} f(y)$.

Montrer que, pour tout $x \in E$, $f(x) = \sum_{y \le x} \mu(y, x) g(y)$. Pour tout $x \in E$, on pose $h(x) = \sum_{x \le y} f(y)$.

Montrer que, pour tout $x \in E$, $f(x) = \sum_{x \le y} \mu(x, y) h(y)$.

Il s'agit des formules d'inversion de Rota.

Partie II : Applications

8°) On fixe $n \in \mathbb{N}^*$ et, pour cette question seulement, on pose $E = \mathbb{N}_n$. On munit E de la relation d'ordre usuelle entre entiers et on utilise les définitions et les notations de la première partie.

8.a: Soit $i, j \in \mathbb{N}_n$ tels que j > i + 1. Soit $p \in \mathbb{N}^*$ tel que $p \leq j - i$.

Montrer que $c_p(i,j)$ est égal au coefficient binomial $\binom{j-i-1}{p-1}$.

8.b: Montrer que la fonction de Möbius sur E est définie par :

pour tout
$$i, j \in \mathbb{N}_n$$
, $\mu(i, j) = \begin{cases} 1 \text{ si } j = i \\ -1 \text{ si } j = i + 1 \\ 0 \text{ dans les autres cas} \end{cases}$.

Que devient dans ce cas la formule de Ro

 9°) Soit S un ensemble fini. Pour cette question, on suppose que E est l'ensemble des parties de S, que l'on ordonne par la relation d'inclusion.

9.a: Soit $A, B \in S$ avec $A \subset B$. Montrer que $\mu(A, B) = (-1)^{|B| - |A|}$. Indication: On pourra raisonner par récurrence sur k = |B| - |A| en utilisant la question 6. Que devient la formule de Rota dans ce cas?

9.b: Soit $(x_n)_{n\in\mathbb{N}}$ une suite de complexes. Pour tout $n\in\mathbb{N}$, on pose $y_n=\sum_{k=0}^n \binom{n}{k}x_k$.

Déduire de la question 9.a que, pour tout $n \in \mathbb{N}$, $x_n = (-1)^n \sum_{k=0}^n \binom{n}{k} (-1)^k y_k$.

Il s'agit de la formule d'inversion de Pascal.

10°) Soit $m \in \mathbb{N}^*$. On suppose dans cette question que $E = \{0, 1\}^m$. Lorsque $u = (u_1, \dots, u_m) \in E$, on note $supp(u) = \{i \in \mathbb{N}_m \mid u_i = 1\}$. Lorsque $u, v \in E$, on convient que $u \leq v$ si et seulement si $supp(u) \subset supp(v)$. Montrer que \leq est bien une relation d'ordre sur E. Que devient la formule de Rota dans ce cas?

11°) Lorsque $x, y \in \{0, 1\}$, on note $x \oplus y$ le reste de la division euclidienne de x + y par 2. Ainsi, \oplus est une loi interne sur $\{0, 1\}$. En interprétant 0 et 1 comme les valeurs booléennes "faux" et "vrai", à quel opérateur logique correspond cette loi interne? Soit f une application de $\{0, 1\}^m$ dans $\{0, 1\}$: c'est une application qui prend la valeur vraie ou fausse en fonction de m booléens.

Avec les notations de la question précédente, Pour tout $u \in \{0,1\}^m = E$, on pose $g(u) = \bigoplus_{v \le u} f(v)$. Montrer que, pour tout $u \in \{0,1\}^m$, $f(u) = \bigoplus_{v \le u} g(v)$.

12°) Soit F un ensemble fini non vide. Soit P_1, \ldots, P_n n parties de F, où $n \in \mathbb{N}^*$. On pose $S = \mathbb{N}_n$ et $E = \mathcal{P}(S)$. On convient que, lorsque $I = \emptyset$, $\bigcap P_i = F$.

Pour tout $I \in E$, on pose $f(I) = \left| \left(\bigcap_{i \in I} P_i \right) \bigcap \left(\bigcap_{i \in \mathbb{N}_n \setminus I} (F \setminus P_i) \right) \right| \text{ et } g(I) = \left| \left(\bigcap_{i \in I} P_i \right) \right|.$

Montrer que, pour tout $I \in E$, $g(I) = \sum_{I \in I} f(J)$.

En déduire la formule du crible : $\Big|\bigcup_{1\leq i\leq n}P_i\Big|=\sum_{k=1}^n(-1)^{k+1}\sum_{J\subset\mathbb{N}_n\atop \mathrm{tel\ que\ }|J|=k}g(J).$

Partie III : La fonction de Möbius arithmétique

Dans cette partie, on fixe $n \in \mathbb{N}^*$, on choisit $E = \mathbb{N}_n$, que l'on ordonne avec la relation de divisibilité (on ne demande pas de montrer que c'est bien une relation d'ordre). On emploie à nouveau dans ce cas les définitions et les notations de la première partie.

13°) Soit $r, s \in \mathbb{N}_n$ tels que r divise s.

Pour tout $p \in \mathbb{N}$, construire une bijection de $C_p(r,s)$ dans $C_p(1,\frac{s}{r})$. En déduire que $\mu(r,s) = \mu(1,\frac{s}{r})$.

Pour tout $r \in \mathbb{N}_n$, on pose $\mu(r) = \mu(1, r)$. μ est la fonction de Möbius arithmétique.

14°) Pour tout $r \in \mathbb{N}_n$, posons $m(r) = (-1)^k$ s'il existe k nombres premiers deux à deux distincts p_1, \ldots, p_k tels que $r = \prod_{i=1}^k p_i$ (donc en particulier, m(1) = 1) et posons

m(r) = 0 dans les autres cas. Montrer que, pour tout $r \in \mathbb{N}_n$, $\mu(r) = m(r)$. Indication: on pourra raisonner par récurrence forte sur r en utilisant la question 6.

Que devient la formule de Rota dans ce cadre?

Lorsque $a, b \in \mathbb{N}_n$, on note $a \wedge b$ le pgcd de a et b.

- **15°)** Montrer que, pour tout $r \in \mathbb{N}_n$, $\mu(r) = \sum_{\substack{d \in \{1,\dots,r\} \text{tel que } d \land r=1}} e^{2i\pi \frac{d}{r}}$.
- **16°)** Soit $r \in \mathbb{N}_n$. Montrer que le nombre d'entiers k compris entre 1 et r tels que $k \wedge r = 1$ est égal à $\sum_{\substack{d \in \{1,\dots,r\} \\ \text{tel que } d \text{ divise } r}} \mu(d) \frac{r}{d}$.