DM 19 : un corrigé

Partie I : Démonstration de la formule de Rota

- 1°) Soit $x, y, z \in E$ tels que x < y et y < z. Alors $x \le y$ et $y \le z$, donc par transitivité de la relation d'ordre \le , $x \le z$. Supposons que x = z. Alors $x \le y$ et $y \le x$, donc par antisymétrie de \le , x = y, ce qui est faux. Ainsi, $x \ne z$ et $x \le z$, ce qui montre que x < z.
- 2°) \diamond Supposons qu'il existe une chaîne de longueur p joignant x à lui-même, notée $(x_i)_{0 \leq i \leq p}$. Pour tout $i \in \{0, \ldots, p-1\}$, $x_i < x_{i+1}$. Par récurrence sur i, à l'aide de la question 1, on montre que, pour tout $i \in \{0, \ldots, p-1\}$, $x_0 < x_{i+1}$. En particulier, pour i = p-1 (on a bien $p-1 \geq 0$, donc $p-1 \in \{0, \ldots, p-1\}$), on obtient que $x = x_0 < x_p = x$, ce qui est faux. Ainsi, il n'existe aucune chaîne de longueur p joignant x à lui-même, ce qui prouve que $c_p(x,x) = 0$.
- \diamond Posons p=0. Soit $x_0 \in E$. L'ensemble $\{0,\ldots,p-1\}$ est vide, donc (x_0) est une chaîne de longueur 0 joignant x à lui-même si et seulement si $x=x_0$ et $y=x_p=x_0$. Ainsi (x) est l'unique chaîne de longueur 0 joignant x à lui-même et $c_0(x,x)=1$.
- **3**°) \diamond On suppose que $\neg(x < y)$.

La relation binaire < est donc bien transitive.

En adaptant le premier point de la question précédente, on voit que s'il existe une chaîne de longueur p joignant x à y, avec $p \ge 1$, alors x < y, ce qui est faux. Ainsi, lorsque $p \ge 1$, $c_p(x,y) = 0$.

En adaptant le second point de la question précédente, lorsque p = 0, on voit qu'il existe une chaîne de longueur 0 joignant x à y si et seulement si x = y et que dans ce cas elle est unique, donc $c_0(x, x) = 1$ et $c_0(x, y) = 0$ lorsque $x \neq y$.

 \diamond D'après le point précédent, [lorsque $\neg(x < y)$, $c_1(x, y) = 0$].

Supposons maintenant que x < y. Soit $x_0, x_1 \in E$. Alors (x_0, x_1) est une chaîne de longueur 1 joignant x à y si et seulement si $x_0 = x$, $x_1 = y$ et x < y. Ainsi (x, y) est l'unique chaîne joignant x à y; lorsque x < y, $c_1(x, y) = 1$.

 $\mathbf{4}^{\circ}$) \diamond Posons $D = \bigcup_{\substack{z \in E \text{ tel que} \\ x \leq z < y}} C_p(x, z).$

Lorsque $(x_0, \ldots, x_{p+1}) \in C_{p+1}(x, y)$, posons $f(x_0, \ldots, x_{p+1}) = (x_0, \ldots, x_p)$. $x_p < x_{p+1} = y$, donc $f(x_0, \ldots, x_{p+1}) \in C_p(x, x_p) \subset D$. Ainsi, f est une application de $C_{p+1}(x, y)$ dans D. Soit $X \in D$. Il existe $z \in E$ avec $x \leq z < y$ tel que $X \in C_p(x, z)$. Alors X est de la forme (x_0, \ldots, x_p) avec $x = x_0 < x_1 < \cdots < x_p = z$. On pose alors $g(X) = (x_0, \ldots, x_p, y)$. Clairement, $g(X) \in C_{p+1}(x,y)$. Ainsi, g est une application de D dans $C_{p+1}(x,y)$.

Il est clair que pour tout $(x_0, \ldots, x_{p+1}) \in C_{p+1}(x, y)$,

 $(g \circ f)(x_0, \dots, x_{p+1}) = g(x_0, \dots, x_p) = (x_0, \dots, x_{p+1}), \text{ donc } g \circ f = Id_{C_{p+1}(x,y)} \text{ et de}$ même on montre que $f \circ g = Id_D$. Ceci démontre que f et g sont des bijections réciproques l'une de l'autre.

 \diamond Soit $z, z' \in E$ tels que $x \leq z < y$ et $x \leq z' < y$. Soit $(x_0, \dots, x_p) \in C_p(x, z) \cap C_p(x, z')$. Alors $z = x_p = z'$. Ainsi, par contraposition, on a montré que, lorsque $z \neq z'$, alors $C_p(x,z) \cap C_p(x,z') = \emptyset$ donc la famille $(C_p(x,z))_{x < z < y}$ constitue une partition de D (contenant éventuellement des ensembles vides). Or $C_{p+1}(x,y)$ et D sont en bijection, donc ils ont le même cardinal. Ainsi $c_{p+1}(x,y) = |D| = \sum_{x \le z < y} c_p(x,z)$.

 \diamond De même, lorsque $(x_0, \ldots, x_{p+1}) \in C_{p+1}(x, y)$, posons $h(x_0, \ldots, x_{p+1}) = (x_1, \ldots, x_{p+1})$. En adaptant ce qui précède, on montre que h est une bijection de $C_{p+1}(x,y)$ dans $C_p(z,y)$, qui est une réunion disjointe, donc en passant aux cardinaux, on

obtient
$$c_{p+1}(x,y) = \sum_{x < z \le y} c_p(z,y)$$
.

5°) Soit $x, y \in E$. Soit $p \in \mathbb{N}$. Supposons que $C_p(x, y)$ est non vide.

Il existe donc $(x_0, \ldots, x_p) \in E$ tels que $x_0 < \cdots < x_p$.

Soit $i, j \in \{0, \dots, p\}$ tel que $i \neq j$. Sans perte de généralité, on peut supposer que i < j. Alors par transivité de la relation <, on a $x_i < x_j$, donc $x_i \neq x_j$. Ainsi, $\{x_0, \ldots, x_p\}$ est une partie de E de cardinal p+1. Ceci montre que $C_p(x,y) \neq \emptyset \Longrightarrow p+1 \leq N$. Par contraposée, lorsque $p \geq N$, $C_p(x,y) = \emptyset$ et $c_p(x,y) = 0$.

6°) \diamond Soit $x \in E$. On a vu que $c_0(x,x) = 1$ et que, pour tout $p \geq 1$, $c_p(x,x) = 0$, donc $|\mu(x,x)=1|$.

$$\frac{\mu(x,x) = 1}{\Rightarrow \text{ Soit } x, y \in E \text{ avec } x < y.}$$

$$\sum_{x \le z \le y} \mu(x,z) = \sum_{x \le z \le y} \sum_{p=0}^{N-1} (-1)^p c_p(x,z) = \sum_{p=0}^{N-1} (-1)^p \sum_{x \le z \le y} c_p(x,z)$$

$$= \sum_{p=0}^{N-1} (-1)^p \left(c_p(x,y) + \sum_{x \le z < y} c_p(x,z) \right),$$

donc d'après la question 4, $\sum_{x \le z \le y} \mu(x, z) = \sum_{p=0}^{N-1} ((-1)^p c_p(x, y) - (-1)^{p+1} c_{p+1}(x, y)).$

Il s'agit d'une somme télescopique, donc

 $\sum_{x \in S} \mu(x, z) = (-1)^0 c_0(x, y) - (-1)^N c_N(x, y) = 0, \text{ d'après les questions 3 et 5.}$

♦ On effectue un calcul similaire, en utilisant cette fois la relation

$$\sum_{x \le z \le y} c_p(z, y) = c_p(x, y) + \sum_{x < z \le y} c_p(z, y) :$$

$$\sum_{x \le z \le y} \mu(z, y) = \sum_{x \le z \le y} \sum_{p=0}^{N-1} (-1)^p c_p(z, y) = \sum_{p=0}^{N-1} (-1)^p \sum_{x \le z \le y} c_p(z, y)$$

$$= \sum_{p=0}^{N-1} (-1)^p \Big(c_p(x, y) + \sum_{x < z \le y} c_p(z, y) \Big)$$

$$= \sum_{p=0}^{N-1} ((-1)^p c_p(x, y) - (-1)^{p+1} c_{p+1}(x, y)) = 0.$$

7°)
$$\diamond$$
 Soit $x \in E$. $\sum_{y \le x} \mu(y, x) g(y) = \sum_{y \le x} \sum_{z \le y} \mu(y, x) f(z) = \sum_{\substack{(y, z) \in E^2 \text{ tel que} \\ z < y < x}} \mu(y, x) f(z).$

En effet, $\{(y,z)\in E^2\mid z\leq y\leq x\}=\bigsqcup_{\substack{y\in E\text{ tel que}\\y\leq x}}\{y\}\times\{z\in E\mid z\leq y\},$ donc l'égalité

précédente est un cas particulier de sommation par paquets. Mais on a également $\{(y,z)\in E^2\ /\ z\leq y\leq x\}=\bigsqcup_{z\in E\ {\rm tel\ que}}\{y\in E\ /\ z\leq y\leq x\}\times\{z\},$

donc
$$\sum_{y \le x} \mu(y, x) g(y) = \sum_{z \le x} \sum_{z \le y \le x} \mu(y, x) f(z) = \sum_{z \le x} f(z) \sum_{z \le y \le x} \mu(y, x)$$
. Or d'après la

question précédente, pour tout $z \in E$ tel que z < x, $\sum_{z < y < x} \mu(y, x) = 0$ et pour z = x,

$$\sum_{\substack{z \leq y \leq x \\ \text{démontrer}}} \mu(y,x) = \sum_{\substack{x \leq y \leq x \\ \text{demontrer}}} \mu(y,x) = \mu(x,x) = 1, \text{ donc } \sum_{\substack{y \leq x \\ \text{demontrer}}} \mu(y,x)g(y) = f(x), \text{ ce qu'il fallait }$$

 \diamond Pour tout $x, y \in E$, on convient (classiquement) que $x \ge y$ si et seulement si $y \le x$. Alors \ge est également une relation d'ordre.

Pour tout $x, y \in E$ et $p \in E$, il est clair que (x_0, \ldots, x_p) est une chaîne joignant x à y pour \leq si et seulement si (x_p, \ldots, x_0) est une chaîne joignant y à x pour \geq .

Ainsi, en notant $c_p'(y,x)$ le nombre de chaînes de longueur p joignant y à x pour \geq , on a $c_p'(y,x)=c_p(x,y)$.

Notons μ' la fonction de Möbius associée à \geq .

Alors, pour tout
$$x, y \in E$$
, $\mu'(x, y) = \sum_{p \in \mathbb{N}} (-1)^p c_p'(x, y) = \mu(y, x)$.

On applique le point précédent en remplaçant \leq par \geq . Il convient alors de remplacer g par h et μ par μ' , donc $f(x) = \sum_{y \geq x} \mu'(y,x)h(y) = \sum_{y \geq x} \mu(x,y)h(y)$, ce qu'il fallait démontrer.

Partie II: Applications

8°)

8.a: Pour construire une chaîne (x_0,\ldots,x_p) de longueur p joignant i à j, il suffit de choisir x_1,\ldots,x_{p-1} tels que $i< x_1< x_2< \cdots < x_{p-1}< j$, c'est-à-dire qu'il suffit de choisir une partie de p-1 éléments $\{x_1,\ldots,x_{p-1}\}$ parmi $\{i+1,i+2,\ldots,j-1\}$ (qui est de cardinal (j-1)-(i+1)+1=j-i-1) que l'on ordonne pour construire la chaîne (x_1,\ldots,x_{p-1}) . Ainsi, $c_p(i,j)=\binom{j-i-1}{p-1}$.

Remarquons que le raisonnement reste valable lorsque p > j - i, mais dans ce cas il n'existe aucune partie de p - 1 éléments parmi $\{i + 1, i + 2, \dots, j - 1\}$, donc on obtient alors que $c_p(i,j) = 0$.

8.b:
$$\diamond$$
 Soit $i, j \in \mathbb{N}_n$. Alors $\mu(i, j) = \sum_{p=0}^{n-1} (-1)^p c_p(i, j)$.

Supposons d'abord que i > j. Alors pour tout $p \in \mathbb{N}$, $c_p(i,j) = 0$, donc $\mu(i,j) = 0$. Supposons ensuite que i = j. Alors d'après la question 6, $\mu(i,j) = 1$.

Supposons que j = i + 1. Alors $c_0(i, i + 1) = 0$, $c_1(i, i + 1) = 1$ et pour tout $p \ge 2$, $c_p(i, i + 1) = 0$, donc $\mu(i, i + 1) = -1$.

Enfin, supposons que j > i+1. Soit $p \in \mathbb{N}^*$. On sait que $c_0(i,j) = 0$, donc d'après 8.a,

$$\mu(i,j) = \sum_{p=1}^{j-i} (-1)^p \binom{j-i-1}{p-1} = -\sum_{h=0}^{j-i-1} \binom{j-i-1}{h} (-1)^h. \text{ Ainsi, d'après la formule}$$

du binôme de Newton, $\mu(i,j) = -(1-1)^{j-i-1} = 0$, car j-i-1 > 0. \diamond Soit f une application de \mathbb{N}_n dans \mathbb{C} .

Pour tout
$$i \in \mathbb{N}_n$$
, on pose $g(i) = \sum_{i=1}^i f(j)$ et $h(i) = \sum_{j=i}^n f(j)$.

Soit $i \in \mathbb{N}_n$. Alors la formule de Rota affirme que, $f(i) = \sum_{j=1}^i \mu(j,i)g(j) = \sum_{j=i}^n \mu(i,j)h(j)$,

c'est-à-dire que f(i) = g(i) - g(i-1) = h(i) - h(i+1), en convenant que g(0) = 0 = h(n+1). Ces relations sont évidentes . . .

9°) 9.a : \diamond Soit $k \in \mathbb{N}$. Notons R(k) l'assertion suivante :

Pour tout $A, B \in E$ telles que $A \subset B$ et |B| - |A| = k, $\mu(A, B) = (-1)^k$.

Supposons que k=0. Soit $A, B \in E$ telles que $A \subset B$ et |B|-|A|=0. Alors d'après le cours, A=B, donc d'après la question B, $\mu(A,B)=\mu(A,A)=1=(-1)^0$, ce qui prouve B(0).

Pour $k \in \mathbb{N}$, on suppose que R(h) est vraie pour tout $h \in \{0, \dots, k\}$.

Soit $A, B \in E$ telles que $A \subset B$ et |B| - |A| = k + 1. D'après la question 6, $\sum_{D \in E \text{ tel que} \atop A \subset D \subset B} \mu(A, D) = 0, \text{ donc } \mu(A, B) = -\sum_{D \in E \text{ tel que} \atop A \subset D \subset B \text{ et } D \neq B} \mu(A, D).$

Soit $D \in E$ tel que $A \subset D \subset B$ avec $D \neq B$. Alors |D| - |A| < |B| - |A| = k + 1, donc $|D| - |A| \le k$. Alors, d'après l'hypothèse de récurrence forte, $\mu(A, D) = (-1)^{|D| - |A|}$.

On en déduit que
$$\mu(A, B) = -\sum_{k=|A|} \sum_{\substack{D \in E \text{ tel que} \\ A \subset D \subset B \text{ et } |D|=k}} (-1)^{k-|A|} = (-1)^{|B|-|A|} - (-1)^{|A|}M,$$

où
$$M = \sum_{k=|A|}^{|B|} \sum_{\substack{D \in E \text{ tel que} \\ A \subset D \subset B \text{ et } |D|=k}} (-1)^k = \sum_{k=|A|}^{|B|} (-1)^k \Big| \{D \in E \ / \ A \subset D \subset B \text{ et } |D|=k\} \Big|. \text{ Or,}$$

si k est un entier compris entre |A| et |B|, pour choisir une partie D de cardinal k telle que $A \subset D \subset B$, il suffit de choisir les k - |A| éléments de $D \setminus A$ parmi $B \setminus A$, donc

$$\left| \{ D \in E \mid A \subset D \subset B \text{ et } |D| = k \} \right| = {|B| - |A| \choose k - |A|}.$$

Ainsi,
$$M = \sum_{k=|A|}^{|B|} (-1)^k \binom{|B|-|A|}{k-|A|} = (-1)^{|A|} \sum_{h=0}^{|B|-|A|} \binom{|B|-|A|}{h} (-1)^h$$
, donc d'après

la formule du binôme de Newton, $M=(-1)^{|A|}(1-1)^{|B|-|A|}=0$ car $|B|-|A|=k+1\neq 0$. Finalement, on a montré que $\mu(A,B)=(-1)^{k+1}$, ce qui prouve R(k+1).

Ceci démontre la propriété de l'énoncé par récurrence forte.

 \diamond Soit f une application de $E = \mathcal{P}(S)$ dans \mathbb{C} .

Pour tout
$$A \in E$$
, on pose $g(A) = \sum_{B \in \mathcal{P}(A)} f(B)$ et $h(A) = \sum_{A \subset B} f(B)$.

Alors la formule de Rota affirme que,

pour tout
$$A \in E$$
, $f(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} g(B) = \sum_{A \subset B} (-1)^{|B| - |A|} h(B)$.

9.b Soit $n \in \mathbb{N}$. On pose $S = \mathbb{N}_n$ et $E = \mathcal{P}(S)$.

Pour tout $A \in E$, posons $f(A) = x_{|A|}$ et $g(A) = y_{|A|}$.

Soit
$$A \in E$$
. $g(A) = y_{|A|} = \sum_{k=0}^{|A|} {|A| \choose k} x_k = \sum_{k=0}^{|A|} \sum_{\substack{B \in \mathcal{P}(A) \text{ tel que} \\ |B|=k}} x_{|B|}$, donc par sommation

par paquets, $g(A) = \sum_{B \in \mathcal{P}(A)} f(B)$. On peut donc appliquer la formule de Rota de la

question précédente : Pour tout $A \in E$, $f(A) = \sum_{B \in \mathcal{P}(A)} (-1)^{|A| - |B|} g(B)$,

donc
$$x_{|A|} = \sum_{k=0}^{|A|} \sum_{\substack{B \in \mathcal{P}(A) \text{ tel que} \\ |B|=k}} (-1)^{|A|-k} y_k = \sum_{k=0}^{|A|} {|A| \choose k} (-1)^{|A|-k} y_k.$$

En particulier, avec $A = \mathbb{N}_n$, on obtient $x_n = (-1)^n \sum_{k=0}^n \binom{n}{k} (-1)^k y_k$.

10°) \diamond Soit $u = (u_1, \dots, u_m) \in E, v = (v_1, \dots, v_m) \in E \text{ et } w = (w_1, \dots, w_m) \in E.$ $supp(u) \subset supp(u)$, donc $u \leq u$: la relation \leq est réflexive.

Supposons que $u \leq v$ et $v \leq u$. Alors supp(u) = supp(v), donc pour tout $i \in \mathbb{N}_m$, $u_i = 1 \iff v_i = 1$ et par contraposition, $u_i = 0 \iff v_i = 0$. Ainsi, pour tout $i \in \mathbb{N}_m$ $u_i = v_i$, donc u = v. Ainsi la relation \leq est antisymétrique.

Supposons que $u \leq v$ et $v \leq w$. Alors par transitivité de la relation d'inclusion, $supp(u) \subset supp(w)$, donc $u \leq w$. Ainsi, \leq est également transitive. C'est bien une relation d'ordre.

 \diamond Soit $p \in \mathbb{N}$ et $u, v \in E$. Alors (w_0, \dots, w_p) est un chemin de longueur p joignant $u \ge v$ si et seulement si dans $\mathcal{P}(\mathbb{N}_m)$ muni de la relation d'inclusion, $(supp(w_0), \ldots, supp(w_p))$ est un chemin de longueur p joignant supp(u) à supp(v): en particulier le sens réciproque est vrai car on a vu lors de l'antisymétrie que si $supp(w_0) = supp(u)$, alors $w_0 = u$ et, de même, si $supp(w_p) = supp(v)$, alors $w_p = v$.

De plus, pour tout $U \subset \mathbb{N}_m$, il existe un unique $u \in E$ tel que U = supp(u), donc l'application qui à (w_0, \ldots, w_p) associe $(supp(w_0), \ldots, supp(w_p))$ est une bijection de $C_p(u, v)$ dans $C_p(supp(u), supp(v))$ en utilisant la même notation C_p pour les deux relations d'ordre sur E et sur $\mathcal{P}(\mathbb{N}_m)$. On en déduit que $c_p(u,v)=c_p(supp(u),supp(v))$, puis d'après la définition de la fonction de Möbius que $\mu(u,v) = \mu(supp(u),supp(v))$. Alors, d'après la question précédente appliquée avec $S = \mathbb{N}_m$, $\mu(u, v) = (-1)^{|supp(v)| - |supp(u)|}$.

Soit f une application de E dans \mathbb{C} . Pour tout $u \in E$, on pose $g(u) = \sum_{v \le u} f(v)$ et $h(u) = \sum_{v \ge u} f(v)$.

Soit
$$u \in E$$
. Alors la formule de Rota affirme que
$$f(u) = \sum_{v \le u} (-1)^{|supp(u)| - |supp(v)|} g(v) = \sum_{v \ge u} (-1)^{|supp(u)| - |supp(v)|} h(v).$$

11°) \diamond Soit $x, y \in \{0, 1\} : x \oplus y$ est vraie si et seulement si (x est vraie et y fausse) ou $(x \text{ est fausse et } y \text{ est vraie}), \text{ donc } x \oplus y \text{ correspond au "ou exclusif" appliqué à } x \text{ et } y.$ \diamond Pour tout $x, y \in \{0, 1\}, x \oplus y \equiv x + y$ [2], donc pour tout $x, y, z \in \{0, 1\},$ $(x \oplus y) \oplus z \equiv x + y + z \equiv x \oplus (y \oplus z)$ [2], or $(x \oplus y) \oplus z$ et $x \oplus (y \oplus z)$ sont dans $\{0,1\}$, donc ils sont égaux. Ceci prouve que la loi interne \oplus est associative. Elle admet

0 comme élément neutre, donc la notation $\bigoplus f(v)$ est correctement définie.

Modulo 2, pour tout $u \in \{0,1\}^m = E$, $g(u) \equiv \sum_{v \leq u} f(v)$, donc d'après la question

précédente, $f(u) \equiv \sum_{v \leq u} (-1)^{|supp(u)| - |supp(v)|} g(v)$, or $-1 \equiv 1[2]$, donc modulo 2, on peut

écrire $f(u) \equiv \sum_{v \leq u} g(v) \equiv \bigoplus_{v \leq u} g(v)$, or à nouveau f(u) et $\bigoplus_{v \leq u} g(v)$ sont dans $\{0,1\}$, donc ils sont égaux.

12°)
$$\diamond$$
 Soit $I \in E$. Il suffit de montrer que $\bigcap_{i \in I} P_i = \bigsqcup_{I \subset J} \left(\left(\bigcap_{i \in J} P_i \right) \bigcap \left(\bigcap_{i \in \mathbb{N}_n \setminus J} (F \setminus P_i) \right) \right)$,

la formule de l'énoncé s'en déduit alors immédiatement en passant au cardinal. Dans ce but, posons pour tout
$$J \in E$$
, $Q_J = \left(\bigcap_{i \in J} P_i\right) \bigcap \left(\bigcap_{i \in \mathbb{N}_n \setminus J} (F \setminus P_i)\right)$.

Il est clair que, pour tout
$$J \in E$$
 tel que $I \subset J$, $Q_J \subset \bigcap_{i \in I} P_i$, donc $\bigcup_{I \subset I} Q_J \subset \bigcap_{i \in I} P_i$.

Il est clair que, pour tout $J \in E$ tel que $I \subset J$, $Q_J \subset \bigcap_{i \in I} P_i$, donc $\bigcup_{I \subset J} Q_J \subset \bigcap_{i \in I} P_i$. Réciproquement, soit $x \in \bigcap_{i \in I} P_i$. Ainsi, pour tout $i \in I$, $x \in P_i$ (c'est également vrai

lorsque
$$I = \emptyset$$
). Notons $J = \{i \in \mathbb{N}_n / x \in P_i\}$. Alors $I \subset J$ et $x \in Q_J = \left(\bigcap_{i \in J} P_i\right) \cap \left(\bigcap_{i \in \mathbb{N}_n \setminus J} (F \setminus P_i)\right)$. Ainsi, $\bigcup_{I \subset J} Q_J \supset \bigcap_{i \in I} P_i$. Soit maintenant $J, K \in E$. Supposons que $Q_J \cap Q_K \neq \emptyset$. Il existe $x \in Q_J \cap Q_K$. Alors

 $J = \{ i \in \mathbb{N}_n / x \in P_i \} = K.$

Par contraposition, on a montré que $J \neq K \Longrightarrow Q_J \cap Q_K = \emptyset$. Finalement on a bien montré que $\bigcap_{i \in I} P_i = \bigsqcup_{I \subset J} Q_J$, ce qui conclut. \diamond D'après la seconde formule de Rota de la question 9.b,

 $\text{pour tout } I \in E, \, f(I) = \sum_{I \subset J} (-1)^{|J|-|I|} g(J).$

En particulier avec
$$I = \emptyset$$
, on obtient que $\Big| \bigcap_{1 \le i \le n} (F \setminus P_i) \Big| = \sum_{J \subset \mathbb{N}_n} (-1)^{|J|} \Big| \bigcap_{i \in J} P_i \Big|$,

or d'après les formules de Morgan,
$$\bigcap_{1 \leq i \leq n} (F \setminus P_i) = F \setminus \bigcup_{1 \leq i \leq n} P_i,$$

$$\operatorname{donc} \left| \bigcup_{1 \leq i \leq n} P_i \right| = |F| - \sum_{J \subset \mathbb{N}_n} (-1)^{|J|} \left| \bigcap_{i \in J} P_i \right| = \sum_{k=1}^n (-1)^{k+1} \sum_{\substack{J \subset \mathbb{N}_n \\ \text{tel que } |J| = k}} g(J) : \text{ en effet,}$$

lorsque
$$|J| = 0$$
, $J = \emptyset$ et $\left| \bigcap_{i \in \emptyset} P_i \right| = |F|$.

Partie III: La fonction de Möbius arithmétique

13°) \diamond Soit $p \in \mathbb{N}$. Si (d_0, \ldots, d_p) est une chaîne de longueur p joignant r à s, alors $r=d_0$ divise strictement d_1 qui divise strictement d_2,\ldots , qui divise strictement $d_p=s$.

Par transitivité, cf question 1, $d_0 = r$ divise $d_1, d_2, \ldots, d_p = s$, donc pour tout $i \in \mathbb{N}_p$, $\frac{d_i}{r} \in \mathbb{N}_n$ et $1 = \frac{d_0}{d_0}$ divise strictement $\frac{d_1}{d_0}$ qui divise strictement $\frac{d_2}{d_0}, \ldots$, qui divise strictement $\frac{d_p}{d_0} = \frac{s}{r}$. Ainsi, $(1, \frac{d_1}{d_0}, \dots, \frac{s}{r})$ est une chaîne de longueur p joignant 1 à $\frac{s}{r}$. On a donc construit une application de $C_p(r,s)$ dans $C_p(1,\frac{s}{r})$. C'est une bijection dont la bijection réciproque est l'application qui à une chaîne $(1, k_1, \dots, \frac{s}{r})$ de $C_p(1, \frac{s}{r})$ associe la chaîne (r, k_1r, \ldots, s) .

 \diamond On en déduit en passant aux cardinaux que, pour tout $p \in \mathbb{N}$, $c_p(r,s) = c_p(1,\frac{s}{r})$, donc en utilisant la définition de l'application μ , on obtient que $\mu(r,s) = \mu(1,\frac{s}{r})$.

14°) \diamond Lorsque s = 1, on a $\mu(1) = 1 = m(1)$, d'où R(1). Soit $s \in \mathbb{N}_n$ avec $s \geq 2$. Supposons que pour tout $r \in \{1, \ldots, s-1\}, \ \mu(r) = m(r)$. D'après la question 6, $\mu(s) = -\sum_{r \in \mathbb{N}_n \text{ tel que}} \mu(r)$.

Si $r \in \mathbb{N}_n$ vérifie r|s avec $r \neq s$, alors r < s, donc d'après l'hypothèse de récurrence, $\mu(r) = m(r)$. Ainsi, $\mu(s) = -\sum_{\substack{r \in \mathbb{N}_n \text{ tel que} \\ r|s \text{ et } r \neq s}} m(r)$.

Ecrivons la décomposition de s en produit de nombre premiers sous la forme $s = \prod p_i^{v_i}$,

où les p_1, \ldots, p_k sont k nombres premiers deux à deux distincts et où pour tout $i \in \mathbb{N}_k$, $v_i \in \mathbb{N}^*$. Les diviseurs r de s pour lesquels $m(r) \neq 0$ sont exactement les nombres de la forme $r = \prod_{i \in \mathbb{N}} p_i$ où $I \subset \mathbb{N}_k$.

Premier cas: on suppose qu'il existe $i \in \mathbb{N}_k$ tel que $v_i \geq 2$. Alors tous les diviseurs de la forme précédente sont des diviseurs de s différents de s,

donc
$$\mu(s) = -\sum_{I \subset \mathbb{N}_k} m\left(\prod_{i \in I} p_i\right) = -\sum_{h=0}^k \sum_{\substack{I \subset \mathbb{N}_k \\ \text{tel que } |I| = h}} (-1)^h,$$

puis
$$\mu(s) = -\sum_{h=0}^{k} {k \choose h} (-1)^h = -(1-1)^k = 0$$
, car $k \ge 1$ (car $s \ge 2$).

Second cas: on suppose que, pour tout $i \in \mathbb{N}_n$, $v_i = 1$. Alors, lorsque $I = \mathbb{N}_k$, $\prod_{i=1}^n p_i = s$,

donc ce n'est pas un diviseur strict de
$$s$$
.
Ainsi, $\mu(s) = -\sum_{I \subset \mathbb{N}_k \text{ avec } I \neq \mathbb{N}_k} m \Big(\prod_{i \in I} p_i\Big) = -\sum_{I \subset \mathbb{N}_k} m \Big(\prod_{i \in I} p_i\Big) + (-1)^k = (-1)^k$, d'après

le calcul du premier cas. Ceci démontre que $\mu(s)=m(s)$ dans tous les cas.

 \diamond Soit f une application de \mathbb{N}_n dans \mathbb{C} . On pose, pour tout $s \in \mathbb{N}_n$, $g(s) = \sum_{n \in \mathbb{N}_n} f(d)$

et $h(s) = \sum_{a|d} f(d)$. Alors la formule d'inversion de Rota devient :

pour tout
$$s \in \mathbb{N}_n$$
, $f(s) = \sum_{d \mid s} \mu\left(\frac{s}{d}\right) g(d) = \sum_{s \mid d} \mu\left(\frac{d}{s}\right) g(d)$.

15°) \diamond Lemme: Pour tout $s \in \mathbb{N}_n$, notons $A_s = \{\frac{k}{s} / k \in \{1, \dots, s\}\}$.

Alors
$$A_s = \bigsqcup_{r|s} \left\{ \frac{d}{r} / d \in \{1, \dots, r\} \text{ et } d \wedge r = 1 \right\}.$$

Démonstration : Soit $\alpha = \frac{k}{s} \in A_s$, où $k \in \mathbb{N}_s$. L'écriture irréductible de α est de la forme $\frac{d}{r}$, où r|s avec $d \wedge r = 1$. De plus $\alpha \in]0,1]$, donc $d \in \{1,\ldots,r\}$. Ainsi,

sous forme irréductible de α étant unique, cette réunion est bien disjointe.

$$\diamond$$
 Pour tout $r \in \mathbb{N}_n$, posons $f(r) = \sum_{\substack{d \in \{1, \dots, r\} \text{tel que } d \land r = 1}}^{} e^{2i\pi \frac{d}{r}}$.

Pour tout $s \in \mathbb{N}_n$, posons $g(s) = \sum_{d|s} f(s)$.

Alors d'après la question précédente, pour tout $r \in \mathbb{N}_n$, $f(r) = \sum_{d|r} \mu\left(\frac{r}{d}\right)g(d)$.

Soit $s \in \mathbb{N}_n$. $g(s) = \sum_{\substack{r \mid s \\ \text{tolerwise}}} \sum_{\substack{d \in \{1, \dots, r\} \\ \text{tolerwise}}} e^{2i\pi \frac{d}{r}}$. Alors d'après le lemme, par sommation par

paquets, $g(s) = \sum_{k=1}^{s} e^{2i\pi \frac{k}{s}}$, puis $g(s) = \sum_{k=0}^{s-1} \left(e^{\frac{2i\pi}{s}}\right)^k$. Lorsque $s \neq 1$, $e^{\frac{2i\pi}{s}} \neq 1$, donc en

tant que somme d'une suite géométrique, $g(s) = \frac{1 - (e^{\frac{2i\pi}{s}})^s}{1 - e^{\frac{2i\pi}{s}}} = 0$ et g(1) = 1. Alors pour tout $r \in \mathbb{N}_n$, $\sum_{\substack{d \in \{1, \dots, r\} \\ \text{tel que } d \wedge r = 1}} e^{2i\pi \frac{d}{r}} = f(r) = \sum_{d \mid r} \mu\left(\frac{r}{d}\right)g(d) = \mu(r)g(1) = \mu(r)$, ce qu'il fallait démentant

qu'il fallait démontrer.

16°) Pour tout $r \in \mathbb{N}_n$, notons $\varphi(r)$ le nombre d'entiers k de $\{1,\ldots,r\}$ tels que $k \wedge r = 1$ (φ est l'indicatrice d'Euler). D'après le lemme, pour tout $s \in \mathbb{N}_n$, $s = |A_s| = \sum_{r \mid s} \varphi(r)$, donc d'après la formule d'inversion, cf question 14, pour tout

$$r \in \mathbb{N}_n, \ \varphi(r) = \sum_{d|r} \mu\left(\frac{r}{d}\right)d.$$

Notons D(r) l'ensemble des diviseurs de r et notons h l'application $D(r) \longrightarrow D(r)$. h est une involution sur D(r), donc en remplaçant d par h(d) dans la somme précédente, d'après la formule de changement de variable, on obtient $\varphi(r) =$