DM 20

Il s'agit d'un sujet supplémentaire pour votre travail personnel.

Il n'est pas à rendre.

Un corrigé sera fourni le jeudi 4 décembre.

Exercice 1 : Une somme trigonométrique.

- 1°) Soient $n \in \mathbb{N}$ et $x \in \mathbb{R} \setminus \pi \mathbb{Z}$. Sans utiliser de démonstration par récurrence, établir que $\sum_{k=0}^{n} \cos^{2}(kx) = \frac{2n+3}{4} + \frac{\sin((2n+1)x)}{4\sin(x)}.$
- **2**°) Soit $n \in \mathbb{N}^*$. Calculer $C_n = \sum_{k=0}^n \cos^2\left(\frac{k\pi}{2n+1}\right)$.

Exercice 2: Une somme de produits.

1°) Soit $(a_j)_{j\geq 1}$ une suite de nombres réels.

Pour tout
$$k \in \mathbb{N}$$
, on pose $P_k = \prod_{j=1}^k (1 - a_j)$.

Démontrer que, pour tout $n \in \mathbb{N}$, $P_n + \sum_{k=1}^n a_k P_{k-1} = 1$.

- 2°) Déduire de la question précédente que, pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n \binom{n-1}{k-1} \frac{k!}{n^k} = 1$.
- 3°) Donner une seconde démonstration de cette dernière égalité en faisant intervenir une somme télescopique.

1

Exercice 3: Proximal d'une famille de points du plan.

- 1°) Soient n un entier naturel non nul et z_1, \ldots, z_n des nombres complexes non nuls. Démontrer que $|z_1 + \cdots + z_n| = |z_1| + \cdots + |z_n|$ si et seulement si les z_i ont tous le même argument.
- **2°)** Soit n un entier naturel supérieur ou égal à 3. Soient a_1, \ldots, a_n des nombres complexes non nuls dont les images dans le plan complexe sont notées A_1, \ldots, A_n . On suppose que A_1, \ldots, A_n ne sont pas alignés. On suppose de plus que $\frac{a_1}{|a_1|} + \frac{a_2}{|a_2|} + \cdots + \frac{a_n}{|a_n|} = 0$.

Pour tout nombre complexe z, on pose $S = \frac{\overline{a_1}}{|a_1|}(a_1-z) + \frac{\overline{a_2}}{|a_2|}(a_2-z) + \cdots + \frac{\overline{a_n}}{|a_n|}(a_n-z).$

- a) Vérifier que $S = |a_1| + |a_2| + \cdots + |a_n|$.
- b) En déduire que, pour tout nombre complexe z:

$$(*): |a_1| + |a_2| + \dots + |a_n| \le |a_1 - z| + |a_2 - z| + \dots + |a_n - z|.$$

Traduire géométriquement cette inégalité (c'est-à-dire à l'aide des points O, A_1, \ldots, A_n et du point M d'affixe z) et interpréter.

c) Démontrer qu'il y a égalité dans l'inégalité (*) si et seulement si z est nul.

Exercice 4.

Soient $n, p \in \mathbb{N}^*$. Quel est le nombre de suites strictement monotones constituées de p nombres de l'ensemble d'entiers $\{1, \ldots, n\}$?

Problème: Dénombrement par involution.

Principe d'involution.

1°) Soit E un ensemble fini. On suppose que E_+ et E_- sont deux parties disjointes de E dont la réunion est égale à E. Ainsi, $E_+ \cap E_- = \emptyset$ et $E = E_+ \sqcup E_-$.

Considérons $f: E \longrightarrow E$ une involution, c'est-à-dire une application telle que $f \circ f = \mathrm{Id}_E$.

On note $F_f = \{x \in E \mid f(x) = x\}$ l'ensemble des points fixes de f. On suppose que tous les points fixes de f appartiennent à E_+ , c'est-à-dire $F_f \subset E_+$.

On suppose également que l'involution f est alternante, c'est-à-dire que :

 $\forall x \in E_+ \setminus F_f, f(x) \in E_- \text{ et } \forall x \in E_-, f(x) \in E_+.$

Démontrer que $\operatorname{card} F_f = \operatorname{card} E_+ - \operatorname{card} E_-$.

Chemins de Dyck.

On munit le plan d'un repère orthonormal $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$. On rappelle que la notation M(a,b) signifie que le point M est de coordonnées (a,b) dans le repère $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$. Pour tout entier naturel s, on appelle chemin de longueur s la donnée d'une liste (M_0,\ldots,M_s) de s+1 points à coordonnées entières tels que $\overline{M_{k-1}M_k} \in \{\overrightarrow{\imath},\overrightarrow{\jmath}\}$ pour tout $k \in \{1,\ldots,s\}$. On dit alors que les M_k sont les sommets du chemin joignant le point de départ M_0 au point d'arrivée M_s .

2°) Soient a, b, c, d quatre entiers relatifs tels que $a \le c$ et $b \le d$. Dénombrer les chemins joignant les points de coordonnées (a, b) et (c, d).

Pour tout entier naturel n, on appelle chemin de Dyck d'ordre n un chemin (M_0, \ldots, M_{2n}) de longueur 2n joignant les points $M_0(0,0)$ et $M_{2n}(n,n)$ tel que tous les sommets ont une abscisse supérieure ou égale à l'ordonnée. Cela revient à dire que le chemin reste en dessous de la première diagonale du plan.

On veut déterminer, pour tout $n \in \mathbb{N}$, le nombre C_n de chemins de Dyck d'ordre n.

 3°) Déterminer C_0 , C_1 , C_2 et C_3 . On fera des dessins.

On fixe $n \in \mathbb{N}$.

On note E_+ l'ensemble des chemins joignant les points de coordonnées (1,0) et (n+1,n). On note E_- l'ensemble des chemins joignant les points de coordonnées (0,1) et (n+1,n). On pose $E=E_+\sqcup E_-$.

Pour tout point M de coordonnées (x, y), on note \widetilde{M} le point de coordonnées (y, x). On définit l'application $f: E \longrightarrow E$ qui, à un chemin (M_0, \ldots, M_{2n}) , associe

- le chemin (M_0, \ldots, M_{2n}) lorsque tous les sommets ont une abscisse strictement supérieure à l'ordonnée ;
- le chemin de sommets $(\widetilde{M}_0, \ldots, \widetilde{M}_k, M_{k+1}, \ldots, M_{2n})$ avec k le premier indice d'un sommet où l'abscisse est égale à l'ordonnée, sinon.

- 4°) Vérifier que f est une involution alternante et préciser F_f .
- En déduire que $C_n = \frac{1}{n+1} \binom{2n}{n}$. $5^{\circ})$

3 : Formule du crible.

Soient A_1, \ldots, A_n des ensembles finis. On pose $U = A_1 \cup \cdots \cup A_n$.

On définit les ensembles suivants :

definit les ensembles survants :
$$-E = \left\{ (x, I) \in U \times \mathcal{P}(\{1, \dots, n\}) \mid x \in \bigcap_{k \in I} A_k \right\};$$

$$- E_{+} = \{(x, I) \in E / \operatorname{card}(I) \operatorname{pair} \};$$

$$\begin{array}{ll} -- & E_+ = \{(x,I) \in E \ / \ \mathrm{card}(I) \ \mathrm{pair} \} \, ; \\ -- & E_- = \{(x,I) \in E \ / \ \mathrm{card}(I) \ \mathrm{impair} \}. \end{array}$$

On convient que, lorsque $I = \emptyset$, $\bigcap A_k = U$.

Pour tout élément x de U, on pose $m(x) = \max\{k \in \{1, ..., n\} \mid x \in A_k\}$.

On considère l'application $f: E \longrightarrow E$ qui, à tout élément (x, I) de E, lui associe

$$f((x,I)) = \begin{cases} (x,I \cup \{m(x)\}) & \text{si } m(x) \notin I \\ (x,I \setminus \{m(x)\}) & \text{si } m(x) \in I \end{cases}$$

- $6^{\circ})$ Vérifier que f est une involution alternante et préciser F_f .
- **7**°) En déduire la formule du crible.

4 : Bijection de Garcia-Milne.

Soient A et B deux ensembles finis.

On suppose que A_+ et A_- sont deux parties disjointes de A dont la réunion est égale à A et que B_+ et B_- sont deux parties disjointes de B dont la réunion est égale à B. On considère $f:A\longrightarrow A$ et $g:B\longrightarrow B$ deux involutions alternantes telles que $F_f \subset A_+ \text{ et } F_q \subset B_+.$

On suppose également l'existence d'une bijection $\varphi: A \longrightarrow B$ qui conserve les signes, c'est-à-dire $\forall x \in A_+, \varphi(x) \in B_+$ et $\forall x \in A_-, \varphi(x) \in B_-$.

- 8°) Démontrer que $\operatorname{card} F_f = \operatorname{card} F_q$.
- 9°) Démontrer que, pour tout élément x de F_f , il existe un entier naturel $\alpha(x)$ tel que $\varphi \circ (f \circ \varphi^{-1} \circ g \circ \varphi)^{\alpha(x)}(x) \in F_q$. La puissance désigne une itération pour la loi \circ .
- 10°) Exhiber une bijection entre F_f et F_g .