DM 23 : Un corrigé

Partie I : Groupes quotients

1°)

— Soit a € G. a —a =0 € H car H est un sous-groupe, donc a Ry a. Ainsi, Ry
est réflexive.

— Soit x,y € G tels que ¢ Ry y. Ainsi y — x € H, mais H étant un sous-groupe
il est stable par passage a 'opposé, donc x —y € H et y Ry x. Ainsi Ry est
symétrique.

— Soit z,y,2 € G telsque x Ry yet y Ry z. Ainsi, y—x € Het z—y € H, or
H est stable pour I'addition, donc z — 2 = (y —x) + (¢ —y) € H puis x Ry z.
Ainsi Ry est transitive.

En conclusion, Ry est bien une relation d’équivalence.

Soit @ € G. Pour tout + € G, v € @ <= a Ry v <= dh € H, x —a = h, donc
rea<=3dheH, x=a+h Ansiia={a+h/heH}=a+H.

2°)

— Commencons par montrer que la relation @ + b = a + b définit convenablement
une addition sur G/H, c’est-a-dire que a + b ne dépend que de @ et b et non de
(a,b).

En effet, si a,b,a’,V € G vérifient @ = o’ et b =10/, alors ¢’ —a,b' —b € H donc
(a+b)—(d+V)=(a—d)+(b—-V)e Hpuisa+b=a' +V.
— Montrons ensuite que cette addition confere a G/H une structure de groupe.

Pour tout @,b € G/H, a+b € G/H, donc il s’agit bien d'une loi interne.
Pour tout @,b,¢ € G/H, (@+0b) +¢=a+b+¢ = (a+b)+c, or 'addition
dans G est associative, donc (@ +b) +¢ = a+ (b+c) = @+ (b +¢). Ceci
prouve l’associativiteé.

Pour tout @,b € G/H,a+b=a+b =
commutativité.

Pour tout a € G, @+ 0 = a + 0 = @, donc 0 est I’édlément neutre.

Pour tout a € G, @+ —a = a + (—a) = 0, donc @ possede un symétrique, et
—a = —a.

(=)

+a = b+ a, ce qui prouve la

En conclusion, G/H est bien un groupe abélien.
— Notons ¢ Iapplication de G dans G/H définie par : pour tout a € G, ¢(a) = a.
La définition de l'addition sur G/H dit que ¢ est un morphisme de groupes,



donc d’apres le cours, pour tout n € Z et a € G, p(na) = ny(a), c’est-a-dire
que na = na.

— D’apres le cours, les sous-groupes de Z sont exactement les nZ, ou n € N, donc
les groupes de la forme Z/H sont les groupes (connus) Z/nZ, avec n € N.

3°) D’apres le cours, les classes d’équivalence de Ry constituent une partition de
G, donc G = |_| x puis en passant au cardinal, |G| = Z |z].
zeG/H z€G/H

Soit x € G/H :il existe a € G tel que x = @ = a+H, or application f : x — a+x est
une bijection sur G (de bijection réciproque x — x—a), donc |H| = |f(H)| = |a| = |z|.
On en déduit que |G| = Y |H| = |H| x |G/H|.

z€G/H

Partie II : Quelques définitions

4°)

— Par hypothese, il existe A C G et B C H tels que A et B sont finis, G = Gr(A)

et H = Gr(B). Alors d’apres le cours, G = Gr(A) = {Znaa / (Na)aca € ZA}
acA
et H = Gr(B) = {anb / (n)oer € ZB}.
beB
Soit (g,h) € G x H.
Il existe (1q)eca € Z* et (ny)oen € ZP telles que g = Znaa et h = anb.
acA beB
Alors (g,h) = (,0) + (0,h) = > n4(a,0) + > my(0,b),
acA beB

donc (g, h) € Gr[(A x {0}) U ({0} x B)].
Ainsi, G x H C Gr[(A x {0}) U ({0} x B)] et I'inclusion réciproque est évidente
car [(Ax {0} U ({0} x B)] C G x H.
Ceci prouve que G x H est engendré par (A x {0}) U ({0} x B). C’est une partie
finie, donc G x H est bien de type fini.

— Par récurrence, on en déduit que si Gy, ..., G, sont p groupes abéliens de types
finis, alors Gy X --- x G, est encore de type fini. Or Z = Gr({1}) et
Z/nZ = Gr({1}) sont monogenes donc de types finis, donc pour tout k, ¢ € N*,
pour tout (d;)i1<i<y € N*, ZF x (Z)d\Z) x - - x (Z/d,7Z) est un groupe abélien
de type fini.

5°)

— Z/nZ est fini, donc pour tout x € Z/nZ, Gr(x) est fini : Z/nZ est de torsion.
Il n’est pas sans torsion, sauf lorsque n = 1, auquel cas Z/1Z = {0}.

— Pour tout n € Z*, pour tout m € N*, nm # 0, donc n est d’ordre infini : Z est
sans torsion.

— n(0,1) = (0,7) = 0, donc Z x (Z/nZ) n’est pas sans torsion, sauf lorsque n = 1.
Pour tout p € N*, p(1,0) = (p,0) # 0, donc Z x (Z/nZ) n’est pas de torsion.



— Dans le groupe (C*, x), i? = 1, donc ce groupe n’est pas sans torsion. Cependant,
pour tout p € N*, 2P £ 1, donc il n’est pas de torsion.

— Soit x € Q/Z. 1l existe p € Z et ¢ € N* tels que z = @. Alors gr =p =0 car
p € Z, donc Q/Z est de torsion.

6°) Si G est de cardinal fini, alors G = Gr(G), donc G est de type fini. De plus
pour tout z € G, Gr(x) est fini, donc G est de torsion.

Réciproquement, supposons que G est de type fini et de torsion.

Il existe donc une partie finie A de G telle que G = Gr(A). Alors, pour tout g € G,
il existe (n4)aca € Z4 telle que g = Znaa, mais pour tout a € A, a est d’ordre fini,

acA
donc en notant o(a) son ordre, pour tout n € Z, na = ra, ou r est le reste de la division

euclidienne de n par o(a). Ainsi, G C {Znaa / Ya € A, n, €{0,...,0(a) — 1}}
acA
A étant fini, ce dernier ensemble est fini (son cardinal est inférieur a H o(a)), donc G

acA
est fini.

Partie III : Groupes abéliens finis

7°)  o(@)oly)(x +y) = o(y)(o(z)z) + o(x)(o(y)y) =0+ 0 =0,

donc o(z + y) divise o(z)o(y).

Soit n € N* tel que n(z +y) = 0. Alors nx = —ny, donc no(y)r = —no(y)y = 0,
puis o(z) | no(y), mais o(z) A o(y) = 1, donc d’apres le théoreme de Gauss, o(x) | n.
De méme, o(y) | n, or o(x) et o(y) sont premiers entre eux, donc o(x)o(y) | n. En
particulier, lorsque n = o(xz + y), on a montré que o(z)o(y) divise o(x + y) et que
o(z + y) divise o(z)o(y), donc ils sont égaux.

8°) Ecrivons les décompositions de o(z) et o(y) en produit de nombres premiers :
o(x) _ Hpvo(z>(p) ot o(y) _ Hpvo(y)(p)_
p€EP peP
Posons h = H plo@®) ot k= H plow @),
peP peP
Vo(z) (P)>Vo(y) (P) Vo(z) (P)SVo(y) (P)
Ainsi, h et k sont premiers entre eux et hk = Hpmax(vo(ﬂc)(p)’vo(y)(p)) = o(z) V o(y).
peP

Il existe a, b € N* tels que o(z) = ah et o(y) = bk.

Pour tout n € Z, n(ax) = 0 <= (na)r = 0 <= o(x) | na <= h | n, donc h = o(ax).
De méme, k = o(by), donc d’apres la question précédente, o(ax+by) = hk = o(z)Vo(y),
ce qu’il fallait démontrer.

9°) En utilisant I'associativité du PPCM, on montre par récurrence sur n, que pour

tout n € N*, pour tout zq,...,x, € G, il existe z € G tel que l'ordre de z est égal au
PPCM des ordres de x4, ..., x,.



Or G est fini, donc il existe xg € G tel que 'ordre de x( est égal au PPCM des ordres
des éléments de G.

Soit © € G : alors o(xg),0(x) € N* et o(x) | o(xg), donc o(xg) > o(z). Ainsi, xq est
d’ordre maximal et, pour tout x € GG, 'ordre de x divise l'ordre de x;.

10°) On démontre cette propriété par récurrence forte sur |G| : soit n € N*. Notons
R(n) la propriété suivante : pour tout groupe abélien G' de cardinal n, il existe ¢ € N*
et dy,...,d, € N* tels que, pour tout i € {1,...,¢—1}, d;;; divise d;, et tels que G est
isomorphe & (Z/d1Z) x « -+ X (Z]d,Z).

Lorsque n = 1, si G est de cardinal 1, alors G = {0}, donc il est isomorphe a Z/Z, ce
qui prouve R(1), avec £ = d; = 1.

Supposons que n > 2 et que R(k) est vraie pour tout k& € {1,...,n — 1}. Montrons
R(n). Soit G un groupe abélien de cardinal n. D’apres la question précédente, il existe
x € G d’ordre maximal. Notons d; l'ordre de z et H = Gr(z). D’apres le cours, il existe
un isomorphisme f de H dans Z/d,Z.

D’apres la question 3, |G/H| = ||H£|| < |G| car dy > 2 : sinon, d; = 1, donc tous les
éléments de G sont d’ordre 1, c’est-a-dire sont nuls et G = {0}, ce qui est faux car
n > 2.

On peut donc appliquer '’hypothese de récurrence au groupe abélien G/H : il existe
0> 2etdy,...,d € N* tels que, pour tout i € {2,...,¢ — 1}, d;y1 divise d;, et tels
qu’il existe un isomorphisme g de G/H dans (Z/dyZ) X -+ x (Z/d,Z.).

D’apres ’énoncé, il existe un isomorphisme h de G dans H x (G/H).

Pour tout (y,z) € H x (G/H), notons ¢(y, z) = (f(y),g9(2)).

On a bien ¢((y,2) + (¢, 2") = ¢(y,z) + (v, 2') pour tout (y,z) € H x (G/H) et
(v',7') € Hx (G/H), donc ¢ est un morphisme de H x (G/H) dans

(Z)d\Z) x (Z)doZ) X -+ X (Z]dZ).

Si ¢(y,z) =0, alors f(y) = 0 et g(z) = 0, mais f et g sont injectifs, donc (y, z) = 0.
Alinsi, ¢ est injectif.

Pour tout v € Z/d\Z et 2 € (Z/dyZ) X --- x (Z/d,Z), f et g étant surjectifs, il existe
(y,2) € Hx(G/H) tel que y' = f(y) et 2’ = g(z), donc (v, 2') = ¢(y, z). Ainsi, ¢ est un
isomorphisme de H x (G/H) dans (Z/d,Z) X (Z/dsZ) x - - - X (Z]d¢Z). Par composition,
U = p o h est un isomorphisme de G dans (Z/dZ) x (Z/doZ) X -+ X (Z]d,Z).

Il reste & montrer que dy divise d; : Notons d l'ordre de y = ¥~=1(0,1,0,...,0) dans G.
D’apres la question précédente, d divise d;.

De plus, dy = 0, donc 0 = ¥(dy) = d(0,1,0,...,0) = (0,d,0,...,0). Ainsi, dans
7./dy7., d = 0, donc dy divise d. Ceci prouve que dy divise dy, d’out R(n).

La question est démontrée d’apres le principe de récurrence forte.



11°)

— Soit (K, f) € A. Alors K C K et f|x = f, donc (K, f) < (K, f), ce qui montre
que = est réflexive.

— Soit (K, f),(K', f') € A tels que (K, f) X (K',f") et (K, f) =< (K, f). Ainsi,
K C K' et K' C K, donc K = K'. De plus, pour tout x € K,
f(z) = flk(z) = f'(z), donc f = f'. Ainsi, < est antisymétrique.

— Soit (K, f), (K", ), (K", f") € A tels que (K, f) X (K', f') et
(K, f") X (K", f"). K C K" et K/ C K", donc K C K”. De plus, pour tout
v €K, f(2) = o) = F(5) = Fle(s) = f(@), done f'ic = f. Ainsi,
(K, f) 2 (K", f"). Ainsi, < est transitive.
En conclusion, < est bien une relation d’ordre.

— Notons B={(K,f)e A/ HCK et flg=1dy}.
G étant fini, il ne possede qu’un nombre fini de sous-groupes et, pour chacun des
sous-groupes K de G, lui-méme fini, il n’existe qu'un nombre fini d’applications
de K dans H, donc B est fini. A ce titre, il possede nécessairement un élément
maximal. En effet, dans le cas contraire, pour tout (K, f) € A, il existerait
(K', f") € A tel que (K, f) < (K', '), ainsi partant d’un élément (K, fo) de A
(A est non vide car (H, Idy) € A), on pourrait construire une suite ((K,, fn))nen
strictement croissante d’éléments de A : c’est en contradiction avec la finitude

de A.

12°)

o Notons d l'ordre de zo et w = e%d.

Pour tout kzg € H = Gr(zg), ot k € Z, posons g(kzy) = w”.

g est correctement défini car si kxg = hxgy avec k, h € Z, alors k — h est un multiple de

d, donc wk = wh.

On a clairement g(kxzo + hxzo) = g(kzo)g(hzo), donc g est un morphisme de groupes.

Si g(kzo) = 1, alors w* = 1, donc k est un multiple de d et kzy = 0. Ainsi Ker(g) = {0},

ce qui prouve que g est injectif.

¢ go f est un morphisme de K dans U

et K' = Gr(KU{y}) = {x +ny/x € K et n € Z} (en effet, on peut vérifier que ce

dernier ensemble est non vide et stable par différence, donc c’est un sous-groupe qui

contient K U {yo} et tout sous-groupe contenant K U {yo} contient {x + nyy/n € Z}).

Ainsi, pour prolonger go f en un morphisme W défini sur K’ il faut choisir correctement

U(yo) dans U. Posons a priori ¥(yy) = €' ot a € R.

On souhaite poser, pour tout € K et n € Z, V(x 4+ nyy) = g o f(x)e™*, mais il faut

s’assurer que cette derniere égalité définit correctement une fonction, c’est-a-dire que

la quantité g o f(x)e™* ne dépend que de x + nyg, ou encore que

(C) : Vo,2' € K, Yn,n' €7, [x+nyo =" +n'yo = go f(x)e™™ = go f(a)e™].

(C) <=V, o' €K, Yn,n' €7, [(n—ny =2 —x = go f(x —2') = el
=V eK, VneZ, [ny=x= go f(x) =e"

Notons b 'ordre de 7o dans K'/K :

pour tout n € Z, nyg € K <= nyy =0<=b | n.

ino



Soit x € K et n € Z tels que nyy = . Ainsi b | n, donc il existe ¢ € Z tel que n = be.
Ainsi, x = ¢(byg). byo € K, donc f(byo) est défini et appartient & H. Ainsi, il existe
B €{0,...,d— 1} tel que f(byo) = Bxg. Alors g o f(byy) = w” puis g o f(x) = w’.
Ainsi,

go f(z) =" < 2 = gina = gibea 27T§ = ba.

On pose donc o = QW% (ainsi @ ne dépend que de xg, yo et f).

Pour tout (x,n) € K x Z, on pose V(z + nyy) = g o f(x)e™.

La condition (C') est alors vérifiée, donc W est une application correctement définie de
K’ dans H.

On a clairement, pour tout z,2’ € K et n,n’ € Z,

U((z 4+ nyo) + (2 +n'yo)) = go flx).go fla)e™ ™™ = U(x + nyo) ¥ (2’ 4+ n'yy), donc
U est un morphisme de K’ dans U, qui prolonge g o f sur K.

o Soit x € K’ : par construction de xg, l'ordre de xy est un multiple de 'ordre de
x. Ainsi, dv = 0, puis 1 = U(dx) = ¥(z)¢, donc ¥(z) € Uy = g(H). Ceci démontre
que W est & valeurs dans Uy = g(H), or g|?") est une bijection, donc (g|9U))~1 o ¥
réalise un morphisme de K’ dans H. De plus, si x € H, ¥(x) = g o f(z) = g(x), donc
(g]9F) =1 o W(x) = 2. On en déduit que le couple (K’, (g|9H))~1 o ¥) est un élément
de B, strictement supérieur au couple (K, f). Ceci contredit la maximalité de (K, f)
dans B. C’est absurde.

13°) Il existe donc un morphisme f de G dans H tel que f|y = Idy.

Pour tout x € G, posons ¢(x) = (f(x),7) € H x G/H.

¢ est un morphisme de G dans H x G/H car, pour tout z,y € G,

el +y)=(flx)+ fy),T+7) =)+ ¢y)

Soit x € Ker(p) : (f(x),Z) =0, donc T =0 et f(x) =0, ainsi x € H puis

0= f(z) = flu(x) = x. Ceci démontre que Ker(y) = {0}, donc ¢ est injective.

De plus, |G| = |H| x |G/H]|, donc f est une bijection. 1l s’agit bien d’un isomorphisme
entre G et H x G/H.

Partie IV : Sommes directes

14°) a) Soit © € Hy + H,. Supposons qu’il existe hy, | € Hy et hy, hly € Hy tels
que x = hy + hy = b} + hi.

I existe ny,n|,ne,ny € Z tels que hy = ny(2,1), b} = nf(2,1), hy = ny(0,2) et
hYy = n5(0,2).

Ainsi z = (2n1,n1 + 2ny) = (2n],n} + 2n}), donc ny = n} puis ny = nh. On en déduit
que h; = h} et hy = hi, donc la somme H; + H, est directe.

b) Supposons d’abord que a # 0 et b # 0.

On peut écrire 0 = 0.a + 0.b = b.a — a.b, donc la décomposition de 0 dans la somme
aZ, + bZ n’est pas unique. Ceci prouve que cette somme n’est pas directe.

Supposons maintenant que a = 0 : Soit © € aZ + bZ = bZ. Si x = hy + hy = h) + h}
avec hy, b} € aZ = {0} et hg, hly € bZ, alors hy = hi = 0 puis hy = h), donc dans ce
cas, la somme est directe. C’est encore vrai lorsque b = 0.

6



15°) a) Hy + H, est un groupe, car il contient 0, donc il est non vide, et si hy +
hg,hll + hé € H + H,, alors (hl + hg) — (hll + hé) = (h1 — hll) + (hQ — h/2) € H + H,.
De plus Hy + Hy contient Hy U Hy (car 0 € Hy N Hy).

Enfin, si H est un sous-groupe de G qui contient H; U H,, alors, H étant stable pour
I’addition, il contient Hy + Hs.

En conclusion, Hy + H, est le plus petit sous-groupe de G contenant H; U Hy, ce qu’il
fallait démontrer.

b) Pour tout (hy, he) € Hy X Hy, notons ¢(hy, hy) = hy+hy. Ainsi, ¢ est une application
de Hy x Hy dans H,+ H,. Cette derniere somme étant directe, tout élément de H; + Hy
possede un unique antécédent par ¢, donc ¢ est une bijection. De plus, ¢ est un
morphisme car on vérifie que ¢((hy, hao) + (Ri, 1)) = @((h1, ha)) + (R}, h)).

16°)

o Soit x € (Hy + Hy) + Hj : il existe h € Hy + Hs et hy € Hj tel que © = h + hs.

De plus il existe hy € Hy et hy € Hy tels que h = hy + hs.

Ainsi, I'addition dans G étant associative,

[L’:(h1+h2)+h3:h1+(h2+h3> €H1+(H2+H3).

Ceci démontre que (Hy+Hy)+Hs C Hy+(H2+ H3). L'inclusion réciproque se démontre
de la méme fagon.

o On suppose que Hy @& Hy est directe, ainsi que (H; & Hy) & Hs.

— Soit hy + hg = hly + hy € Hy + Hsz. Alors (0 4 hy) + hs = (0 4 R) + hjy avec
(04 ha), (0+hh) € Hy+ Hs et hs, by € Hy, or la somme entre Hy + Hy et Hj est
directe, donc 0+ hy = 0+ hf, et hy = hj. Ceci démontre que la somme Hy + Hj
est directe.

— Soit hy +h = h} +h' € Hy + (Hy @ H3). 1l existe hq, by € Hy et hs, by € Hj tels

que h = hy + h3 et b’ = hi, + hj.
On peut écrire (hy + he) + hg = (h] + h}) + Y, or la somme entre Hy + H, et
Hj est directe, donc hy + hy = b + hi, et hy = h}. De plus la somme entre H; et
Hj est directe, donc hy = b et hy = hi. Ainsi hy = h) et h = I/, ce qui montre
que la somme entre H; et Hy & Hj est directe.

Partie V : Groupes abéliens de rangs finis

17°) Supposons que B = (x;);cr est une base de G.
Soit x € G'\ {0}. Soit n € N*. Il existe (n;)ic; € ZD) telle que x = mez Or z #0,
icl
donc il existe iy € I tel que n;, # 0.
Alors nx = Znnlxz et nn;, # 0, donc nx # 0 : sinon Znnlxl et ZO.:@ serait
iel iel icl

deux décompositions différentes de 0 selon la base B. On a ainsi montré que pour tout
x € G\ {0} et n € N*, nx # 0, donc G est sans torsion.



18°) a) Pour tout j € {1,...,n}, il existe une partie finie I; C I et une famille
(nij)icr, € Z telle que z; = an-ei.
icl;
Posons K = U I;. Soit i € I. Il existe ky,..., k, € Z tels que ¢; = Zk‘jxj, donc
j=1

1<j<n

e; = Zk:j anei. Ainsi, il existe (my)rerx € ZX tel que ¢; = kaek. Or (€;)ier
j=1 i€l keK

est une base, donc ¢ € K : sinon l'égalité précédente fournirait deux décompositions

différentes de e; dans la base (e;);e;. On a montré que I C K, or K est fini, donc I est

fini.

b)

o 0 € H, donc H est non vide, et si 2z,2y € H, alors 2z — 2y = 2(x — y) € H, donc

H est bien un sous-groupe de G.

o Soitx,y € G. Nl existe ky, ..., kn, hi,..., hy EZtelsquex:Zkixiety:Zhixi.
i=1 i=1

Alors, © Ry y <= Y (hi — ki)w; € H <= Vi € I, h; — k; € 2. En effet, "<=" est
icl
évidente et si Z(hl — k;)x; € H, il existe y = Z mz; tel que
icl iel
Z(hi —ki)z; =2 Z m;x;, or (x;)1<i<n est une base, donc pour tout i € I,
il icl

h; — k; = 2m,; € 27.

On en déduit que G/H = {Z gix; [ Viel, ¢ €{0, 1}} et que lorsque
i=1

n n
(€i)1<i<n, (ED1<icn € {0,1}" avec (&:)1<i<n # (€])1<i<n, alors Zé‘iﬂ?i # 26%-
i=1 i=1
Ceci démontre que |G/H| = 2™.
o Si(y1,...,Y,) est une autre base de G (nécessairement finie), alors G/H est aussi
de cardinal 2P, donc p = n.

19°)  a) Soit X une partie génératrice finie de G.

Posons N = { N nel [/ (na)eex € ZX\ {0} ot Y ngx = o}.

rzeX rzeX
Par hypothese, X n’est pas une base de GG, donc il existe g € G tel que g possede deux

décompositions différentes selon la famille X : g = Z kyx = Z h.x

zeX reX
avec (kp)zex # (hg)zex. Ainsi, en posant pour tout x € X, n, = k, — h,, on a

(n2)eex € ZX\ {0} et Z n,x = 0. Ceci montre que N est non vide, or ¢’est une partie

zeX
de N, donc d’apres le cours, N possede bien un minimum.

b) Notons M l'ensemble des cardinaux des parties finies génératrices de G. G étant



de type fini, M est non vide. Or M est une partie de N, donc M possede bien un
minimum, que l'on note n.

On note ensuite K = {mx/|X| = n A (X est génératrice de G)}. K est encore une
partie non vide de N, donc elle possede un minimum, noté mgy. Alors il existe une
partie génératrice Xy de G de cardinal n tel que my, = my.

c) Supposons qu'il existe xy € Xy tel que |ng| = 1. Alors g = ¢ Z Nyx ol
CL’EXO\{CL’O}
e € {—1,1}, donc X \ {zo} est génératrice de G, ce qui est absurde car
| X \ {zo}| =n — 1, ce qui contredit la minimalité de n.
d) {|n.| / = € Xo} N N* est une partie non vide, car (n,).ecx, est non nulle, donc elle
possede un minimum : il existe xg € Xy tel que n,, # 0 et tel que, pour tout x € Xj,
n, = 0 ou bien |ng| > |ng,|.
Supposons que pour tout y € X, |4, | |ny]. Alors on peut écrire
n n
N, (:co + Z —~2) =0, car — € Z, or G est sans torsion,
Ny Ny
xEXo\{xo} 0 0
n
donc xg + Z —~ 1 = 0, ce qui prouve a nouveau que X \ {zo} est génératrice de
e Xo\{xo} |0
G, ce qui est absurde. On en déduit qu’il existe y € X tel que |n,,| ne divise pas |n,|.
En particulier, n, # 0 et |n,| # |ng,|, donc 0 < |ng,| < |n,|.
e) La division euclidienne de |n,| par |ng,,| s’écrit |n,| = q|ng,| +r avec 0 < r < |ng,|.
De plus r # 0 car |ny,| ne divise pas |n,|.
Il existe €,&’ € {—1,1} tels que n, = eqn,, + €'r, donc
0 = Z N.z = Ngyo + (Eqng, + 1)y + Z n,z
z€Xo z€Xo\{zo0,y}
= Ny, (T0 + £qy) + Ty + Z n,z : (1).
z€Xo\{zo,y}
Notons Y = (X \ {7o}) U{zo+eqy}. Pour tout g € G, il existe (m.).cx, € Z*° tel que
g= Z m.,z, donc g = Z M2+ Ny (To +eqy) + (ny —eqny,)y. Ainsi, Y est une
z€Xo z€Xo\{zo.,y}
famille génératrice de G' de cardinal n. Donc my > my,, mais d’apres la relation (1) et

le fait que r # 0, my < |ngo|+[rl+ ) ] < lnglFlng |+ Y0 | = mu,.

z€Xo\{zo0,y} 2€Xo\{z0,y}
C’est impossible.
20°)
¢ Supposons que G est un groupe sans torsion de type fini. D’apres la question
précédente, il est de rang fini, donc il existe une base de G de la forme (e, ..., e,).

Pour tout (ki,...,k,) € Z", notons ¢(ky, ..., k,) = Zk:iei. On vérifie que ¢ est un
i=1

morphisme du groupe (Z", +) dans G. Il est bijectif car (ey,...,e,) est une base de G.

Ainsi, il existe n € N tel que G est isomorphe a Z".

¢ Réciproquement, supposons qu’il existe un isomorphisme ¢ de Z" dans G.



Pour tout 7 € {1,...,n}, posons e; = ©((d;;)1<j<n)-

Soit g € G et (ky,...,k,) € Z™. Alors g = Z k;e; si et seulement si
i=1

ka (e;) Zk iihi<j<n = (k1,..., k), donc (eq, ..., e,) est une base

de G. A1n81 G est de rang ﬁnl donc il est sans torsion et de type fini.
¢ On a montré que si G est isomorphe a Z", alors GG est de rang fini égal a n, donc
d’apres la question 18.b, n est unique.

Partie VI : Théoreme de structure des groupes de types finis

21°) 1.0 =0, donc 0 € T(G).

Soit z,y € T(G). Notons o(x) et o(y) les ordres de x et y.

Alors o(z)o(y)(z — y) = o(y)(o(z)x) — o(z)(o(y)y) = 0, donc z —y € T(G).
Ainsi, T(G) est un sous-groupe de G.
22°)

o Soit T € G/T(G). Supposons que T est d’ordre fini. Ainsi, il existe n € N* tel que
0 = nT = nz, donc nx € T(G) : cest un élément de G d’ordre fini, donc il existe
m € N* tel que m(nz) = 0. Ainsi z est aussi d’ordre fini, donc x € T(G) puis T = 0.
Ceci prouve que G/T(G) est sans torsion.

o G est de type fini, donc il existe (z1,...,z,) tel que G = Gr({z1,...,2,}).

Soit T € G/T(G). x € G, donc il existe (kq,...,k,) € Z" tel que x = Z k;x;. Alors

=1

T = Z k;z;. Ceci prouve que {1, ...,T,} est une partie génératrice de G/T(G), donc
i=1

G/T(G) est de type fini.

23°)

o D’apres la question 19, G/T(G) est de rang fini, donc il existe £ € N et une base

(@1, ..., 7y) de G/T(G).

Posons H = Gr({z1,...,2x}) : H est un sous-groupe de G.

o Montrons que G = H & T(G) :

k
— Soit g € G. § € G/T(G), donc il existe (hy, ..., h;) € ZF tel que g = Zh,x_,
i=1

k
Ainsi, si l'on pose t = g — Z hiz;, t =0, donc t € T(G).

=1

k
Alors g =t + Z hiz; € T(G) + H. Ceci démontre que G = H + T(G).
i=1
— Supposons que t +h =t + 1/, avec t,t' € T(G) et h,h' € H.
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Alors t —t' € HNT(G). Ainsi, il existe n € N* tel que n(h — h’) = 0. On en
déduit que n(h h') = 0, mais G/T( ) est sans torsion, donc h — h' = 0. Si

k
l’on pose h = Zhﬂ(;Z et h/ = Zh/%, alors thz Zh’x_i, or (T1,...,Tx)

i=1
est une base de G/T(G), donc h = h. pour tout i€ {1 ., k}. On en déduit
que h = I/, puis que t = t’. Ceci prouve que H + T'(G) est une somme directe.
o D’apres la question 15.b, il existe un isomorphisme ¢ de G dans H x T(G).
k

o Pour tout (hy,...,h;) € ZF notons W(hy,..., hy) = th% Ainsi ¥ est un
i=1
morphisme de ZF dans H, clairement surjectif. De plus, si (hy,...,h;) € Ker(¥),
k

0= Z h;T;, donc a nouveau, h; = 0 pour tout ¢ € {1,...,k}. Ainsi Ker(¥) = {0} et
i=1

U est un isomorphisme de Z* dans H.

o Notons F l'application de G dans T'(G) définie par : F'(h+t) =t, pour tout h € H

et t € T(G) : F est bien définie car G = H & T'(G).

On vérifie que F' est un morphisme de groupes.

G est de type fini, donc il existe (y1,...,y,) € GP tel que {yi1,...,y,} est génératrice

de G.

P
Soit t € T(G). Alors t € G, donc il existe (hy,...,h,) € ZP tel que t = Z hiy;. On en

=1

p

déduit que t = F(t) = Z hiF'(y;), donc {F (1), ..., F(y,)} est génératrice de T'(G).
i=1

Ainsi, T(G) est un groupe de torsion et de type fini. D’apres la question 6, T'(G) est un

groupe fini et d’apres la question 10, il existe £ € N* et dy,...,d, € N* tels que, pour

tout i € {1,...,0—1}, d;1 divise d; et T(G) est isomorphe a (Z/d\Z) X -+ - X (Z]d7Z).

o En conclusion, il existe un isomorphisme F; de H dans Z* et un isomorphisme F,

de T(G) dans (Z/d1Z) x - -+ x (Z/d,Z).

Alors, en posant pour tout g € G, ¢(g9) = (¥1(9), ¢2(9)) € H x T'(G),

I'application g — (Fl(gol( ), F2(p2(g))) est un isomorphisme de G

dans Z* x [(Z)d\Z) x --- x (Z] dg )], dont 'isomorphisme réciproque

est (z1,x9) — @ L (F (xl) Fyt(22)).
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