
DM 23 : Un corrigé

Partie I : Groupes quotients

1◦)
— Soit a ∈ G. a − a = 0 ∈ H car H est un sous-groupe, donc a RH a. Ainsi, RH

est réflexive.
— Soit x, y ∈ G tels que x RH y. Ainsi y − x ∈ H, mais H étant un sous-groupe

il est stable par passage à l’opposé, donc x − y ∈ H et y RH x. Ainsi RH est
symétrique.

— Soit x, y, z ∈ G tels que x RH y et y RH z. Ainsi, y − x ∈ H et z − y ∈ H, or
H est stable pour l’addition, donc z − x = (y − x) + (z − y) ∈ H puis x RH z.
Ainsi RH est transitive.

En conclusion, RH est bien une relation d’équivalence.

Soit a ∈ G. Pour tout x ∈ G, x ∈ a ⇐⇒ a RH x ⇐⇒ ∃h ∈ H, x − a = h, donc
x ∈ a ⇐⇒ ∃h ∈ H, x = a+ h. Ainsi, a = {a+ h / h ∈ H} = a+H.

2◦)
— Commençons par montrer que la relation a+ b = a+ b définit convenablement

une addition sur G/H, c’est-à-dire que a+ b ne dépend que de a et b et non de
(a, b).
En effet, si a, b, a′, b′ ∈ G vérifient a = a′ et b = b′, alors a′ − a, b′ − b ∈ H donc
(a+ b)− (a′ + b′) = (a− a′) + (b− b′) ∈ H puis a+ b = a′ + b′.

— Montrons ensuite que cette addition confère à G/H une structure de groupe.
— Pour tout a, b ∈ G/H, a+ b ∈ G/H, donc il s’agit bien d’une loi interne.
— Pour tout a, b, c ∈ G/H, (a + b) + c = a+ b + c = (a+ b) + c, or l’addition

dans G est associative, donc (a + b) + c = a+ (b+ c) = a + (b + c). Ceci
prouve l’associativité.

— Pour tout a, b ∈ G/H, a + b = a+ b = b+ a = b + a, ce qui prouve la
commutativité.

— Pour tout a ∈ G, a+ 0 = a+ 0 = a, donc 0 est l’élément neutre.
— Pour tout a ∈ G, a+−a = a+ (−a) = 0, donc a possède un symétrique, et

−a = −a.
En conclusion, G/H est bien un groupe abélien.

— Notons φ l’application de G dans G/H définie par : pour tout a ∈ G, φ(a) = a.
La définition de l’addition sur G/H dit que φ est un morphisme de groupes,
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donc d’après le cours, pour tout n ∈ Z et a ∈ G, φ(na) = nφ(a), c’est-à-dire
que na = na.

— D’après le cours, les sous-groupes de Z sont exactement les nZ, où n ∈ N, donc
les groupes de la forme Z/H sont les groupes (connus) Z/nZ, avec n ∈ N.

3◦) D’après le cours, les classes d’équivalence de RH constituent une partition de

G, donc G =
⊔

x∈G/H

x puis en passant au cardinal, |G| =
∑

x∈G/H

|x|.

Soit x ∈ G/H : il existe a ∈ G tel que x = a = a+H, or l’application f : x 7−→ a+x est
une bijection surG (de bijection réciproque x 7−→ x−a), donc |H| = |f(H)| = |a| = |x|.
On en déduit que |G| =

∑
x∈G/H

|H| = |H| × |G/H|.

Partie II : Quelques définitions

4◦)
— Par hypothèse, il existe A ⊂ G et B ⊂ H tels que A et B sont finis, G = Gr(A)

et H = Gr(B). Alors d’après le cours, G = Gr(A) =
{∑

a∈A

naa / (na)a∈A ∈ ZA
}

et H = Gr(B) =
{∑

b∈B

nbb / (nb)b∈B ∈ ZB
}
.

Soit (g, h) ∈ G×H.

Il existe (na)a∈A ∈ ZA et (nb)b∈B ∈ ZB telles que g =
∑
a∈A

naa et h =
∑
b∈B

nbb.

Alors (g, h) = (g, 0) + (0, h) =
∑
a∈A

na(a, 0) +
∑
b∈B

nb(0, b),

donc (g, h) ∈ Gr[(A× {0}) ∪ ({0} ×B)].
Ainsi, G×H ⊂ Gr[(A×{0})∪ ({0}×B)] et l’inclusion réciproque est évidente
car [(A× {0}) ∪ ({0} ×B)] ⊂ G×H.
Ceci prouve que G×H est engendré par (A×{0})∪ ({0}×B). C’est une partie
finie, donc G×H est bien de type fini.

— Par récurrence, on en déduit que si G1, . . . , Gp sont p groupes abéliens de types
finis, alors G1 × · · · ×Gp est encore de type fini. Or Z = Gr({1}) et
Z/nZ = Gr({1}) sont monogènes donc de types finis, donc pour tout k, ℓ ∈ N∗,
pour tout (di)1≤i≤ℓ ∈ N∗ℓ, Zk × (Z/d1Z)× · · · × (Z/dℓZ) est un groupe abélien
de type fini.

5◦)
— Z/nZ est fini, donc pour tout x ∈ Z/nZ, Gr(x) est fini : Z/nZ est de torsion.

Il n’est pas sans torsion, sauf lorsque n = 1, auquel cas Z/1Z = {0}.
— Pour tout n ∈ Z∗, pour tout m ∈ N∗, nm ̸= 0, donc n est d’ordre infini : Z est

sans torsion.
— n(0, 1) = (0, n) = 0, donc Z× (Z/nZ) n’est pas sans torsion, sauf lorsque n = 1.

Pour tout p ∈ N∗, p(1, 0) = (p, 0) ̸= 0, donc Z× (Z/nZ) n’est pas de torsion.
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— Dans le groupe (C∗,×), i2 = 1, donc ce groupe n’est pas sans torsion. Cependant,
pour tout p ∈ N∗, 2p ̸= 1, donc il n’est pas de torsion.

— Soit x ∈ Q/Z. Il existe p ∈ Z et q ∈ N∗ tels que x = (p
q
). Alors qx = p = 0 car

p ∈ Z, donc Q/Z est de torsion.

6◦) Si G est de cardinal fini, alors G = Gr(G), donc G est de type fini. De plus
pour tout x ∈ G, Gr(x) est fini, donc G est de torsion.
Réciproquement, supposons que G est de type fini et de torsion.
Il existe donc une partie finie A de G telle que G = Gr(A). Alors, pour tout g ∈ G,

il existe (na)a∈A ∈ ZA telle que g =
∑
a∈A

naa, mais pour tout a ∈ A, a est d’ordre fini,

donc en notant o(a) son ordre, pour tout n ∈ Z, na = ra, où r est le reste de la division

euclidienne de n par o(a). Ainsi, G ⊂
{∑

a∈A

naa / ∀a ∈ A, na ∈ {0, . . . , o(a) − 1}
}
.

A étant fini, ce dernier ensemble est fini (son cardinal est inférieur à
∏
a∈A

o(a)), donc G

est fini.

Partie III : Groupes abéliens finis

7◦) o(x)o(y)(x+ y) = o(y)(o(x)x) + o(x)(o(y)y) = 0 + 0 = 0,
donc o(x+ y) divise o(x)o(y).
Soit n ∈ N∗ tel que n(x + y) = 0. Alors nx = −ny, donc no(y)x = −no(y)y = 0,
puis o(x) | no(y), mais o(x) ∧ o(y) = 1, donc d’après le théorème de Gauss, o(x) | n.
De même, o(y) | n, or o(x) et o(y) sont premiers entre eux, donc o(x)o(y) | n. En
particulier, lorsque n = o(x + y), on a montré que o(x)o(y) divise o(x + y) et que
o(x+ y) divise o(x)o(y), donc ils sont égaux.

8◦) Écrivons les décompositions de o(x) et o(y) en produit de nombres premiers :

o(x) =
∏
p∈P

pvo(x)(p) et o(y) =
∏
p∈P

pvo(y)(p).

Posons h =
∏
p∈P

vo(x)(p)>vo(y)(p)

pvo(x)(p) et k =
∏
p∈P

vo(x)(p)≤vo(y)(p)

pvo(y)(p).

Ainsi, h et k sont premiers entre eux et hk =
∏
p∈P

pmax(vo(x)(p),vo(y)(p)) = o(x) ∨ o(y).

Il existe a, b ∈ N∗ tels que o(x) = ah et o(y) = bk.
Pour tout n ∈ Z, n(ax) = 0 ⇐⇒ (na)x = 0 ⇐⇒ o(x) | na ⇐⇒ h | n, donc h = o(ax).
De même, k = o(by), donc d’après la question précédente, o(ax+by) = hk = o(x)∨o(y),
ce qu’il fallait démontrer.

9◦) En utilisant l’associativité du PPCM, on montre par récurrence sur n, que pour
tout n ∈ N∗, pour tout x1, . . . , xn ∈ G, il existe z ∈ G tel que l’ordre de z est égal au
PPCM des ordres de x1, . . . , xn.

3



Or G est fini, donc il existe x0 ∈ G tel que l’ordre de x0 est égal au PPCM des ordres
des éléments de G.
Soit x ∈ G : alors o(x0), o(x) ∈ N∗ et o(x) | o(x0), donc o(x0) ≥ o(x). Ainsi, x0 est
d’ordre maximal et, pour tout x ∈ G, l’ordre de x divise l’ordre de x0.

10◦) On démontre cette propriété par récurrence forte sur |G| : soit n ∈ N∗. Notons
R(n) la propriété suivante : pour tout groupe abélien G de cardinal n, il existe ℓ ∈ N∗

et d1, . . . , dℓ ∈ N∗ tels que, pour tout i ∈ {1, . . . , ℓ− 1}, di+1 divise di, et tels que G est
isomorphe à (Z/d1Z)× · · · × (Z/dℓZ).
Lorsque n = 1, si G est de cardinal 1, alors G = {0}, donc il est isomorphe à Z/Z, ce
qui prouve R(1), avec ℓ = d1 = 1.
Supposons que n ≥ 2 et que R(k) est vraie pour tout k ∈ {1, . . . , n − 1}. Montrons
R(n). Soit G un groupe abélien de cardinal n. D’après la question précédente, il existe
x ∈ G d’ordre maximal. Notons d1 l’ordre de x et H = Gr(x). D’après le cours, il existe
un isomorphisme f de H dans Z/d1Z.

D’après la question 3, |G/H| = |G|
|H|

< |G| car d1 ≥ 2 : sinon, d1 = 1, donc tous les

éléments de G sont d’ordre 1, c’est-à-dire sont nuls et G = {0}, ce qui est faux car
n ≥ 2.
On peut donc appliquer l’hypothèse de récurrence au groupe abélien G/H : il existe
ℓ ≥ 2 et d2, . . . , dl ∈ N∗ tels que, pour tout i ∈ {2, . . . , ℓ − 1}, di+1 divise di, et tels
qu’il existe un isomorphisme g de G/H dans (Z/d2Z)× · · · × (Z/dℓZ).
D’après l’énoncé, il existe un isomorphisme h de G dans H × (G/H).
Pour tout (y, z) ∈ H × (G/H), notons φ(y, z) = (f(y), g(z)).
On a bien φ((y, z) + (y′, z′)) = φ(y, z) + φ(y′, z′) pour tout (y, z) ∈ H × (G/H) et
(y′, z′) ∈ H × (G/H), donc φ est un morphisme de H × (G/H) dans
(Z/d1Z)× (Z/d2Z)× · · · × (Z/dℓZ).
Si φ(y, z) = 0, alors f(y) = 0 et g(z) = 0, mais f et g sont injectifs, donc (y, z) = 0.
Ainsi, φ est injectif.
Pour tout y′ ∈ Z/d1Z et z′ ∈ (Z/d2Z)× · · · × (Z/dℓZ), f et g étant surjectifs, il existe
(y, z) ∈ H×(G/H) tel que y′ = f(y) et z′ = g(z), donc (y′, z′) = φ(y, z). Ainsi, φ est un
isomorphisme de H×(G/H) dans (Z/d1Z)×(Z/d2Z)×· · ·×(Z/dℓZ). Par composition,
Ψ = φ ◦ h est un isomorphisme de G dans (Z/d1Z)× (Z/d2Z)× · · · × (Z/dℓZ).
Il reste à montrer que d2 divise d1 : Notons d l’ordre de y = Ψ−1(0, 1, 0, . . . , 0) dans G.
D’après la question précédente, d divise d1.
De plus, dy = 0, donc 0 = Ψ(dy) = d(0, 1, 0, . . . , 0) = (0, d, 0, . . . , 0). Ainsi, dans
Z/d2Z, d = 0, donc d2 divise d. Ceci prouve que d2 divise d1, d’où R(n).
La question est démontrée d’après le principe de récurrence forte.
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11◦)
— Soit (K, f) ∈ A. Alors K ⊂ K et f |K = f , donc (K, f) ⪯ (K, f), ce qui montre

que ⪯ est réflexive.
— Soit (K, f), (K ′, f ′) ∈ A tels que (K, f) ⪯ (K ′, f ′) et (K ′, f ′) ⪯ (K, f). Ainsi,

K ⊂ K ′ et K ′ ⊂ K, donc K = K ′. De plus, pour tout x ∈ K,
f(x) = f |K(x) = f ′(x), donc f = f ′. Ainsi, ⪯ est antisymétrique.

— Soit (K, f), (K ′, f ′), (K ′′, f ′′) ∈ A tels que (K, f) ⪯ (K ′, f ′) et
(K ′, f ′) ⪯ (K ′′, f ′′). K ⊂ K ′ et K ′ ⊂ K ′′, donc K ⊂ K ′′. De plus, pour tout
x ∈ K, f ′′(x) = f ′′|K′(x) = f ′(x) = f ′|K(x) = f(x), donc f ′′|K = f . Ainsi,
(K, f) ⪯ (K ′′, f ′′). Ainsi, ⪯ est transitive.
En conclusion, ⪯ est bien une relation d’ordre.

— Notons B = {(K, f) ∈ A / H ⊂ K et f |H = IdH}.
G étant fini, il ne possède qu’un nombre fini de sous-groupes et, pour chacun des
sous-groupes K de G, lui-même fini, il n’existe qu’un nombre fini d’applications
de K dans H, donc B est fini. À ce titre, il possède nécessairement un élément
maximal. En effet, dans le cas contraire, pour tout (K, f) ∈ A, il existerait
(K ′, f ′) ∈ A tel que (K, f) ≺ (K ′, f ′), ainsi partant d’un élément (K0, f0) de A
(A est non vide car (H, IdH) ∈ A), on pourrait construire une suite ((Kn, fn))n∈N
strictement croissante d’éléments de A : c’est en contradiction avec la finitude
de A.

12◦)
⋄ Notons d l’ordre de x0 et ω = e2i

π
d .

Pour tout kx0 ∈ H = Gr(x0), où k ∈ Z, posons g(kx0) = ωk.
g est correctement défini car si kx0 = hx0 avec k, h ∈ Z, alors k− h est un multiple de
d, donc ωk = ωh.
On a clairement g(kx0 + hx0) = g(kx0)g(hx0), donc g est un morphisme de groupes.
Si g(kx0) = 1, alors ωk = 1, donc k est un multiple de d et kx0 = 0. Ainsi Ker(g) = {0},
ce qui prouve que g est injectif.

⋄ g ◦ f est un morphisme de K dans U
et K ′ = Gr(K ∪ {y0}) = {x + ny0/x ∈ K et n ∈ Z} (en effet, on peut vérifier que ce
dernier ensemble est non vide et stable par différence, donc c’est un sous-groupe qui
contient K ∪ {y0} et tout sous-groupe contenant K ∪ {y0} contient {x+ ny0/n ∈ Z}).
Ainsi, pour prolonger g◦f en un morphisme Ψ défini surK ′, il faut choisir correctement
Ψ(y0) dans U. Posons a priori Ψ(y0) = eiα où α ∈ R.
On souhaite poser, pour tout x ∈ K et n ∈ Z, Ψ(x + ny0) = g ◦ f(x)einα, mais il faut
s’assurer que cette dernière égalité définit correctement une fonction, c’est-à-dire que
la quantité g ◦ f(x)einα ne dépend que de x+ ny0, ou encore que
(C) : ∀x, x′ ∈ K, ∀n, n′ ∈ Z, [x+ ny0 = x′ + n′y0 =⇒ g ◦ f(x)einα = g ◦ f(x′)ein

′α].
(C) ⇐⇒ ∀x, x′ ∈ K, ∀n, n′ ∈ Z, [(n− n′)y0 = x′ − x =⇒ g ◦ f(x− x′) = ei(n

′−n)α]
⇐⇒ ∀x ∈ K, ∀n ∈ Z, [ny0 = x =⇒ g ◦ f(x) = einα]

Notons b l’ordre de y0 dans K ′/K :
pour tout n ∈ Z, ny0 ∈ K ⇐⇒ ny0 = 0 ⇐⇒ b | n.
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Soit x ∈ K et n ∈ Z tels que ny0 = x. Ainsi b | n, donc il existe c ∈ Z tel que n = bc.
Ainsi, x = c(by0). by0 ∈ K, donc f(by0) est défini et appartient à H. Ainsi, il existe
β ∈ {0, . . . , d − 1} tel que f(by0) = βx0. Alors g ◦ f(by0) = ωβ puis g ◦ f(x) = ωβc.
Ainsi,

g ◦ f(x) = einα ⇐⇒ e2iπ
βc
d = einα = eibcα ⇐= 2π β

d
= bα.

On pose donc α = 2π β
db

(ainsi α ne dépend que de x0, y0 et f).
Pour tout (x, n) ∈ K × Z, on pose Ψ(x+ ny0) = g ◦ f(x)einα.
La condition (C) est alors vérifiée, donc Ψ est une application correctement définie de
K ′ dans H.
On a clairement, pour tout x, x′ ∈ K et n, n′ ∈ Z,
Ψ((x+ ny0) + (x′ + n′y0)) = g ◦ f(x).g ◦ f(x′)einαein

′α = Ψ(x+ ny0)Ψ(x′ + n′y0), donc
Ψ est un morphisme de K ′ dans U, qui prolonge g ◦ f sur K ′.

⋄ Soit x ∈ K ′ : par construction de x0, l’ordre de x0 est un multiple de l’ordre de
x. Ainsi, dx = 0, puis 1 = Ψ(dx) = Ψ(x)d, donc Ψ(x) ∈ Ud = g(H). Ceci démontre
que Ψ est à valeurs dans Ud = g(H), or g|g(H) est une bijection, donc (g|g(H))−1 ◦ Ψ
réalise un morphisme de K ′ dans H. De plus, si x ∈ H, Ψ(x) = g ◦ f(x) = g(x), donc
(g|g(H))−1 ◦ Ψ(x) = x. On en déduit que le couple (K ′, (g|g(H))−1 ◦ Ψ) est un élément
de B, strictement supérieur au couple (K, f). Ceci contredit la maximalité de (K, f)
dans B. C’est absurde.

13◦) Il existe donc un morphisme f de G dans H tel que f |H = IdH .
Pour tout x ∈ G, posons φ(x) = (f(x), x) ∈ H ×G/H.
φ est un morphisme de G dans H ×G/H car, pour tout x, y ∈ G,
φ(x+ y) = (f(x) + f(y), x+ y) = φ(x) + φ(y).
Soit x ∈ Ker(φ) : (f(x), x) = 0, donc x = 0 et f(x) = 0, ainsi x ∈ H puis
0 = f(x) = f |H(x) = x. Ceci démontre que Ker(φ) = {0}, donc φ est injective.
De plus, |G| = |H| × |G/H|, donc f est une bijection. Il s’agit bien d’un isomorphisme
entre G et H ×G/H.

Partie IV : Sommes directes

14◦) a) Soit x ∈ H1 + H2. Supposons qu’il existe h1, h
′
1 ∈ H1 et h2, h

′
2 ∈ H2 tels

que x = h1 + h2 = h′
1 + h′

2.
Il existe n1, n

′
1, n2, n

′
2 ∈ Z tels que h1 = n1(2, 1), h′

1 = n′
1(2, 1), h2 = n2(0, 2) et

h′
2 = n′

2(0, 2).
Ainsi x = (2n1, n1 + 2n2) = (2n′

1, n
′
1 + 2n′

2), donc n1 = n′
1 puis n2 = n′

2. On en déduit
que h1 = h′

1 et h2 = h′
2, donc la somme H1 +H2 est directe.

b) Supposons d’abord que a ̸= 0 et b ̸= 0.
On peut écrire 0 = 0.a + 0.b = b.a − a.b, donc la décomposition de 0 dans la somme
aZ+ bZ n’est pas unique. Ceci prouve que cette somme n’est pas directe.
Supposons maintenant que a = 0 : Soit x ∈ aZ + bZ = bZ. Si x = h1 + h2 = h′

1 + h′
2

avec h1, h
′
1 ∈ aZ = {0} et h2, h

′
2 ∈ bZ, alors h1 = h′

1 = 0 puis h2 = h′
2, donc dans ce

cas, la somme est directe. C’est encore vrai lorsque b = 0.
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15◦) a) H1 + H2 est un groupe, car il contient 0, donc il est non vide, et si h1 +
h2, h

′
1 + h′

2 ∈ H1 +H2, alors (h1 + h2)− (h′
1 + h′

2) = (h1 − h′
1) + (h2 − h′

2) ∈ H1 +H2.
De plus H1 +H2 contient H1 ∪H2 (car 0 ∈ H1 ∩H2).
Enfin, si H est un sous-groupe de G qui contient H1 ∪H2, alors, H étant stable pour
l’addition, il contient H1 +H2.
En conclusion, H1 +H2 est le plus petit sous-groupe de G contenant H1 ∪H2, ce qu’il
fallait démontrer.

b) Pour tout (h1, h2) ∈ H1×H2, notons φ(h1, h2) = h1+h2. Ainsi, φ est une application
de H1×H2 dans H1+H2. Cette dernière somme étant directe, tout élément de H1+H2

possède un unique antécédent par φ, donc φ est une bijection. De plus, φ est un
morphisme car on vérifie que φ((h1, h2) + (h′

1, h
′
2)) = φ((h1, h2)) + φ((h′

1, h
′
2)).

16◦)
⋄ Soit x ∈ (H1 +H2) +H3 : il existe h ∈ H1 +H2 et h3 ∈ H3 tel que x = h+ h3.
De plus il existe h1 ∈ H1 et h2 ∈ H2 tels que h = h1 + h2.
Ainsi, l’addition dans G étant associative,
x = (h1 + h2) + h3 = h1 + (h2 + h3) ∈ H1 + (H2 +H3).
Ceci démontre que (H1+H2)+H3 ⊂ H1+(H2+H3). L’inclusion réciproque se démontre
de la même façon.
⋄ On suppose que H1 ⊕H2 est directe, ainsi que (H1 ⊕H2)⊕H3.

— Soit h2 + h3 = h′
2 + h′

3 ∈ H2 + H3. Alors (0 + h2) + h3 = (0 + h′
2) + h′

3 avec
(0+h2), (0+h′

2) ∈ H1+H2 et h3, h
′
3 ∈ H3, or la somme entre H1+H2 et H3 est

directe, donc 0 + h2 = 0+ h′
2 et h3 = h′

3. Ceci démontre que la somme H2 +H3

est directe.
— Soit h1 + h = h′

1 + h′ ∈ H1 + (H2 ⊕H3). Il existe h2, h
′
2 ∈ H2 et h3, h

′
3 ∈ H3 tels

que h = h2 + h3 et h′ = h′
2 + h′

3.
On peut écrire (h1 + h2) + h3 = (h′

1 + h′
2) + h′

3, or la somme entre H1 +H2 et
H3 est directe, donc h1+h2 = h′

1+h′
2 et h3 = h′

3. De plus la somme entre H1 et
H2 est directe, donc h1 = h′

1 et h2 = h′
2. Ainsi h1 = h′

1 et h = h′, ce qui montre
que la somme entre H1 et H2 ⊕H3 est directe.

Partie V : Groupes abéliens de rangs finis

17◦) Supposons que B = (xi)i∈I est une base de G.

Soit x ∈ G \ {0}. Soit n ∈ N∗. Il existe (ni)i∈I ∈ Z(I) telle que x =
∑
i∈I

nixi. Or x ̸= 0,

donc il existe i0 ∈ I tel que ni0 ̸= 0.

Alors nx =
∑
i∈I

nnixi et nni0 ̸= 0, donc nx ̸= 0 : sinon
∑
i∈I

nnixi et
∑
i∈I

0.xi serait

deux décompositions différentes de 0 selon la base B. On a ainsi montré que pour tout
x ∈ G \ {0} et n ∈ N∗, nx ̸= 0, donc G est sans torsion.
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18◦) a) Pour tout j ∈ {1, . . . , n}, il existe une partie finie Ij ⊂ I et une famille

(ni,j)i∈Ij ∈ ZIj telle que xj =
∑
i∈Ij

ni,jei.

Posons K =
⋃

1≤j≤n

Ij. Soit i ∈ I. Il existe k1, . . . , kn ∈ Z tels que ei =
n∑

j=1

kjxj, donc

ei =
n∑

j=1

kj
∑
i∈Ij

ni,jei. Ainsi, il existe (mk)k∈K ∈ ZK tel que ei =
∑
k∈K

mkek. Or (ei)i∈I

est une base, donc i ∈ K : sinon l’égalité précédente fournirait deux décompositions
différentes de ei dans la base (ej)j∈I . On a montré que I ⊂ K, or K est fini, donc I est
fini.

b)
⋄ 0 ∈ H, donc H est non vide, et si 2x, 2y ∈ H, alors 2x− 2y = 2(x− y) ∈ H, donc
H est bien un sous-groupe de G.

⋄ Soit x, y ∈ G. Il existe k1, . . . , kn, h1, . . . , hn ∈ Z tels que x =
n∑

i=1

kixi et y =
n∑

i=1

hixi.

Alors, x RH y ⇐⇒
∑
i∈I

(hi − ki)xi ∈ H ⇐⇒ ∀i ∈ I, hi − ki ∈ 2Z. En effet, ”⇐=” est

évidente et si
∑
i∈I

(hi − ki)xi ∈ H, il existe y =
∑
i∈I

mixi tel que∑
i∈I

(hi − ki)xi = 2
∑
i∈I

mixi, or (xi)1≤i≤n est une base, donc pour tout i ∈ I,

hi − ki = 2mi ∈ 2Z.

On en déduit que G/H =
{ n∑

i=1

εixi / ∀i ∈ I, εi ∈ {0, 1}
}
et que lorsque

(εi)1≤i≤n, (ε
′
i)1≤i≤n ∈ {0, 1}n avec (εi)1≤i≤n ̸= (ε′i)1≤i≤n, alors

n∑
i=1

εixi ̸=
n∑

i=1

ε′ixi.

Ceci démontre que |G/H| = 2n.
⋄ Si (y1, . . . , yp) est une autre base de G (nécessairement finie), alors G/H est aussi
de cardinal 2p, donc p = n.

19◦) a) Soit X une partie génératrice finie de G.

Posons N =
{∑

x∈X

|nx| / (nx)x∈X ∈ ZX \ {0} et
∑
x∈X

nxx = 0
}
.

Par hypothèse, X n’est pas une base de G, donc il existe g ∈ G tel que g possède deux

décompositions différentes selon la famille X : g =
∑
x∈X

kxx =
∑
x∈X

hxx

avec (kx)x∈X ̸= (hx)x∈X . Ainsi, en posant pour tout x ∈ X, nx = kx − hx, on a

(nx)x∈X ∈ ZX \{0} et
∑
x∈X

nxx = 0. Ceci montre que N est non vide, or c’est une partie

de N, donc d’après le cours, N possède bien un minimum.

b) Notons M l’ensemble des cardinaux des parties finies génératrices de G. G étant
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de type fini, M est non vide. Or M est une partie de N, donc M possède bien un
minimum, que l’on note n.
On note ensuite K = {mX/|X| = n ∧ (X est génératrice de G)}. K est encore une
partie non vide de N, donc elle possède un minimum, noté m0. Alors il existe une
partie génératrice X0 de G de cardinal n tel que mX0 = m0.

c) Supposons qu’il existe x0 ∈ X0 tel que |nx0| = 1. Alors x0 = ε
∑

x∈X0\{x0}

nxx où

ε ∈ {−1, 1}, donc X \ {x0} est génératrice de G, ce qui est absurde car
|X \ {x0}| = n− 1, ce qui contredit la minimalité de n.

d) {|nx| / x ∈ X0} ∩ N∗ est une partie non vide, car (nx)x∈X0 est non nulle, donc elle
possède un minimum : il existe x0 ∈ X0 tel que nx0 ̸= 0 et tel que, pour tout x ∈ X0,
nx = 0 ou bien |nx| ≥ |nx0|.
Supposons que pour tout y ∈ X0, |nx0| | |ny|. Alors on peut écrire

nx0

(
x0 +

∑
x∈X0\{x0}

nx

nx0

x
)
= 0, car

nx

nx0

∈ Z, or G est sans torsion,

donc x0 +
∑

x∈X0\{x0}

nx

nx0

x = 0, ce qui prouve à nouveau que X \ {x0} est génératrice de

G, ce qui est absurde. On en déduit qu’il existe y ∈ X0 tel que |nx0| ne divise pas |ny|.
En particulier, ny ̸= 0 et |ny| ≠ |nx0|, donc 0 < |nx0| < |ny|.
e) La division euclidienne de |ny| par |nx0| s’écrit |ny| = q|nx0|+ r avec 0 ≤ r < |nx0|.
De plus r ̸= 0 car |nx0 | ne divise pas |ny|.
Il existe ε, ε′ ∈ {−1, 1} tels que ny = εqnx0 + ε′r, donc

0 =
∑
z∈X0

nzz = nx0x0 + (εqnx0 + ε′r)y +
∑

z∈X0\{x0,y}

nzz

= nx0(x0 + εqy) + ε′ry +
∑

z∈X0\{x0,y}

nzz : (1).

Notons Y = (X0 \{x0})∪{x0+εqy}. Pour tout g ∈ G, il existe (mz)z∈X0 ∈ ZX0 tel que

g =
∑
z∈X0

mzz, donc g =
∑

z∈X0\{x0,y}

mzz+nx0(x0+εqy)+(ny−εqnx0)y. Ainsi, Y est une

famille génératrice de G de cardinal n. Donc mY ≥ mX0 , mais d’après la relation (1) et

le fait que r ̸= 0, mY ≤ |nx0 |+ |r|+
∑

z∈X0\{x0,y}

|nz| < |nx0|+ |ny|+
∑

z∈X0\{x0,y}

|nz| = mX0 .

C’est impossible.

20◦)
⋄ Supposons que G est un groupe sans torsion de type fini. D’après la question
précédente, il est de rang fini, donc il existe une base de G de la forme (e1, . . . , en).

Pour tout (k1, . . . , kn) ∈ Zn, notons φ(k1, . . . , kn) =
n∑

i=1

kiei. On vérifie que φ est un

morphisme du groupe (Zn,+) dans G. Il est bijectif car (e1, . . . , en) est une base de G.
Ainsi, il existe n ∈ N tel que G est isomorphe à Zn.
⋄ Réciproquement, supposons qu’il existe un isomorphisme φ de Zn dans G.
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Pour tout i ∈ {1, . . . , n}, posons ei = φ((δi,j)1≤j≤n).

Soit g ∈ G et (k1, . . . , kn) ∈ Zn. Alors g =
n∑

i=1

kiei si et seulement si

φ−1(g) =
n∑

i=1

kiφ
−1(ei) =

n∑
i=1

ki(δi,j)1≤j≤n = (k1, . . . , kn), donc (e1, . . . , en) est une base

de G. Ainsi G est de rang fini, donc il est sans torsion et de type fini.
⋄ On a montré que si G est isomorphe à Zn, alors G est de rang fini égal à n, donc
d’après la question 18.b, n est unique.

Partie VI : Théorème de structure des groupes de types finis

21◦) 1.0 = 0, donc 0 ∈ T (G).
Soit x, y ∈ T (G). Notons o(x) et o(y) les ordres de x et y.
Alors o(x)o(y)(x− y) = o(y)(o(x)x)− o(x)(o(y)y) = 0, donc x− y ∈ T (G).
Ainsi, T (G) est un sous-groupe de G.

22◦)
⋄ Soit x ∈ G/T (G). Supposons que x est d’ordre fini. Ainsi, il existe n ∈ N∗ tel que
0 = nx = nx, donc nx ∈ T (G) : c’est un élément de G d’ordre fini, donc il existe
m ∈ N∗ tel que m(nx) = 0. Ainsi x est aussi d’ordre fini, donc x ∈ T (G) puis x = 0.
Ceci prouve que G/T (G) est sans torsion.
⋄ G est de type fini, donc il existe (x1, . . . , xn) tel que G = Gr({x1, . . . , xn}).

Soit x ∈ G/T (G). x ∈ G, donc il existe (k1, . . . , kn) ∈ Zn tel que x =
n∑

i=1

kixi. Alors

x =
n∑

i=1

kixi. Ceci prouve que {x1, . . . , xn} est une partie génératrice de G/T (G), donc

G/T (G) est de type fini.

23◦)
⋄ D’après la question 19, G/T (G) est de rang fini, donc il existe k ∈ N et une base
(x1, . . . , xk) de G/T (G).
Posons H = Gr({x1, . . . , xk}) : H est un sous-groupe de G.
⋄ Montrons que G = H ⊕ T (G) :

— Soit g ∈ G. g ∈ G/T (G), donc il existe (h1, . . . , hk) ∈ Zk tel que g =
k∑

i=1

hixi.

Ainsi, si l’on pose t = g −
k∑

i=1

hixi, t = 0, donc t ∈ T (G).

Alors g = t+
k∑

i=1

hixi ∈ T (G) +H. Ceci démontre que G = H + T (G).

— Supposons que t+ h = t′ + h′, avec t, t′ ∈ T (G) et h, h′ ∈ H.
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Alors t − t′ ∈ H ∩ T (G). Ainsi, il existe n ∈ N∗ tel que n(h − h′) = 0. On en
déduit que n(h− h′) = 0, mais G/T (G) est sans torsion, donc h− h′ = 0. Si

l’on pose h =
k∑

i=1

hixi et h
′ =

k∑
i=1

h′
ixi, alors

k∑
i=1

hixi =
k∑

i=1

h′
ixi, or (x1, . . . , xk)

est une base de G/T (G), donc hi = h′
i pour tout i ∈ {1, . . . , k}. On en déduit

que h = h′, puis que t = t′. Ceci prouve que H + T (G) est une somme directe.
⋄ D’après la question 15.b, il existe un isomorphisme φ de G dans H × T (G).

⋄ Pour tout (h1, . . . , hk) ∈ Zk, notons Ψ(h1, . . . , hk) =
k∑

i=1

hixi. Ainsi Ψ est un

morphisme de Zk dans H, clairement surjectif. De plus, si (h1, . . . , hk) ∈ Ker(Ψ),

0 =
k∑

i=1

hixi, donc à nouveau, hi = 0 pour tout i ∈ {1, . . . , k}. Ainsi Ker(Ψ) = {0} et

Ψ est un isomorphisme de Zk dans H.
⋄ Notons F l’application de G dans T (G) définie par : F (h+ t) = t, pour tout h ∈ H
et t ∈ T (G) : F est bien définie car G = H ⊕ T (G).
On vérifie que F est un morphisme de groupes.
G est de type fini, donc il existe (y1, . . . , yp) ∈ Gp tel que {y1, . . . , yp} est génératrice
de G.

Soit t ∈ T (G). Alors t ∈ G, donc il existe (h1, . . . , hp) ∈ Zp tel que t =

p∑
i=1

hiyi. On en

déduit que t = F (t) =

p∑
i=1

hiF (yi), donc {F (y1), . . . , F (yp)} est génératrice de T (G).

Ainsi, T (G) est un groupe de torsion et de type fini. D’après la question 6, T (G) est un
groupe fini et d’après la question 10, il existe ℓ ∈ N∗ et d1, . . . , dℓ ∈ N∗ tels que, pour
tout i ∈ {1, . . . , ℓ− 1}, di+1 divise di et T (G) est isomorphe à (Z/d1Z)×· · ·× (Z/dℓZ).
⋄ En conclusion, il existe un isomorphisme F1 de H dans Zk et un isomorphisme F2

de T (G) dans (Z/d1Z)× · · · × (Z/dℓZ).
Alors, en posant pour tout g ∈ G, φ(g) = (φ1(g), φ2(g)) ∈ H × T (G),
l’application g 7−→ (F1(φ1(g)), F2(φ2(g))) est un isomorphisme de G
dans Zk × [(Z/d1Z)× · · · × (Z/dℓZ)], dont l’isomorphisme réciproque
est (x1, x2) 7−→ φ−1(F−1

1 (x1), F
−1
2 (x2)).
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