DM 24 : Corrigé

Probleme 1 :
Décomposition d’un anneau

Partie I : Anneaux décomposables

1°) On suppose que A est un corps.
o Soit x € A que 'on suppose nilpotent. Il existe n € N* tel que 2" = 0. Alors z™ n’est
pas inversible, or I’ensemble des inversibles d’un anneau est toujours un groupe multi-
plicatif, donc x n’est pas inversible. Or A est un corps, donc x = 0. Réciproquement 0
est toujours nilpotent, donc dans un corps, 0 est 'unique élément nilpotent.
o Supposons que z € A est idempotent : 22 = z, donc x(z — 1) = 0, or un corps est
toujours integre, donc x = 0 ou x = 1. La réciproque étant claire, les idempotents d’un
corps sont exactement ses éléments neutres 0 et 1.

2°)

o Soit k € Z/127Z tel qu’il existe n € N* pour lequel k" = 0. Ainsi 12 | k", donc 2
et 3 interviennent nécessairement dans la décomposition primaire de k. Ainsi k est un
multiple de 6 et k € {0,6}. Réciproquement 6 = 0, donc les nilpotents de Z/127Z sont
exactement 0 et 6.

° Evaluons les carrés dans 7127 : 2 =41 =-2,3=9="3,1T =1 =
57 =1 = "5, donc les idempotents de Z/127Z sont exactement 0, 1, 4 et —3 = 0.

3°) Soit (z,y) € B x C. (z,y) est idempotent si et seulement si (z,y)* = (z,v),
c’est-a-dire si et seulement si (22, y?) = (z,y) ou encore (z? = x) A (y* = y), donc si et
seulement si x et y sont idempotents.

Ainsi, (0,0), (0,1), (1,0) et (1,1) sont 4 éléments idempotents de B x C deux a deux
distincts.
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4°) Ae est l'idéal engendré par e, donc d’apres le cours, c’est un sous-groupe additif
de A. La multiplication dans Ae est associative et distributive par rapport a I’addition,
par restriction de ces propriétés valables sur A en entier.

Si ae,be € Ae, (ae).(be) = abe € Ae, donc le produit est une loi interne sur Ae.

Enfin, pour tout ae € Ae, ae.e = ae? = ae, donc e est 1'élément neutre pour le produit
dans Ae.

En résumé, Ae est un anneau (il est bien non nul et commutatif), pour les restrictions
a Ae des lois de A, mais avec e comme élément neutre.



5°)

o(1—e€))=1-2e+e=1—e¢,donc 1 — e est idempotent.

On abiene(l—e)=e—e*=0.

o Montrons que 'application ¢ : A — [Ae| x [A(1—e)] est un morphisme d’anneaux.
©(1) = (e, 1—e) : c’est bien ’élément neutre pour la multiplication de I’anneau produit
[Ae] x [A(1 — e)].Soit z,y € A.

p(x+y) = ((z+yle (z+y)(1—e) = (ze,z(1 —e)) + (ye,y(1 —€)) = () + ¢(y) et
p(ry) = (zye,zy(l —e)) = (zyee,zy(l —e)(1 —€)) = (ze,z(1 —€)) X (ye,y(1 —¢€)),
donc p(zy) = () X ¢(y).

Ceci prouve bien que ¢ est un morphisme d’anneaux.

o Soit z € Ker(p) : 0 = ¢(x) = (ze,z(1 —e€)), donc x = ze + (1 — e) = 0. Ainsi,
Ker(p) = {0} et ¢ est injective.

o Soit (ae,b(1 —e)) € [Ae] x [A(1 — €)]. Posons = ae + b(1 — e).

Alors xe = ae? + b(1 — e)e = ae car (1 —e)e = 0 et de méme, x(1 —e) = b(1 — e) donc
o(x) = (ae,b(1 —¢e)), ce qui prouve que ¢ est surjective.

En conclusion, ¢ est un isomorphisme d’anneaux.

6°)
¢ Lemme 1 : deux anneaux isomorphes ont le méme nombre d’éléments idempotents.
En effet, soit f un isomorphisme d’un anneau A vers un anneau B. Pour tout z € A,
1? =1 < f(2?) = f(x), car f est bijective, donc 2? = x <= f(z)? = f(x). Ainsi, si
I'on note 14 et Ip les ensembles des éléments idempotents de A et de B, Ig = f(l4),
donc 14 et Ig ont le méme cardinal.
¢ Supposons que A est décomposable. Alors d’apres la question 3 et le lemme 1, il
possede au moins 4 idempotents, donc en prenant la contraposée, si les seuls éléments
idempotents de A sont 0 et 1, alors A est indécomposable.

Réciproquement, si A possede au moins un idempotent e différent de 0 et de 1, d’apres
la question 5, A est décomposable.

7°) o Soit n € N avec n > 2. Notons R(n) 'assertion suivante : si un anneau A
possede au plus n éléments idempotents, alors A est isomorphe au produit cartésien
d’un nombre fini d’anneaux indécomposables.

Pour n = 2, d’apres la question précédente, si A possede au plus deux idempotents
(nécessairement égaux a 0 et 1), alors A est indécomposable, donc c’est le produit
cartésien d’un unique anneau indécomposable, ce qui prouve R(2).

Pour n > 3, supposons R(n — 1) et considérons un anneau A qui possede au plus n
éléments idempotents. S’il en possede moins de n — 1, d’apres R(n — 1), A est iso-
morphe au produit cartésien d'un nombre fini d’anneaux indécomposables. Supposons
maintenant qu’il possede exactement n idempotents.

n > 3, donc A possede au moins un idempotent e différent de 0 et de 1. D’apres la
question 4, A est isomorphe a [Ae] x [A(1 — e)].

Notons b et ¢ le nombre d’idempotents de Ae et de A(1 — e) respectivement. D’apres
le lemme 1 et la question 3, n = bc, mais b > 2 et ¢ > 2, car 0 et 1 sont toujours
nilpotents, donc b < n et ¢ < n. On peut donc appliquer R(n — 1) aux anneaux Ae



et A(1 — e). Ainsi il existe un isomorphisme d’anneaux ¢; (resp : ) de Ae (resp :

A(l —e)) dans By x --- x B, (resp : Bpy1 X -+ X Bpi,), ol les B; sont des anneaux
indécomposables.
Posons, pour tout € A, ¥(z) = (21, ..., Zptq), OU (T1,...,2,) = p1(ze€)

et (Tp+1, ..., Tprg) = P2(x(1 — €)).

On vérifie aisément que ¥ est un isomorphisme d’anneaux, ce qui prouve R(n).
D’apres le principe de récurrence, la question est démontrée.

¢ Soit A un anneau possédant un nombre fini d’idempotents. Il existe des anneaux
indécomposables By, ..., B, et un isomorphisme d’anneaux f de A dans By X --- X B,,.
Pour tout i € {1,...,n}, les idempotents de B; sont exactement 0 et 1. D’apres la
question 3, les idempotents de By X --- x B, sont les (dy,...,d,) ou pour tout i €
{1,...,n}, d; € {0, 1}. Ils sont donc au nombre de 2". Le lemme 1 permet de conclure.

Partie Il : anneaux locaux

8°) Si A est un anneau, U(A) = A\ {0}, donc A\ U(A) = {0} : c’est I'idéal engendré
par 0.

9°) Soit k € N* et p € P. notons [ = Z/p*Z \ U(Z/p"7Z).

Pour tout n € Z,m € [ < nApt#1<=nAp+#1<= p|n, car p est premier,
donc m € I < Ja € Z/p*Z, n = p a. Ceci prouve que I = p.Z/p*Z : c’est I'idéal
engendré par p, donc Z/p*7Z est un anneau local.

10°) © Supposons que A est un anneau local.

S’il est décomposable, d’apres la question 6, il possede un idempotent e différent de 0
et de 1. Si e était inversible, de e? = e, on déduirait que e = 1 ce qui est faux, donc
e€l=A\U(A). De méme, 1 —e € I d’apres la question 5. Mais I est un idéal, donc
l=e+(1—e)€el,cequiest faux car 1 € U(A). Ainsi A est indécomposable.

o Soit n € N, avec n > 2. On a vu que si n est de la forme p* avec k € N* et p € N,
alors Z/nZ est un anneau local. Réciproquement, si n n’est pas de cette forme, on
peut écrire n = ab avec a > 2, b > 2 et a A b= 1. Alors, d’apres le théoreme chinois,
Z./nZ est isomorphe a (Z/aZ) x (Z/VZ), donc Z/nZ est décomposable. D’apres le point
précédent, il n’est pas local.

11°) Supposons que A est un anneau local. Soit x € A. Si z et 1 — x sont tous deux
non inversibles, alors en notant [ l'idéal A\ U(A), 1 =z + (1 —x) € I, ce qui est faux
car 1 € U(A). Ainsi, pour tout x € A,  ou 1 — x est inversible.
Réciproquement, supposons que A est un anneau dans lequel pour tout x € A, x ou
1 — x est inversible. Notons encore I = A\ U(A) et montrons que [ est un idéal.
— 0€eI,donc I #0.
— Soit x € I et a € A : si ax était inversible, il existerait b € A tel que
1 = (ax)b = z(ab), donc x serait inversible, ce qui est faux. Ainsi ax € .
— Soit x,y € I. Supposons que x +y € U(A).
Ainsi, il existe b € A tel que 1 = (z + y)b = xb + yb.



xb ou 1 — xb est inversible, mais x € I, donc on a déja vu que xb n’est pas
inversible. Ainsi, 1 — zb = yb est inversible, mais c’est faux car y € [I. Ainsi,
r+yel.

I est bien un idéal et A est un anneau local.

Partie III : cas des anneaux finis

12°) o Soit z € A. A est fini et N est infini, donc I'application h — 2" de N dans A
n’est pas injective. Ainsi, il existe k, £ € N tels que k > £ et ¥ = 2.
Alors pour tout a € N, 2kt = e,

Silon pose T =k — £, a**T = 24T = gk puis £*+)+T = gh+e pour tout a € N, donc
la suite ("), est T-périodique.

Soit b € N* tel que bT > k. Alors 2% = 2T+ = 2012

donc 2% est idempotent et bT € N*.
¢ Supposons que A est indécomposable. Soit x € A. Il existe n € N* tel que x™ est
idempotent, donc d’apres la question 6, 2 € {0,1}. Si 2 = 1, alors x est inversible,
d’inverse "7 et si 2" = 0, alors z est nilpotent. Ainsi, tout élément de A est soit
inversible, soit nilpotent.

13°) o D’apres la question 10, si A est local, alors A est indécomposable. Réciproquement,
supposons A est indécomposable. Soit z un élément non inversible de A. Alors il existe

n—1
n € N* tel que 2" = 0. Ainsi, (1 — x) ka =1—2" =1, donc 1 — z est inversible.

k=0
Ceci montre que pour tout € A, x ou 1 — x est inversible. Alors A est local d’apres

la question 11.
¢ Cette propriété devient fausse pour des anneaux de cardinal infini, car Z constitue
un contre-exemple. En effet, Z est indécomposable car ses seuls idempotents sont 0 et
1, mais il n’est pas local car 3 et 1 — 3 ne sont pas inversibles dans Z.

14°)
©  Supposons qu’il existe un isomorphisme f de A vers un produit cartésien de corps
Ky x -+ x Ky, o p € N*. Soit z € A un élément nilpotent. Il existe n € N* tel que
2" =0.Alors 0 = f(0) = f(z") = f(x)" = (21,...,2,)", en posant f(x) = (x1,...,3p).
Ainsi, pour tout ¢ € N, 27' = 0, or z; € K; et K; est un corps, donc d’apres la premiere
question, x; = 0. On en déduit que z = 0.
o Réciproquement, supposons que A ne possede aucun élément nilpotent non nul.
D’apres la question 7, il existe un isomorphisme f de A vers un produit cartésien
B, x --- x B, d’anneaux indécomposables et finis.

Soit @ € N, et soit x € B; avec x # 0. D’apres la question 12, si # n’est pas inversible,
il est nilpotent. Alors f~1(0,...,0,2,0,...,0) est un élément nilpotent non nul de A,
ce qui est impossible. Ainsi, x est inversible ce qui prouve que B; est un corps. Alors
A est isomorphe a un produit cartésien de corps.

15°) Si n est un produit de nombres premiers deux a deux distincts, d’apres le



théoreme chinois et le fait que Z/pZ est un corps pour tout nombre premier p, Z/nZ
est isomorphe a un produit cartésien de corps.

Si au contraire il existe p € P et a € N* tel que n = p2a, alors pa est un élément
nilpotent non nul de Z/nZ, donc Z/nZ n’est pas isomorphe a un produit cartésien de
corps.

Probléme 2 :
Nombre d’enroulements de Poincaré

Partie I : groupe d’enroulement de Poincaré

1°) Soit f € Hom. Pour tout z € R,
fle+)=fx)+1 <= f(z+1)—(x+1)=f(z)—x
> [f — Idg](z + 1) = [f — Idg](x),

donc f € H si et seulement si f — Idg est une application périodique de période 1.
2°)
o Notons S(R) 'ensemble des bijections de R dans R. D’apres le cours, S(R) et un
groupe pour la loi de composition, c’est le groupe symétrique de R. Montrons que Hom
est un sous-groupe de S(R).

Idg est une bijection continue sur R, donc Idgr € Hom et Hom # ().

Si f,g € Hom, f o g est continue et bijective d’apres le cours, donc f o g € Hom.

Si f € Hom, alors f~! est une bijection et elle est continue d’apres le théoreme de la
bijection. Ceci démontre que Hom est un sous-groupe de S(R).
¢ Montrons que H est un sous-groupe de Hom.
Idg est un élément de H, donc H # ().

Soit f,g € H. Pour tout = € R, [fogl(x+1) = f(g(z+1)) = f(g(z)+1) = f(g(x))+1,
donc fog e H.

Soit f € H. Soit z € R. Posons y = f~!(z). On sait que f(y+1) = f(y)+1 = x+1, donc
en composant cette égalité par [~ y+1= f~1(z+1),donc f(z+1)= fz)+1.
Ainsi, f~ € H. Ceci démontre que H est un sous-groupe de Hom.

3°) o f — Idg est 1-périodique, donc pour tout m € Z et x € R,

(f = Idg)(x +m) = (f — Idg)(x), puis f(z +m) = f(x) +m.

o f est continue et injective, donc d’apres le cours f est strictement monotone. Or
f(1) = f(0)+1 > f(0), donc f est strictement croissante.

4°) o Notons f : &+ x + 5 sin(27z).

f est continue d’apres les théoremes usuels. f est méme dérivable avec

f'(z) = 1+ cos(2mzx), donc pour tout x € R, f'(z) > 0 et f est croissante.

De plus, f'(z) =0 <= 21rx € 1+ 277 <= x € % + Z. Ainsi, f’ n’est identiquement
nulle sur aucun intervalle d’intérieur non vide, donc d’apres le cours, f est strictement
croissante.



f(x) > x — 5=, donc d’apres le principe des gendarmes, f(z) - +00. De méme,
T—r+00

f(z) < x+ 5, donc f(z) o oo D’apres le théoreme des valeurs intermédiaires,
f réalise donc une surjection de R dans R, injective car f est strictement croissante.
Ainsi, f € Hom.

f — Idg est clairement 1-périodique, donc f € H.

o Soit a,b € R. Supposons que z — ax + b est un élément de H. Alors, pour tout
reR a(lr+1)+b=ax+b+1, donca=1.

Réciproquement, si a = 1, I'application f : z —— 2+ b est une bijection continue telle
que pour tout x € R, f(x + 1) = f(x) + 1, donc f € H.

En conclusion, les applications affines de H sont les x —— x + b ou b est un réel
quelconque.

Partie II : nombre d’enroulements de Poincaré

5°) © On suppose que z <y < z + 1.

H est un groupe, donc f" € H. Ainsi, f" est strictement croissante,

donc f"(z) < f"(y) < f"(x +1) = f*(x) + 1. Ainsi 0 < f*(y) — f"(z) < 1.

Par ailleurs, —1 < x — y < 0, donc en sommant ces deux encadrements,

—1 < f™(y) =y~ (f"(x) — ) < 1. On en déduit que |(f"(y) —y) — (/" () —2)] <1,
puis en divisant par n que |u,(y) — u,(z)] < —.

¢ Supposons maintenant que x et y sont quelconques dans R. Il existe k € Z tel que
x<y+k<z+1 (en prenant k = [x — y|). D’apres le point précédent,

lun(y + k) —un(x)] < %, or u, est 1-périodique car f* € H, donc u,(y+ k) = u,(y) et

1
on a bien encore |u,(y) — u,(z)| < —.
n

m—1 m—1
1 1
6°) © Soit N — > u,(f*(0)) = — (+0m(0) — f57(0)). 1l s’agit d’
) o Soltmm €N LS (7 0) = 1SS0/ 0). Dl e
s !
tél . d - . kn — _— (fmn _ = Upm .
somume télescopique, done — gu (f5(0)) nm(f (0) = 0) = Upm(0)
1 m 17
O Ntpm(0) — u,(0)] = ’E (un (f5(0)) — un(O))), donc par inégalité triangulaire,
1 m—1 =0
|t (0) — u, (0)] < — |, (f¥(0)) — u,(0))], puis d’apres la question précédente,
m
k=0
m—1
1 1 1
om0 < 10371 =

¢ Soit € > 0. Il existe N € N* tel que % <e.
Soit p, ¢ > N. Par inégalité triangulaire,



[p(0) — g (0)] < Jup(0) — tpg(0)] + [tpg(0) — ug(0)] < 5+ ¢ < § <&, donc (un(0))ner
est une suite de Cauchy. D’apres le cours, elle est convergente.

7°) Soit z € R. |u,(z) — u,(0)] < 1,

donc u, () = u,(0) + o(1) = p(f) + o(1). De plus u,(z) = f”T(:c) - % = f”r(l:c) + o(1),
done T8 = () 1) —_ot),

Partie I1I :
Propriété du nombre d’enroulements

8°) Soit b € R. Notons f : x> x+0b. f € H d’apres la question 4.

Pour tout n € N, f*(x) = x + nb (par récurrence sur n), donc u,(0) = b - b. Donc
n—-+0oo

p(f) = b, ce qui montre que p est surjectif.

9°) © On suppose que, pour tout = € R, f(z) > x.

f — Idg est continue sur le compact [0, 1], donc elle atteint son minimum : il existe
zo € [0,1] tel que, pour tout z € [0,1], f(x) —x > f(xo) — xo. Mais f — Idg est
1-périodique, donc pour tout = € R, f(z) —x > f(x¢) — xg = m. On a bien m > 0 car
par hypothese, f(xg) > .

o Par récurrence sur n, on montre que, pour tout z € Ret n € N, f"(z) > z +nm
(en effet, si f"(x) > « +nm, f étant croissante,

fO(z) > f(x +nm) > o+ nm +m). Ainsi, u,(0) > m, puis en passant a la limite,
p(f) = m > 0.

© Supposons maintenant que, pour tout x € R, f(x) < x. Alors en utilisant le maxi-
mum de (f — Idgr)|jp1], on montre qu'il existe m < 0 tel que, pour tout € R,
f(z) < x4+ m. On en déduit que pour tout n € N, f*(x) < z + nm, puis que
p(f) <m <0.

10°) o Supposons que p(f) = 0. Alors d’apres la question précédente, il existe z € R
tel que f(z) < x et il existe y € R tel que f(y) > y. Ainsi, 'application continue
f — Idg change de signe, donc d’apres le théoreme des valeurs intermédiaires, il existe
z € R tel que f(z) = z : f possede donc un point fixe.

Réciproquement, s'il existe a € R tel que f(a) = a, alors pour tout n € N, f"(a) = q,

donc f_@) -4 0, ce qui prouve que p(f) = 0.
n n n—-+oo

¢ Lorsque h est Iapplication © —— x + % sin(27x), h(0) = 0, donc d’apres le point
précédent, p(h) = 0.

11°) Soit f € H.
o Supposons qu’il existe p € Z, ¢ € N* et a € R tels que f%(a) =a+ p.
Alors, par récurrence sur n, on montre que pour tout n € N, f"(a) = a+np : en effet,
si fM(a) = a + np, alors f("V9(a) = fi(a + np) = fi(a) +np car np € Z et f9 € H,
donc f"(a) = a + (n + 1)p.



ng
On en déduit que "(a) _atnp — ]—?, donc p(f) =2 € Q.

nq ng n—teoq !
o Réciproquement, supposons qu’il existe p € Z et ¢ € N* tels que p(f) =
Notons g : z+— f%z) —p. f9€ H, donc g € H.
Par récurrence sur n, on montre que, pour tout n € N et z € R, ¢"(z) = f"(x) — np.

"(0)  f(0)
n ng

précédente, il existe a € R tel que g(a) = a, c’est-a-dire tel que f?(a) = a + p.

SN

Alinsi, ¢=p —> p(f)g—p = 0. Ainsi p(g) = 0, donc d’apres la question
—+00

Partie IV : Invariance par conjugaison

12°) Soit ¢ € H. Soit r € R.
@ — Idg est continue sur le compact [0, 1] et elle est 1-périodique, donc il existe M € R
tel que, pour tout z € R, 0 < |p(z) — x| < M.

Alors 0 < ‘90(7”") - 7" - olnr) — ] < % — plnr)
n

0, donc — .
n n n—+oo n n—+oo

13°) Par récurrence, on montre que, pour tout n € N, g" = ¢~ fp,

plg" (@) f"(n(x)) "l p(f) d’apres la question 7.

14°) <>Sotcx€Retn€N*
Lg"(x) — np(9)] < g"(x) — np(g), done np(g) < g"(x) — [g"(z) — np(g)], or ¢ est
croissante, donc (np(g)) < (9" (x) — [g"(z) —np(g)]) = v(g"(z)) — 9" (x) — np(g)]
d’apres la question 3.
De méme, |g"(x)—np(g)] = g"(x) —np(g)—1, donc np(g) > g"(x)—[g"(x) —np(g)] -1,
puis p(np(g)) = ¢(g"(x)) — 9" () —np(g)] — 1.
On conclut en divisant par n.
o g"(x) —nplg) — 1 < [g"(x) — np(g)] < g"(z) — np(g), donc en divisant par
g"(@) —npg) =1 _ g"() —npl9)] _ ¢"(x) — ( )

donc

IA

, or les deux suites en-

)

n n
cadrantes tendent vers p(g) — p(g) = 0, donc d’ apres le principe des gendarmes,

Lg"(x) = npl9)] — 0. Alors, toujours d’apres le principe des gendarmes et d’apres

n n—-+4o0o

o(np(g)) ().

la question 13, I'encadrement du point précédent montre que ———=~ —

n n——+oo
—w(np(g)) —+> p(g), donc d’apres l'unicité de la limite,
n n—-+0o

Or d’apres la question 12,
p(f) = p(9)-

15°) La réciproque est fausse : en effet, si 'on prend
g x+—> x+%sin(2ms) et f 1 x+—— x,onavuque p(f)=p(g) =0, mais f et g ne
sont pas conjuguées dans H, car pour tout ¢ € H, o tofop = o toldrop = Idg # g.



