
DM 24 : Corrigé

Problème 1 :

Décomposition d’un anneau

Partie I : Anneaux décomposables

1◦) On suppose que A est un corps.
⋄ Soit x ∈ A que l’on suppose nilpotent. Il existe n ∈ N∗ tel que xn = 0. Alors xn n’est
pas inversible, or l’ensemble des inversibles d’un anneau est toujours un groupe multi-
plicatif, donc x n’est pas inversible. Or A est un corps, donc x = 0. Réciproquement 0
est toujours nilpotent, donc dans un corps, 0 est l’unique élément nilpotent.
⋄ Supposons que x ∈ A est idempotent : x2 = x, donc x(x − 1) = 0, or un corps est
toujours intègre, donc x = 0 ou x = 1. La réciproque étant claire, les idempotents d’un
corps sont exactement ses éléments neutres 0 et 1.

2◦)
⋄ Soit k ∈ Z/12Z tel qu’il existe n ∈ N∗ pour lequel k

n
= 0. Ainsi 12 | kn, donc 2

et 3 interviennent nécessairement dans la décomposition primaire de k. Ainsi k est un
multiple de 6 et k ∈ {0, 6}. Réciproquement 6

2
= 0, donc les nilpotents de Z/12Z sont

exactement 0 et 6.
⋄ Évaluons les carrés dans Z/12Z : 2

2
= 4 = −2

2
, 3

2
= 9 = −3

2
, 4

2
= 4 = −4

2
,

5
2
= 1 = −5

2
, donc les idempotents de Z/12Z sont exactement 0, 1, 4 et −3 = 9.

3◦) Soit (x, y) ∈ B × C. (x, y) est idempotent si et seulement si (x, y)2 = (x, y),
c’est-à-dire si et seulement si (x2, y2) = (x, y) ou encore (x2 = x)∧ (y2 = y), donc si et
seulement si x et y sont idempotents.
Ainsi, (0, 0), (0, 1), (1, 0) et (1, 1) sont 4 éléments idempotents de B × C deux à deux
distincts.

4◦) Ae est l’idéal engendré par e, donc d’après le cours, c’est un sous-groupe additif
de A. La multiplication dans Ae est associative et distributive par rapport à l’addition,
par restriction de ces propriétés valables sur A en entier.
Si ae, be ∈ Ae, (ae).(be) = abe ∈ Ae, donc le produit est une loi interne sur Ae.
Enfin, pour tout ae ∈ Ae, ae.e = ae2 = ae, donc e est l’élément neutre pour le produit
dans Ae.
En résumé, Ae est un anneau (il est bien non nul et commutatif), pour les restrictions
à Ae des lois de A, mais avec e comme élément neutre.
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5◦)
⋄ (1− e)2 = 1− 2e+ e = 1− e, donc 1− e est idempotent.
On a bien e(1− e) = e− e2 = 0.
⋄ Montrons que l’application φ : A −→ [Ae]×[A(1−e)] est un morphisme d’anneaux.
φ(1) = (e, 1−e) : c’est bien l’élément neutre pour la multiplication de l’anneau produit
[Ae]× [A(1− e)].Soit x, y ∈ A.
φ(x+ y) = ((x+ y)e, (x+ y)(1− e)) = (xe, x(1− e)) + (ye, y(1− e)) = φ(x) + φ(y) et
φ(xy) = (xye, xy(1 − e)) = (xyee, xy(1 − e)(1 − e)) = (xe, x(1 − e)) × (ye, y(1 − e)),
donc φ(xy) = φ(x)× φ(y).
Ceci prouve bien que φ est un morphisme d’anneaux.
⋄ Soit x ∈ Ker(φ) : 0 = φ(x) = (xe, x(1 − e)), donc x = xe + x(1 − e) = 0. Ainsi,
Ker(φ) = {0} et φ est injective.
⋄ Soit (ae, b(1− e)) ∈ [Ae]× [A(1− e)]. Posons x = ae+ b(1− e).
Alors xe = ae2 + b(1− e)e = ae car (1− e)e = 0 et de même, x(1− e) = b(1− e) donc
φ(x) = (ae, b(1− e)), ce qui prouve que φ est surjective.
En conclusion, φ est un isomorphisme d’anneaux.

6◦)
⋄ Lemme 1 : deux anneaux isomorphes ont le même nombre d’éléments idempotents.
En effet, soit f un isomorphisme d’un anneau A vers un anneau B. Pour tout x ∈ A,
x2 = x ⇐⇒ f(x2) = f(x), car f est bijective, donc x2 = x ⇐⇒ f(x)2 = f(x). Ainsi, si
l’on note IA et IB les ensembles des éléments idempotents de A et de B, IB = f(IA),
donc IA et IB ont le même cardinal.
⋄ Supposons que A est décomposable. Alors d’après la question 3 et le lemme 1, il
possède au moins 4 idempotents, donc en prenant la contraposée, si les seuls éléments
idempotents de A sont 0 et 1, alors A est indécomposable.
Réciproquement, si A possède au moins un idempotent e différent de 0 et de 1, d’après
la question 5, A est décomposable.

7◦) ⋄ Soit n ∈ N avec n ≥ 2. Notons R(n) l’assertion suivante : si un anneau A
possède au plus n éléments idempotents, alors A est isomorphe au produit cartésien
d’un nombre fini d’anneaux indécomposables.
Pour n = 2, d’après la question précédente, si A possède au plus deux idempotents
(nécessairement égaux à 0 et 1), alors A est indécomposable, donc c’est le produit
cartésien d’un unique anneau indécomposable, ce qui prouve R(2).
Pour n ≥ 3, supposons R(n − 1) et considérons un anneau A qui possède au plus n
éléments idempotents. S’il en possède moins de n − 1, d’après R(n − 1), A est iso-
morphe au produit cartésien d’un nombre fini d’anneaux indécomposables. Supposons
maintenant qu’il possède exactement n idempotents.
n ≥ 3, donc A possède au moins un idempotent e différent de 0 et de 1. D’après la
question 4, A est isomorphe à [Ae]× [A(1− e)].
Notons b et c le nombre d’idempotents de Ae et de A(1 − e) respectivement. D’après
le lemme 1 et la question 3, n = bc, mais b ≥ 2 et c ≥ 2, car 0 et 1 sont toujours
nilpotents, donc b < n et c < n. On peut donc appliquer R(n − 1) aux anneaux Ae

2



et A(1 − e). Ainsi il existe un isomorphisme d’anneaux φ1 (resp : φ2) de Ae (resp :
A(1 − e)) dans B1 × · · · × Bp (resp : Bp+1 × · · · × Bp+q), où les Bi sont des anneaux
indécomposables.
Posons, pour tout x ∈ A, Ψ(x) = (x1, . . . , xp+q), où (x1, . . . , xp) = φ1(xe)
et (xp+1, . . . , xp+q) = φ2(x(1− e)).
On vérifie aisément que Ψ est un isomorphisme d’anneaux, ce qui prouve R(n).
D’après le principe de récurrence, la question est démontrée.
⋄ Soit A un anneau possédant un nombre fini d’idempotents. Il existe des anneaux
indécomposables B1, . . . , Bn et un isomorphisme d’anneaux f de A dans B1×· · ·×Bn.
Pour tout i ∈ {1, . . . , n}, les idempotents de Bi sont exactement 0 et 1. D’après la
question 3, les idempotents de B1 × · · · × Bn sont les (d1, . . . , dn) où pour tout i ∈
{1, . . . , n}, di ∈ {0, 1}. Ils sont donc au nombre de 2n. Le lemme 1 permet de conclure.

Partie II : anneaux locaux

8◦) Si A est un anneau, U(A) = A\{0}, donc A\U(A) = {0} : c’est l’idéal engendré
par 0.

9◦) Soit k ∈ N∗ et p ∈ P. notons I = Z/pkZ \ U(Z/pkZ).
Pour tout n ∈ Z, n ∈ I ⇐⇒ n ∧ pk ̸= 1 ⇐⇒ n ∧ p ̸= 1 ⇐⇒ p | n, car p est premier,
donc n ∈ I ⇐⇒ ∃a ∈ Z/pkZ, n = p a. Ceci prouve que I = p.Z/pkZ : c’est l’idéal
engendré par p, donc Z/pkZ est un anneau local.

10◦) ⋄ Supposons que A est un anneau local.
S’il est décomposable, d’après la question 6, il possède un idempotent e différent de 0
et de 1. Si e était inversible, de e2 = e, on déduirait que e = 1 ce qui est faux, donc
e ∈ I = A \U(A). De même, 1− e ∈ I d’après la question 5. Mais I est un idéal, donc
1 = e+ (1− e) ∈ I, ce qui est faux car 1 ∈ U(A). Ainsi A est indécomposable.
⋄ Soit n ∈ N, avec n ≥ 2. On a vu que si n est de la forme pk avec k ∈ N∗ et p ∈ N,
alors Z/nZ est un anneau local. Réciproquement, si n n’est pas de cette forme, on
peut écrire n = ab avec a ≥ 2, b ≥ 2 et a ∧ b = 1. Alors, d’après le théorème chinois,
Z/nZ est isomorphe à (Z/aZ)×(Z/bZ), donc Z/nZ est décomposable. D’après le point
précédent, il n’est pas local.

11◦) Supposons que A est un anneau local. Soit x ∈ A. Si x et 1− x sont tous deux
non inversibles, alors en notant I l’idéal A \U(A), 1 = x+ (1− x) ∈ I, ce qui est faux
car 1 ∈ U(A). Ainsi, pour tout x ∈ A, x ou 1− x est inversible.
Réciproquement, supposons que A est un anneau dans lequel pour tout x ∈ A, x ou
1− x est inversible. Notons encore I = A \ U(A) et montrons que I est un idéal.

— 0 ∈ I, donc I ̸= ∅.
— Soit x ∈ I et a ∈ A : si ax était inversible, il existerait b ∈ A tel que

1 = (ax)b = x(ab), donc x serait inversible, ce qui est faux. Ainsi ax ∈ I.
— Soit x, y ∈ I. Supposons que x+ y ∈ U(A).

Ainsi, il existe b ∈ A tel que 1 = (x+ y)b = xb+ yb.
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xb ou 1 − xb est inversible, mais x ∈ I, donc on a déjà vu que xb n’est pas
inversible. Ainsi, 1 − xb = yb est inversible, mais c’est faux car y ∈ I. Ainsi,
x+ y ∈ I.

I est bien un idéal et A est un anneau local.

Partie III : cas des anneaux finis

12◦) ⋄ Soit x ∈ A. A est fini et N est infini, donc l’application h 7−→ xh de N dans A
n’est pas injective. Ainsi, il existe k, ℓ ∈ N tels que k > ℓ et xk = xℓ.
Alors pour tout a ∈ N, xk+a = xℓ+a.
Si l’on pose T = k− ℓ, xk+T = xℓ+T = xk, puis x(k+a)+T = xk+a pour tout a ∈ N, donc
la suite (xh)h≥k est T -périodique.
Soit b ∈ N∗ tel que bT ≥ k. Alors xbT = xbT+bT = [xbT ]2,
donc xbT est idempotent et bT ∈ N∗.
⋄ Supposons que A est indécomposable. Soit x ∈ A. Il existe n ∈ N∗ tel que xn est
idempotent, donc d’après la question 6, xn ∈ {0, 1}. Si xn = 1, alors x est inversible,
d’inverse xn−1 et si xn = 0, alors x est nilpotent. Ainsi, tout élément de A est soit
inversible, soit nilpotent.

13◦) ⋄D’après la question 10, siA est local, alorsA est indécomposable. Réciproquement,
supposons A est indécomposable. Soit x un élément non inversible de A. Alors il existe

n ∈ N∗ tel que xn = 0. Ainsi, (1 − x)
n−1∑
k=0

xk = 1 − xn = 1, donc 1 − x est inversible.

Ceci montre que pour tout x ∈ A, x ou 1 − x est inversible. Alors A est local d’après
la question 11.
⋄ Cette propriété devient fausse pour des anneaux de cardinal infini, car Z constitue
un contre-exemple. En effet, Z est indécomposable car ses seuls idempotents sont 0 et
1, mais il n’est pas local car 3 et 1− 3 ne sont pas inversibles dans Z.

14◦)
⋄ Supposons qu’il existe un isomorphisme f de A vers un produit cartésien de corps
K1 × · · · × Kp, où p ∈ N∗. Soit x ∈ A un élément nilpotent. Il existe n ∈ N∗ tel que
xn = 0. Alors 0 = f(0) = f(xn) = f(x)n = (x1, . . . , xp)

n, en posant f(x) = (x1, . . . , xp).
Ainsi, pour tout i ∈ Np, x

n
i = 0, or xi ∈ Ki et Ki est un corps, donc d’après la première

question, xi = 0. On en déduit que x = 0.
⋄ Réciproquement, supposons que A ne possède aucun élément nilpotent non nul.
D’après la question 7, il existe un isomorphisme f de A vers un produit cartésien
B1 × · · · ×Bp d’anneaux indécomposables et finis.
Soit i ∈ Np et soit x ∈ Bi avec x ̸= 0. D’après la question 12, si x n’est pas inversible,
il est nilpotent. Alors f−1(0, . . . , 0, x, 0, . . . , 0) est un élément nilpotent non nul de A,
ce qui est impossible. Ainsi, x est inversible ce qui prouve que Bi est un corps. Alors
A est isomorphe à un produit cartésien de corps.

15◦) Si n est un produit de nombres premiers deux à deux distincts, d’après le
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théorème chinois et le fait que Z/pZ est un corps pour tout nombre premier p, Z/nZ
est isomorphe à un produit cartésien de corps.
Si au contraire il existe p ∈ P et a ∈ N∗ tel que n = p2a, alors pa est un élément
nilpotent non nul de Z/nZ, donc Z/nZ n’est pas isomorphe à un produit cartésien de
corps.

Problème 2 :

Nombre d’enroulements de Poincaré

Partie I : groupe d’enroulement de Poincaré

1◦) Soit f ∈ Hom. Pour tout x ∈ R,
f(x+ 1) = f(x) + 1 ⇐⇒ f(x+ 1)− (x+ 1) = f(x)− x

⇐⇒ [f − IdR](x+ 1) = [f − IdR](x),
donc f ∈ H si et seulement si f − IdR est une application périodique de période 1.

2◦)
⋄ Notons S(R) l’ensemble des bijections de R dans R. D’après le cours, S(R) et un
groupe pour la loi de composition, c’est le groupe symétrique de R. Montrons que Hom
est un sous-groupe de S(R).
IdR est une bijection continue sur R, donc IdR ∈ Hom et Hom ̸= ∅.
Si f, g ∈ Hom, f ◦ g est continue et bijective d’après le cours, donc f ◦ g ∈ Hom.
Si f ∈ Hom, alors f−1 est une bijection et elle est continue d’après le théorème de la
bijection. Ceci démontre que Hom est un sous-groupe de S(R).
⋄ Montrons que H est un sous-groupe de Hom.
IdR est un élément de H, donc H ̸= ∅.
Soit f, g ∈ H. Pour tout x ∈ R, [f ◦g](x+1) = f(g(x+1)) = f(g(x)+1) = f(g(x))+1,
donc f ◦ g ∈ H.
Soit f ∈ H. Soit x ∈ R. Posons y = f−1(x). On sait que f(y+1) = f(y)+1 = x+1, donc
en composant cette égalité par f−1, y+1 = f−1(x+1), donc f−1(x+1) = f−1(x) + 1.
Ainsi, f−1 ∈ H. Ceci démontre que H est un sous-groupe de Hom.

3◦) ⋄ f − IdR est 1-périodique, donc pour tout m ∈ Z et x ∈ R,
(f − IdR)(x+m) = (f − IdR)(x), puis f(x+m) = f(x) +m.
⋄ f est continue et injective, donc d’après le cours f est strictement monotone. Or
f(1) = f(0) + 1 > f(0), donc f est strictement croissante.

4◦) ⋄ Notons f : x 7−→ x+ 1
2π

sin(2πx).
f est continue d’après les théorèmes usuels. f est même dérivable avec
f ′(x) = 1 + cos(2πx), donc pour tout x ∈ R, f ′(x) ≥ 0 et f est croissante.
De plus, f ′(x) = 0 ⇐⇒ 2πx ∈ π + 2πZ ⇐⇒ x ∈ 1

2
+ Z. Ainsi, f ′ n’est identiquement

nulle sur aucun intervalle d’intérieur non vide, donc d’après le cours, f est strictement
croissante.
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f(x) ≥ x − 1
2π
, donc d’après le principe des gendarmes, f(x) −→

x→+∞
+∞. De même,

f(x) ≤ x + 1
2π
, donc f(x) −→

x→−∞
−∞. D’après le théorème des valeurs intermédiaires,

f réalise donc une surjection de R dans R, injective car f est strictement croissante.
Ainsi, f ∈ Hom.
f − IdR est clairement 1-périodique, donc f ∈ H.
⋄ Soit a, b ∈ R. Supposons que x 7−→ ax + b est un élément de H. Alors, pour tout
x ∈ R, a(x+ 1) + b = ax+ b+ 1, donc a = 1.
Réciproquement, si a = 1, l’application f : x 7−→ x+ b est une bijection continue telle
que pour tout x ∈ R, f(x+ 1) = f(x) + 1, donc f ∈ H.
En conclusion, les applications affines de H sont les x 7−→ x + b où b est un réel
quelconque.

Partie II : nombre d’enroulements de Poincaré

5◦) ⋄ On suppose que x ≤ y < x+ 1.
H est un groupe, donc fn ∈ H. Ainsi, fn est strictement croissante,
donc fn(x) ≤ fn(y) < fn(x+ 1) = fn(x) + 1. Ainsi 0 ≤ fn(y)− fn(x) ≤ 1.
Par ailleurs, −1 ≤ x− y ≤ 0, donc en sommant ces deux encadrements,
−1 ≤ fn(y)− y − (fn(x)− x) ≤ 1. On en déduit que |(fn(y)− y)− (fn(x)− x)| ≤ 1,

puis en divisant par n que |un(y)− un(x)| ≤
1

n
.

⋄ Supposons maintenant que x et y sont quelconques dans R. Il existe k ∈ Z tel que
x ≤ y + k < x+ 1 (en prenant k = ⌈x− y⌉). D’après le point précédent,

|un(y+ k)− un(x)| ≤
1

n
, or un est 1-périodique car fn ∈ H, donc un(y+ k) = un(y) et

on a bien encore |un(y)− un(x)| ≤
1

n
.

6◦) ⋄ Soit n,m ∈ N∗.
1

m

m−1∑
k=0

un(f
kn(0)) =

1

nm

m−1∑
k=0

(f (k+1)n(0)−fkn(0)). Il s’agit d’une

somme télescopique, donc
1

m

m−1∑
k=0

un(f
kn(0)) =

1

nm
(fmn(0)− 0) = unm(0).

⋄ |unm(0) − un(0)| =
∣∣∣ 1
m

m−1∑
k=0

(un(f
kn(0)) − un(0))

∣∣∣, donc par inégalité triangulaire,

|unm(0) − un(0)| ≤
1

m

m−1∑
k=0

|un(f
kn(0)) − un(0))|, puis d’après la question précédente,

|unm(0)− un(0)| ≤
1

m

m−1∑
k=0

1

n
=

1

n
.

⋄ Soit ε > 0. Il existe N ∈ N∗ tel que 2
N

≤ ε.
Soit p, q ≥ N . Par inégalité triangulaire,
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|up(0)− uq(0)| ≤ |up(0)− upq(0)|+ |upq(0)− uq(0)| ≤ 1
p
+ 1

q
≤ 2

N
≤ ε, donc (un(0))n∈N∗

est une suite de Cauchy. D’après le cours, elle est convergente.

7◦) Soit x ∈ R. |un(x)− un(0)| ≤ 1
n
,

donc un(x) = un(0) + o(1) = ρ(f) + o(1). De plus un(x) =
fn(x)

n
− x

n
=

fn(x)

n
+ o(1),

donc
fn(x)

n
= ρ(f) + o(1) −→

n→+∞
ρ(f).

Partie III :
Propriété du nombre d’enroulements

8◦) Soit b ∈ R. Notons f : x 7−→ x+ b. f ∈ H d’après la question 4.
Pour tout n ∈ N, fn(x) = x+ nb (par récurrence sur n), donc un(0) = b −→

n→+∞
b. Donc

ρ(f) = b, ce qui montre que ρ est surjectif.

9◦) ⋄ On suppose que, pour tout x ∈ R, f(x) > x.
f − IdR est continue sur le compact [0, 1], donc elle atteint son minimum : il existe
x0 ∈ [0, 1] tel que, pour tout x ∈ [0, 1], f(x) − x ≥ f(x0) − x0. Mais f − IdR est
1-périodique, donc pour tout x ∈ R, f(x)− x ≥ f(x0)− x0 = m. On a bien m > 0 car
par hypothèse, f(x0) > x0.
⋄ Par récurrence sur n, on montre que, pour tout x ∈ R et n ∈ N, fn(x) ≥ x + nm
(en effet, si fn(x) ≥ x+ nm, f étant croissante,
f (n+1)(x) ≥ f(x+ nm) ≥ x+ nm+m). Ainsi, un(0) ≥ m, puis en passant à la limite,
ρ(f) ≥ m > 0.
⋄ Supposons maintenant que, pour tout x ∈ R, f(x) < x. Alors en utilisant le maxi-
mum de (f − IdR)|[0,1], on montre qu’il existe m < 0 tel que, pour tout x ∈ R,
f(x) ≤ x + m. On en déduit que pour tout n ∈ N, fn(x) ≤ x + nm, puis que
ρ(f) ≤ m < 0.

10◦) ⋄ Supposons que ρ(f) = 0. Alors d’après la question précédente, il existe x ∈ R
tel que f(x) ≤ x et il existe y ∈ R tel que f(y) ≥ y. Ainsi, l’application continue
f − IdR change de signe, donc d’après le théorème des valeurs intermédiaires, il existe
z ∈ R tel que f(z) = z : f possède donc un point fixe.
Réciproquement, s’il existe a ∈ R tel que f(a) = a, alors pour tout n ∈ N, fn(a) = a,

donc
fn(a)

n
=

a

n
−→

n→+∞
0, ce qui prouve que ρ(f) = 0.

⋄ Lorsque h est l’application x 7−→ x + 1
2π

sin(2πx), h(0) = 0, donc d’après le point
précédent, ρ(h) = 0.

11◦) Soit f ∈ H.
⋄ Supposons qu’il existe p ∈ Z, q ∈ N∗ et a ∈ R tels que f q(a) = a+ p.
Alors, par récurrence sur n, on montre que pour tout n ∈ N, fnq(a) = a+np : en effet,
si fnq(a) = a + np, alors f (n+1)q(a) = f q(a + np) = f q(a) + np car np ∈ Z et f q ∈ H,
donc f (n+1)q(a) = a+ (n+ 1)p.
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On en déduit que
fnq(a)

nq
=

a+ np

nq
−→

n→+∞

p

q
, donc ρ(f) = p

q
∈ Q.

⋄ Réciproquement, supposons qu’il existe p ∈ Z et q ∈ N∗ tels que ρ(f) = p
q
.

Notons g : x 7−→ f q(x)− p. f q ∈ H, donc g ∈ H.
Par récurrence sur n, on montre que, pour tout n ∈ N et x ∈ R, gn(x) = fnq(x)− np.

Ainsi,
gn(0)

n
=

fnq(0)

nq
q−p −→

n→+∞
ρ(f)q−p = 0. Ainsi ρ(g) = 0, donc d’après la question

précédente, il existe a ∈ R tel que g(a) = a, c’est-à-dire tel que f q(a) = a+ p.

Partie IV : Invariance par conjugaison

12◦) Soit φ ∈ H. Soit r ∈ R.
φ−IdR est continue sur le compact [0, 1] et elle est 1-périodique, donc il existe M ∈ R+

tel que, pour tout x ∈ R, 0 ≤ |φ(x)− x| ≤ M .

Alors 0 ≤
∣∣∣φ(nr)

n
− r

∣∣∣ = |φ(nr)− nr|
n

≤ M

n
−→

n→+∞
0, donc

φ(nr)

n
−→

n→+∞
r.

13◦) Par récurrence, on montre que, pour tout n ∈ N, gn = φ−1fnφ,

donc
φ(gn(x))

n
=

fn(φ(x))

n
−→

n→+∞
ρ(f) d’après la question 7.

14◦) ⋄ Soit x ∈ R et n ∈ N∗.
⌊gn(x) − nρ(g)⌋ ≤ gn(x) − nρ(g), donc nρ(g) ≤ gn(x) − ⌊gn(x) − nρ(g)⌋, or φ est
croissante, donc φ(nρ(g)) ≤ φ(gn(x)− ⌊gn(x)− nρ(g)⌋) = φ(gn(x))− ⌊gn(x)− nρ(g)⌋
d’après la question 3.
De même, ⌊gn(x)−nρ(g)⌋ ≥ gn(x)−nρ(g)−1, donc nρ(g) ≥ gn(x)−⌊gn(x)−nρ(g)⌋−1,
puis φ(nρ(g)) ≥ φ(gn(x))− ⌊gn(x)− nρ(g)⌋ − 1.
On conclut en divisant par n.
⋄ gn(x) − nρ(g) − 1 ≤ ⌊gn(x) − nρ(g)⌋ ≤ gn(x) − nρ(g), donc en divisant par

n,
gn(x)− nρ(g)− 1

n
≤ ⌊gn(x)− nρ(g)⌋

n
≤ gn(x)− nρ(g)

n
, or les deux suites en-

cadrantes tendent vers ρ(g) − ρ(g) = 0, donc d’après le principe des gendarmes,
⌊gn(x)− nρ(g)⌋

n
−→

n→+∞
0. Alors, toujours d’après le principe des gendarmes et d’après

la question 13, l’encadrement du point précédent montre que
φ(nρ(g))

n
−→

n→+∞
ρ(f).

Or d’après la question 12,
φ(nρ(g))

n
−→

n→+∞
ρ(g), donc d’après l’unicité de la limite,

ρ(f) = ρ(g).

15◦) La réciproque est fausse : en effet, si l’on prend
g : x 7−→ x+ 1

2π
sin(2πx) et f : x 7−→ x, on a vu que ρ(f) = ρ(g) = 0, mais f et g ne

sont pas conjuguées dans H, car pour tout φ ∈ H, φ−1◦f ◦φ = φ−1◦IdR◦φ = IdR ̸= g.
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