
DM 26 :
Résidus quadratiques

Il s’agit d’un sujet supplémentaire pour votre travail personnel.
Il n’est pas à rendre.
Un corrigé sera fourni le jeudi 8 janvier.

Dans tout le problème, p désigne un nombre premier impair.
⋄ Pour a ∈ Z tel que p ne divise pas a, on dit que a est un résidu quadratique modulo
p (en abrégé : RQ mod p) si et seulement si il existe x ∈ Z tel que x2 ≡ a modulo p.
Dans le cas contraire, on dit que a est non-résidu quadratique modulo p (en abrégé :
NRQ mod p).
⋄ Pour α ∈ Z/pZ \ {0}, on dit que α est un résidu quadratique dans Z/pZ si et
seulement si il existe ξ ∈ Z/pZ tel que ξ2 = α.

Partie I :

1◦) a) Soit a ∈ Z tel que p ne divise pas a. Montrer que l’équation ξ2 = a, d’inconnue
ξ ∈ Z/pZ, n’admet aucune solution ou bien en admet exactement deux.

b) En déduire qu’il y a dans {1, . . . , p − 1} exactement
p− 1

2
résidus quadratiques

modulo p, et
p− 1

2
non-résidus quadratiques modulo p.

c) Déterminer les RQ et les NRQ modulo 11 compris entre 1 et 10.

Pour a ∈ Z tel que p ne divise pas a, on définit le symbole de Legendre :(
a

p

)
=

{
1 si a est RQ mod p

−1 si a est NRQ mod p
.

d) α) Pour tout a ∈ Z tel que p ne divise pas a, montrer que

p−1∑
k=1

(
ka

p

)
= 0.

β)

1. Soit k ∈ {1, . . . , p− 2} et k′ ∈ {1, . . . , p− 1} tels que kk′ ≡ 1 modulo p.

Montrer que k′ ̸= p− 1 et que

(
k(k + 1)

p

)
=

(
k′ + 1

p

)
.
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2. En déduire que

p−2∑
k=1

(
k(k + 1)

p

)
= −1.

2◦) a) Théorème d’Euler.

α) Montrer que pour tout x ∈ Z tel que p ne divise pas x, xp−1 ≡ 1 modulo p.

β) Lorsque

(
a

p

)
= −1, en utilisant l’application ξ 7−→ ξ−1a sur Z/pZ \ {0}, montrer

que (p− 1)! = a
p−1
2 .

δ) Montrer le théorème de Wilson, selon lequel (p− 1)! ≡ −1 modulo p.

γ) Montrer que, pour tout a ∈ Z tel que p ne divise pas a,

(
a

p

)
≡ a

p−1
2 modulo p.

Montrer que

(
10

31

)
= 1.

b) En déduire que

(
−1

p

)
=

{
1 si p ≡ 1 modulo 4
−1 si p ≡ 3 modulo 4

.

c) α) Soit n ∈ N∗ tel que n ≡ 3 modulo 4. Démontrer qu’il existe au moins un diviseur
premier q de n tel que q ≡ 3 modulo 4.
β) En déduire que l’équation x2+ y3− 8(2z+1)3+1 = 0, d’inconnue (x, y, z) ∈ Z3 n’a
pas de solution. Indications : en supposant que l’équation admet une solution (x, y, z),
on pourra commencer par montrer que y est impair, puis que x2+1 = (2(2z+1)−y)A,
où A ≡ 3 modulo 4.
En déduire qu’en particulier, l’équation de Lebesgue x2 + y3 = 7 n’a pas de solution
dans Z2.

3◦) a) Soit a, b ∈ Z tels que p ne divise ni a ni b. Montrer :

1.

(
1

p

)
= 1 ;

2. a ≡ b modulo p =⇒
(
a

p

)
=

(
b

p

)
;

3.

(
a2

p

)
= 1 ;

4.

(
a

p

)
×

(
b

p

)
=

(
ab

p

)
.

b) Soit a ∈ N∗ tel que p ne divise pas a. On note a =
N∏
i=1

prii la décomposition primaire

de a et I = {i ∈ {1, . . . , N} / ri impair}. On pose a′ =
∏
i∈I

pi.

Montrer que

(
a

p

)
=

(
a′

p

)
.
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4◦) Lemme de Gauss :
Soit a ∈ Z tels que p ne divise pas a. Pour tout j ∈ {1, . . . , p−1

2
}, on note rj le reste de

la division euclidienne de ja par p.
a) Montrer que r1, . . . , r p−1

2
sont deux à deux distincts.

On note u1, . . . , us les éléments de {r1, . . . , r p−1
2
} qui sont inférieurs ou égaux à p−1

2
, et

v1, . . . , vt les éléments de {r1, . . . , r p−1
2
} qui sont supérieurs ou égaux à p+1

2
.

b) Etablir :

1. u1, . . . , us, v1, . . . , vt sont deux à deux distincts et forment {r1, . . . , r p−1
2
}.

2. u1, . . . , us, p− v1, . . . , p− vt sont deux à deux distincts et forment {1, . . . , p−1
2
}.

c) En déduire que

(
a

p

)
= (−1)t : il s’agit du lemme de Gauss.

En déduire la valeur de

(
8

29

)
.

d)Montrer que

(
2

p

)
= (−1)

p2−1
8 : on pourra montrer que

p− 1

2
−
⌊p
4

⌋
≡ p2 − 1

8
modulo 2.

Montrer que

(
8

31

)
= 1.

e) Soit n ∈ N. Montrer que si 8n + 7 est premier, alors 8n + 7 | 24n+3 − 1 et que, si
n ≥ 1, 24n+3 − 1 est composé.

Partie II : loi de réciprocité quadratique de Gauss

1◦) Soit p, q deux nombres premiers impairs distincts.
Dans le plan usuel, on note A(p

2
, 0), B(0, q

2
), C(p

2
, q
2
).

a)Montrer que le nombre de points de (N∗)2 situés strictement dans le rectangle OACB

est égal à
p− 1

2

q − 1

2
.

b) Etablir qu’il n’y a aucun point de (N∗)2 sur le segment [O,C].

c) Montrer que le nombre de points de (N∗)2 situés dans le triangle OAC est

p−1
2∑

j=1

⌊jq
p

⌋
,

et que le nombre de points de (N∗)2 situés dans le triangle OBC est

q−1
2∑

k=1

⌊kp
q

⌋
.

d) On reprend les notations du lemme de Gauss (question I.4) en remplaçant a par q.

On pose u =
s∑

i=1

ui et v =
t∑

k=1

vk.

Montrer que t ≡ (u+v)+(u+pt−v) modulo 2. En déduire que t ≡

p−1
2∑

j=1

rj+
p2 − 1

8
modulo 2.
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Montrer que t ≡

p−1
2∑

j=1

⌊jq
p

⌋
modulo 2.

e) En déduire que

(
p

q

)
×

(
q

p

)
= (−1)

p−1
2

q−1
2 : il s’agit de la loi de réciprocité qua-

dratique de Gauss.
2◦) a) Déduire de la loi de réciprocité quadratique que, pour tous nombres premiers

impairs distincts p et q,

(
q

p

)
=


(
p

q

)
si (p ≡ 1 modulo 4) ∨ (q ≡ 1 modulo 4)

−
(
p

q

)
si (p ≡ 3 modulo 4) ∧ (q ≡ 3 modulo 4)

.

b) Sachant que 6607 est premier, montrer que

(
6417

6607

)
= 1.

3◦) Test de Pépin.
Pour tout n ∈ N∗, on note Fn = 2(2

n) + 1 (nombres de Fermat).

Démontrer que Fn est premier si et seulement si 3
Fn−1

2 ≡ −1 modulo Fn : pour la
réciproque on pourra faire intervenir un diviseur premier quelconque p de Fn et le
plus petit entier α ≥ 1 tel que 3α ≡ 1 modulo p, et montrer que α | Fn − 1 mais que α

ne divise pas
Fn − 1

2
.

Par exemple, montrer que F5 = 2(2
5) + 1 est composé.

4◦) On suppose que p ≥ 5. Montrer :

a)

(
3

p

)
=

{
1 si p ≡ ±1 modulo 12
−1 si p ≡ ±5 modulo 12

;

b)

(
−3

p

)
=

{
1 si p ≡ 1 modulo 6

−1 si p ≡ −1 modulo 6
.
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