
DM 26 : un corrigé.

Partie I

1.a) Supposons que l’équation (E) : ξ2 = a possède au moins une solution, notée
ξ0 ∈ Z/pZ. Alors (E) ⇐⇒ ξ2 − ξ20 = 0 ⇐⇒ (ξ − ξ0)(ξ + ξ0) = 0, or Z/pZ est un corps
car p est premier, donc c’est en particulier un anneau intègre.
Ainsi, (E) ⇐⇒ [ξ = ξ0 ou ξ = −ξ0].
De plus, ξ0 = −ξ0 ⇒ 2ξ0 = 0 ⇒ ξ0 = 0, car p ≥ 3, donc 2 ̸= 0.
Ainsi, ξ0 = −ξ0 ⇒ a = 0 ⇒ p|a, ce qui est faux.
Ainsi ξ0 et −ξ0 sont les deux seules racines distinctes de (E), lorsque (E) possède au
moins une solution. On a bien montré que (E) possède exactement 0 ou 2 solutions.

1.b) Notons R l’ensemble des résidus quadratiques et notons f : Z/pZ∗ −→ R
l’application définie par f(x) = x2. f est surjective par définition de R et d’après la
question précédente, pour tout α ∈ R, le cardinal de f−1({α}) est égal à 2, donc d’après
le principe des bergers, |Z/pZ∗| = 2|R|. Ainsi, |R| = p− 1

2
.

Il y a donc p−1
2

résidus quadratiques et p− 1− p−1
2

= p−1
2

non-résidus quadratiques.

1.c) Dans Z/11Z, 12 = 1, 2
2
= 4, 3

2
= 9, 4

2
= 5, 5

2
= 3,

puis 6
2
= (−5)2 = 3, 7

2
= (−4)2 = 5 etc.

On en déduit que les RQ modulo 11 sont 1, 3, 4, 5 et 9 et que les NRQ modulo 11 sont
2, 6, 7, 8, et 10.

1.d.α) Soit a ∈ Z tel que p ne divise pas a.
L’application f de Z/pZ\{0} dans Z/pZ\{0} définie par f(k) = ka est une bijection :
en effet, p est premier et p ne divise pas a, donc a ̸= 0, donc a est inversible dans le corps
Z/pZ. Ainsi f est correctement définie, bijective d’application réciproque k 7−→ a−1k.

On en déduit que, pour tout k ∈ {1, . . . , p− 1},
(ka
p

)
est défini,

et que

p−1∑
k=1

(ka
p

)
=

p−1∑
k=1

(k
p

)
=

p− 1

2
− p− 1

2
= 0, d’après la question précédente.

1.d.β.1)

⋄ Supposons que k′ = p− 1. Alors k = k′−1
= −1

−1
= −1 = p− 1, ce qui est faux car

k ∈ {1, . . . , p− 2}. Ainsi k′ ̸= p− 1.
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⋄ On remarque que p ne divise ni k, ni k′+1, ni k+1, donc p étant premier, p ne divise

pas k(k + 1) ni k′ + 1, donc les symboles
(k(k + 1)

p

)
et

(k′ + 1

p

)
sont bien définis.

Supposons que
(k(k + 1)

p

)
= 1. Il existe x ∈ Z/pZ \ {0} tel que k(k + 1) = x2. Alors

(k′x)2 = k′k × k′(k + 1) = 1 + k′, donc
(k′ + 1

p

)
= 1.

Réciproquement, supposons que
(k′ + 1

p

)
= 1. Il existe y ∈ Z/pZ \ {0}

tel que k′ + 1 = y2. Alors (ky)2 = k
2 × (k

−1
+ 1) = k + k2 = k(k + 1), donc(k(k + 1)

p

)
= 1.

Ceci démontre que
(k(k + 1)

p

)
=

(k′ + 1

p

)
.

1.d.β.2) D’après la question précédente,

p−2∑
k=1

(k(k + 1)

p

)
=

p−2∑
k=1

(k −1
+ 1

p

)
, en conve-

nant que
(a
p

)
=

(a
p

)
. Mais l’application x 7−→ x−1 est une bijection involutive de

Z/pZ \ {0} dans lui-même, et p− 1
−1

= −1
−1

= −1 = p− 1,

donc

p−2∑
k=1

(k(k + 1)

p

)
=

p−2∑
k=1

(k + 1

p

)
=

p−1∑
k=1

(k
p

)
−
(1
p

)
= 0−1 = −1, car (1)2 = 1, donc(1

p

)
= 1.

2.a.α) Soit x ∈ Z \ pZ. Notons G = {xk/k ∈ Z}. G est le groupe multiplicatif engendré
par x dans Z/pZ \ {0} (on a bien x ̸= 0). D’après le théorème de Lagrange, Card(G)
divise Card(Z/pZ \ {0}) = p− 1.
De plus d’après le cours sur les groupes cycliques, pour tout h ∈ Z,
xh = 1 ⇐⇒ Card(G)|h, donc xp−1 = 1, ce qu’il fallait démontrer.

2.a.β) Notons g l’application proposée par l’énoncé. Pour tout x ∈ Z/pZ \ {0},
g(g(x)) = g(x−1a) = (x−1a)−1a = x, donc g est une involution.
Pour tout x, y ∈ Z/pZ \ {0}, notons xRy si et seulement si [x = y ou y = f(x)]. En
utilisant le fait que xRy ⇐⇒ {x, f(x)} = {y, f(y)}, on vérifie que R est une relation
d’équivalence, c’est-à-dire que pour tout x, y, z ∈ Z/pZ \ {0}, xRx, xRy ⇒ yRx et
[xRy, yRz] ⇒ xRz.

De plus, si f(x) = x, alors x2 = a, ce qui est faux car
(a
p

)
= −1, donc les classes

d’équivalence sont toutes de cardinal 2.
Comme elles forment une partition de Z/pZ \ {0},
on a (p− 1)! =

∏
C∈[Z/pZ\{0}]/R

∏
k∈C

k =
∏

C∈[Z/pZ\{0}]/R

a, car si C est une classe d’équivalence,
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elle est de la forme C = {x, f(x)}, donc
∏
k∈C

k = xf(x) = a.

Finalement, (p− 1)! = a
p−1
2 .

2.a.δ) D’après la question 2.a.α, pour tout x ∈ Z/pZ∗, x est une racine du polynôme
P = Xp−1 − 1, à coefficients dans le corps Z/pZ∗.

Posons Q =
∏

x∈Z/pZ∗

(X−x) : P et Q sont tous deux unitaires, donc deg(P −Q) < p−1,

or pour tout x ∈ Z/pZ∗, (P − Q)(x) = 0, donc P − Q possède au moins p − 1
racines, ce qui d’après le principe de rigidité des polynômes entrâıne que P = Q. En

particulier, −1 = P (0) = Q(0) =
∏

x∈Z/pZ∗

(−x) = (−1)p−1(p− 1)!, or p est impair, donc

(p− 1)! ≡ −1 [p].

2.a.γ) Si
(a
p

)
= −1, d’après la question précédente et le théorème de Wilson, modulo

p, a
p−1
2 ≡ (p− 1)! ≡ −1 ≡

(a
p

)
.

Si maintenant
(a
p

)
= 1, alors il existe k ∈ Z tel que a ≡ k2,

donc a
p−1
2 ≡ kp−1 ≡ 1 ≡

(a
p

)
d’après le théorème d’Euler.

Remarque : on peut éviter l’utilisation de la question 2.a.β : le point précédent

montre que les
p− 1

2
RQ de Z/pZ∗ sont très exactement les racines du polynôme

X
p−1
2 − 1, car il est de degré p−1

2
, donc il ne peut possèder d’autres racines. Or si x est

NRQ dans Z/pZ∗, alors (x
p−1
2 )2 − 1 = 0, donc x

p−1
2 = ±1. Ainsi, x

p−1
2 = −1.

⋄ Modulo 31, 100 ≡ 7, donc 103 ≡ 70 ≡ 8, donc
(10
31

)
≡ 10

31−1
2 ≡ (103)5 ≡ 85. De

plus, 82 = 64 ≡ 2, donc 85 = 8(82)2 ≡ 8 × 4 ≡ 1. Ainsi,
(10
31

)
≡ 1 modulo 31, or(10

31

)
∈ {−1, 1}, donc

(10
31

)
= 1.

2.b) p étant impair, p ≡ 1 modulo 4 ou p ≡ 3.

Supposons d’abord que p ≡ 1 modulo 4. Alors p−1
2

est pair, donc
(−1

p

)
≡ (−1)

p−1
2 ≡ 1

modulo p, or
(−1

p

)
∈ {−1, 1}, donc

(−1

p

)
= 1.

Supposons maintenant que p ≡ 3 modulo 4. Alors p−1
2

est impair,

donc
(−1

p

)
≡ (−1)

p−1
2 ≡ −1 modulo p, donc

(−1

p

)
= −1.

2.c.α) Supposons qu’aucun diviseur premier de n n’est congru à 3 modulo 4.
n ≡ 3 modulo 4, donc n est impair, donc ses diviseurs premiers sont aussi impairs,
donc ils sont tous congrus à 1 modulo 4. Ainsi, si p est un diviseur premier de n, dans
Z/4Z, p = 1.
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D’après le cours, l’entier n se décompose comme un produit de nombres premiers pi
qui sont bien sûr tous des diviseurs premiers de n, donc pour tout i, pi = 1, donc

3 = n =
∏
i

pi = 1, ce qui est faux. Ainsi, il existe bien un diviseur premier de n qui

est congru à 3 modulo 4.

2.c.β) Soit (x, y, z) ∈ Z3 une solution de l’équation.
⋄ Supposons que y est pair : il existe k ∈ Z tel que y = 2k.
Modulo 4, y3 = 8k3 ≡ 0, donc x2 = −1 − y3 + 8(2z + 1)3 ≡ −1 ≡ 3. Or, si x est
pair x = 2h, donc x2 = 4h2 ≡ 0 modulo 4, et si x est impair, x = 2h + 1, donc
x2 = 4h2 + 4h+ 1 ≡ 1 modulo 4, donc on n’a jamais x2 ≡ 3. Ainsi y est impair.
⋄ On a x2 + 1 = (2(2z + 1))3 − y3 = (2(2z + 1)− y)A,
où A = (2(2z+1))2+y×2(2z+1)+y2 ≡ 2y+y2 modulo 4, or y est de la forme 2h+1,
donc 2y = 4h+ 2 ≡ 2 modulo 4 et y2 = 4h2 + 4h+ 1 ≡ 1. Ainsi A ≡ 3 modulo 4.
⋄ D’après la question précédente, il existe un nombre premier p, diviseur de A avec

p ≡ 3 modulo 4. Modulo p, A ≡ 0, donc x2 + 1 ≡ 0. Ainsi −1 ≡ x2, donc
(−1

p

)
= 1,

ce qui est faux car p ≡ 3 modulo 4. On aboutit à une contradiction, sous l’hypothèse
que (x, y, z) est une solution de l’équation.
Ainsi cette équation n’a aucune solution dans Z3.
⋄ Si (x, y) ∈ Z2 est une solution de l’équation de Lebesgue, alors (x, y, 0) est une
solution de l’équation précédente dans Z3 ce qui est impossible, donc l’équation de
Lebesgue n’admet aucune solution dans Z2.

3.a)

— 1) 1 = (1)2, donc
(1
p

)
= 1.

— 2) Si a ≡ b modulo p, alors a = b, donc d’après la fin de l’introduction, a est

RQ mod p si et seulement si b est RQ mod p, donc
(a
p

)
=

( b
p

)
.

— 3) a2 = (a)2, donc
(a2
p

)
= 1.

— 4) D’après la question 2), modulo p,
(a
p

)
×
( b
p

)
≡ a

p−1
2 b

p−1
2 ≡ (ab)

p−1
2 ≡

(ab
p

)
,

or
(a
p

)
×

( b
p

)
et

(ab
p

)
sont dans {−1, 1}, donc ils sont égaux.

3.b) On a a = a′
N∏
i=1

psii , avec pour tout i ∈ {1, . . . , N}, si pair : posons si = 2ti. Ainsi

a = a′b2 où b =
N∏
i=1

ptii . Alors d’après la propriété 4) précédente puis la propriété 3),(a
p

)
=

(a′
p

)(b2
p

)
=

(a′
p

)
.
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4) Lemme de Gauss
4.a) Soit i, j ∈ {1, . . . , p−1

2
} avec i > j. Supposons que ri = rj. Alors, dans Z/pZ,

ia = ri = rj = ja, donc i− j × a = 0, or a ̸= 0 et Z/pZ est un corps, donc i− j = 0,
ce qui est impossible car 1 ≤ i− j ≤ i ≤ p−1

2
≤ p− 1. Ainsi, ri ̸= rj.

4.b)
— 1) Par construction, les entiers u1, . . . , us, v1, . . . , vt sont exactement les entiers

r1, . . . , r p−1
2

dans un ordre différent, donc ils sont deux à deux distincts et forment

{r1, . . . , r p−1
2
}.

— 2) Soit i ∈ {1, . . . , s} et j ∈ {1, . . . , t}. Supposons que ui = p− vj.
Il existe k, h ∈ {1, . . . , p−1

2
} tels que ui = rh et vj = rk.

Alors, dans Z/pZ, h+ k × a = rh + rk = ui + vj = p = 0, donc h+ k = 0, ce
qui est impossible car 1 ≤ h+ k ≤ 2p−1

2
= p− 1. Ainsi ui ̸= p− vj.

De plus, par construction, les u1, . . . , us sont deux à deux distincts, ainsi que les
p− v1, . . . , p− vt, donc les entiers u1, . . . , us, p− v1, . . . , p− vt sont deux à deux
distincts.
Pour tout j ∈ {1, . . . , t}, p−1

2
= p− p+1

2
≥ p− vj ≥ p− (p− 1) = 1,

donc u1, . . . , us, p − v1, . . . , p − vt constituent
p−1
2

entiers deux à deux distincts

de {1, . . . , p−1
2
}. Ainsi, {u1, . . . , us, p− v1, . . . , p− vt} = {1, . . . , p−1

2
}.

4.c)
⋄ Raisonnons modulo p :
u1 · · ·us × v1 · · · vt = r1 · · · r p−1

2
≡ a× (2a)× · · · × (p−1

2
a) ≡ a

p−1
2 (p−1

2
)! et

(−1)tu1 · · ·us × v1 · · · vt ≡ u1 · · ·us × (p− v1) · · · (p− vt) = 1× 2× · · · × p−1
2

≡ (p−1
2
)!,

donc dans Z/pZ, a
p−1
2 (p−1

2
)! = (−1)t(p−1

2
)!, or dans le corps Z/pZ,

(p−1
2
)! = 1× 2× · · · × p−1

2
̸= 0, donc a

p−1
2 = (−1)t. Or on a vu que a

p−1
2 ≡

(a
p

)
, donc(a

p

)
≡ (−1)t modulo p, mais

(a
p

)
et (−1)t sont dans {−1, 1}, donc ils sont égaux.

⋄ Prenons p = 29 et a = 8 : les restes modulo p de ja pour j variant de 1 à p−1
2

= 14

sont respectivement, en soulignant ceux qui sont supérieurs à p+1
2

= 15 :

8, 16, 24, 3, 11, 19, 27, 6, 14, 22, 1, 9, 17, 25. Ainsi t = 7 puis
( 8

29

)
= (−1)7 = −1.

4.d)

⋄ Avec a = 2, on a r1 = 2, . . ., r p−1
2

= 2p−1
2

= p − 1, donc
(2
p

)
= (−1)t, où t est le

nombre des entiers parmi {2, 4, . . . , p− 1} qui sont supérieurs à p
2
.

Or pour n ∈ {1, . . . , p−1
2
}, 2n ≤ p

2
⇐⇒ n ≤ ⌊p

4
⌋, donc t = p−1

2
− ⌊p

4
⌋.

⋄ Si p ≡ 1 modulo 4, alors en posant p = 1 + 4k, p2 = 1 + 8k + 16k2,
donc p2−1

8
= k + 2k2 ≡ k modulo 2 et p−1

2
− ⌊p

4
⌋ = 2k − k ≡ −k ≡ k modulo 2, donc

p−1
2

− ⌊p
4
⌋ ≡ p2−1

8
modulo 2.

Sinon, p ≡ 3 modulo 4, donc en posant p = −1 + 4k, p2 = 1 − 8k + 16k2, donc
p2−1
8

= −k+2k2 ≡ k modulo 2 et p−1
2

−⌊p
4
⌋ = (−1+2k)− (k− 1) ≡ k modulo 2, donc
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on a encore p−1
2

− ⌊p
4
⌋ ≡ p2−1

8
modulo 2.

⋄ Ainsi
(2
p

)
= (−1)t = (−1)

p2−1
8 .

⋄
( 8

31

)
=

( 2

31

)3

=
( 2

31

)
= (−1)

312−1
8 = (−1)120 = 1.

4.e) On suppose que p = 8n+ 7 est premier.

Alors
(2
p

)
= (−1)

(p−1)(p+1)
8 = (−1)(8n+6)(n+1) = 1, mais on a aussi

(2
p

)
≡ 2

p−1
2 modulo

p, donc 2
p−1
2 ≡ 1 modulo p, c’est-à-dire : p = 8n+ 7|24n+3 − 1.

Or on peut montrer par récurrence sur n que pour tout n ∈ N∗, 8n + 7 < 24n+3 − 1,
car si 8n+ 7 < 24n+3 − 1, alors 24(n+1)+3 − 1 = 24n+324 − 1 > 24(8n+ 7 + 1)− 1, donc
24(n+1)+3 − 1 > 8n+ 16× 8− 1 > 8n+ 15 = 8(n+ 1) + 7.
Ainsi, 24n+3 − 1 n’est pas un nombre premier.

Partie II

1.a) Card
(
{a ∈ N∗/0 < a < p

2
}
)
= p−1

2
et Card

(
{b ∈ N∗/0 < b < q

2
}
)
= q−1

2
, donc

Card
(
{(a, b) ∈ N∗2/0 < a < p

2
et 0 < b < q

2
}
)
= p−1

2
× q−1

2
.

1.b) Supposons qu’il existe (m,n) ∈ {1, . . . , p−1
2
} × {1, . . . , q−1

2
} tel que (m,n) soit un

point du segment [O,C]. Alors n
m

= q
p
, donc pn = qm. Ainsi p|qm, mais p et q sont

premiers entre eux, donc d’après le théorème de Gauss, p|m, ce qui est impossible car
1 ≤ m ≤ p− 1. Ainsi le segment [O,C] ne possède aucun point à coordonnées entières.

1.c) Soit (j, k) ∈ {1, . . . , p−1
2
} × {1, . . . , q−1

2
}. Le point (j, k) est dans le triangle OAC

si et seulement si 1 ≤ k ≤ q
p
j. Pour j fixé, il y a exactement ⌊ jq

p
⌋ entiers k dans

{1, . . . , q−1
2
} vérifiant k < jq

p
(on remarque que jq

p
̸∈ N), donc le nombre de points de

N∗2 situés dans le triangle OAC est

p−1
2∑

j=1

⌊jq
p

⌋
.

De même, pour k ∈ {1, . . . , q−1
2
} fixé, il y a exactement ⌊kp

q
⌋ entiers j dans {1, . . . , p−1

2
}

vérifiant j < kp
q
, donc le nombre de points de N∗2 situés dans le triangle OBC est

q−1
2∑

k=1

⌊kp
q

⌋
.

4.d)
⋄ (u + v) + (u + pt − v) = 2u + pt ≡ pt modulo 2. De plus p est impair, donc p ≡ 1
modulo 2, puis (u+ v) + (u+ pt− v) ≡ t modulo 2.

⋄ On a u + v =

p−1
2∑

j=1

rj et u + pt − v =
s∑

i=1

ui +
t∑

j=1

(p − vj) =

p−1
2∑

j=1

j =
p2 − 1

8
, donc,
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modulo 2, t ≡ (u+ v) + (u+ pt− v) ≡ p2−1
8

+

p−1
2∑

j=1

rj.

⋄ Pour tout j ∈ {1, . . . , p−1
2
}, écrivons la division euclidienne de jq par p : jq = αjp+rj.

Ainsi αj = ⌊ jq
p
⌋, donc, toujours modulo 2,

p−1
2∑

j=1

⌊jq
p

⌋
≡ p

p−1
2∑

j=1

αj ≡

p−1
2∑

j=1

(jq − rj) ≡ q
p2 − 1

8
−

p−1
2∑

j=1

rj ≡
p2 − 1

8
+

p−1
2∑

j=1

rj,

ainsi t ≡

p−1
2∑

j=1

⌊jq
p

⌋
.

1.e) On en déduit que
(q
p

)
= (−1)t = (−1)

p−1
2∑

j=1

⌊jq
p

⌋
.

En échangeant p et q, on a également
(p
q

)
= (−1)

q−1
2∑

k=1

⌊kp
q

⌋
,

donc
(q
p

)(p
q

)
= (−1)

p−1
2∑

j=1

⌊jq
p

⌋
+

q−1
2∑

k=1

⌊kp
q

⌋
= (−1)

p−1
2

q−1
2 , d’après la question c.

2.a)
(q
p

)
= −

(p
q

)
si et seulement si p−1

2
q−1
2

est impair, donc si et seulement si p−1
2

et

q−1
2

sont impairs, donc si et seulement si p ≡ 3 et q ≡ 3 modulo 4.

2.b) 6417 = 32.23.31, donc
(6417
6607

)
=

( 23

6607

)( 31

6607

)
.

On a 23 ≡ 3 modulo 4 et 6607 ≡ 3 modulo 4, donc
( 23

6607

)
= −

(6607
23

)
, or 6607 ≡ 6

modulo 23, donc
( 23

6607

)
= −

( 6

23

)
= −

( 2

23

)( 3

23

)
.

D’après I.4.c,
( 2

23

)
= (−1)

232−1
8 = (−1)66 = 1, de plus 3 ≡ 3 modulo 4 et 23 ≡ 3

modulo 4, donc
( 3

23

)
= −

(23
3

)
= −

(2
3

)
= −(−1)

32−1
8 = 1.

Ainsi,
( 23

6607

)
= −1.

De plus, 31 ≡ 3 modulo 4 et 6607 ≡ 3 modulo 4,

donc
( 31

6607

)
= −

(6607
31

)
= −

( 4

31

)
= −

( 22
31

)
= −1,

donc finalement,
(6417
6607

)
= 1.
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3) Test de Pépin
⋄ Supposons que Fn est premier. Comme 3 ≡ 3 modulo 4 et Fn = 22

n
+1 ≡ 1 modulo

4 (car n ≥ 1), on a :
( 3

Fn

)
=

(Fn

3

)
, or, modulo 3, Fn ≡ (−1)2

n
+ 1 ≡ 2, donc( 3

Fn

)
=

(2
3

)
= (−1)

32−1
8 = −1, mais on a vu que

( 3

Fn

)
≡ 3

Fn−1
2 modulo Fn, donc

3
Fn−1

2 ≡ −1 modulo Fn.
⋄ Réciproquement, supposons que 3

Fn−1
2 ≡ −1 modulo Fn.

Alors 3Fn−1 =
(
3

Fn−1
2

)2

≡ 1 modulo Fn.

Soit p un diviseur premier de Fn (nécessairement p ≥ 5 car 2 et 3 ne divisent pas Fn).
Alors 3Fn−1 ≡ 1 modulo p.
p est premier avec 3, donc 3 ∈ Z/pZ \ {0}. Si l’on note α l’ordre de 3 pour la multipli-

cation, on sait que 3
k
= 1 ⇐⇒ α|k, donc en particulier, α|Fn − 1 = 22

n
.

Mais 3
Fn−1

2 ≡ −1 ̸≡ 1 modulo p, donc α ne divise pas Fn−1
2

= 22
n−1. Ainsi, α = 22

n
.

Mais α est le cardinal du groupe engendré par 3, donc α ≤ p− 1. Ainsi Fn ≤ p et p|Fn,
donc Fn = p est premier.
⋄ F5 = 22

5
+ 1 = 4 294 967 297.

On calcule 3
F5−1

2 = 32
31

modulo F5 en utilisant l’algorithme d’exponentiation rapide :
on pose x0 = 32

0
= 3 et on définit la suite (xn) par la relation de récurrence suivante :

xn+1 est le reste de la division euclidienne de x2
n par F5.

Le programme Python suivant effectue le calcul de x31 :

x=3

n = 2**(2**5)+1

print(’n= ’,n)

for i in range(31) :

x = x**2 % n

print(’3^(2^’,i+1,’)= ’,x)

Voici les résultats qu’il produit :

n= 4294967297

3^(2^ 1 )= 9

3^(2^ 2 )= 81

3^(2^ 3 )= 6561

3^(2^ 4 )= 43046721

3^(2^ 5 )= 3793201458

3^(2^ 6 )= 1461798105

3^(2^ 7 )= 852385491

3^(2^ 8 )= 547249794

3^(2^ 9 )= 1194573931

3^(2^ 10 )= 2171923848
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3^(2^ 11 )= 3995994998

3^(2^ 12 )= 2840704206

3^(2^ 13 )= 1980848889

3^(2^ 14 )= 2331116839

3^(2^ 15 )= 2121054614

3^(2^ 16 )= 2259349256

3^(2^ 17 )= 1861782498

3^(2^ 18 )= 1513400831

3^(2^ 19 )= 2897320357

3^(2^ 20 )= 367100590

3^(2^ 21 )= 2192730157

3^(2^ 22 )= 2050943431

3^(2^ 23 )= 2206192234

3^(2^ 24 )= 2861695674

3^(2^ 25 )= 2995335231

3^(2^ 26 )= 3422723814

3^(2^ 27 )= 3416557920

3^(2^ 28 )= 3938027619

3^(2^ 29 )= 2357699199

3^(2^ 30 )= 1676826986

3^(2^ 31 )= 10324303

Ainsi, 3
F5−1

2 = 32
31 ≡ 10 324 303 ̸≡ −1 modulo 4 294 967 297, donc F5 est composé.

4.a) Il nous faut discuter suivant la congruence de p modulo 4, pour utiliser la loi de

réciprocité quadratique, et la congruence de p modulo 3, pour simplifier
(p
3

)
, d’où une

discussion selon la valeur de p modulo 12.
Si p ≡ −1 modulo 12, il existe k ∈ N∗ tel que p = 12k − 1.

Modulo 4, on a 3 ≡ 3 et p ≡ 3, donc
(3
p

)
= −

(p
3

)
, mais p ≡ −1 modulo 3, donc(p

3

)
=

(−1

3

)
=

(2
3

)
= −1 (déjà vu). On en déduit que

(3
p

)
= 1.

Les autres cas se traitent de façon analogue.

4.b)
(−3

p

)
=

(−1

p

)(3
p

)
ce qui permet de conclure en utilisant les questions I.2.b et

II.4.a.
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