DM 26 : un corrigé.

Partie 1

1.a) Supposons que I'équation (E) : &2 = @ possede au moins une solution, notée
o €EZJPZ. Alors (E) <= €2 — & =0 <= (£ — &) (£ + &) = 0, or Z/pZ est un corps
car p est premier, donc c’est en particulier un anneau integre.

Alinsi, (E) <~ [f = 59 ou = —&)] B

De plus, g = =&y = 2§ =0= & =0, car p > 3, donc 2 # 0.

Ainsi, § = =& = a = 0 = pla, ce qui est faux.

Ainsi & et —&p sont les deux seules racines distinctes de (E), lorsque (E) possede au
moins une solution. On a bien montré que (£) possede exactement 0 ou 2 solutions.

1.b) Notons R l’ensemble des résidus quadratiques et notons f : Z/pZ* — R
I'application définie par f(z) = z%. f est surjective par définition de R et d’apres la
question précédente, pour tout o € R, le cardinal de f~!({a}) est égal & 2, donc d’apres

—1
le principe des bergers, |Z/pZ*| = 2|R|. Ainsi, |R| = pT
Il y a donc ’%1 résidus quadratiques et p — 1 — p%l = p%l non-résidus quadratiques.
l.c) Dans Z/117,1°=1,2°=1,3° =9, =5,5 =3,
2

puis 6 = (=5)2 =3, 7" = (—1)2 =5 etc.
On en déduit que les RQ modulo 11 sont 1, 3, 4, 5 et 9 et que les NRQ modulo 11 sont
2,6, 7,8, et 10.

1.d.av) Soit a € Z tel que p ne divise pas a.

L’application f de Z/pZ\ {0} dans Z/pZ\ {0} définie par f(k) = ka est une bijection :
en effet, p est premier et p ne divise pas a, donc @ # 0, donc @ est inversible dans le corps
7, /pZ. Ainsi f est correctement définie, bijective d’application réciproque k— a k.

k
On en déduit que, pour tout k € {1,...,p — 1}, (_a) est défini,
p
p—1 p—1
k k -1 -1
et que ;(f) = g(};) = pT — pT = 0, d’apres la question précédente.

1.d.6.1)
o Supposons que k' =p—1. Alors k =& ' =—1 '
ke{l,...,p—2}. Ainsi k' #p— 1.

= —1=p—1, ce qui est faux car



¢ On remarque que p ne divise ni k, ni &'+ 1, ni £+ 1, donc p étant premier, p ne divise

1 "+ 1
k(k + )) et (k - ) sont bien définis.
D p

1 -
Supposons que (M> = 1. Il existe z € Z/pZ \ {0} tel que k(k + 1) = z%. Alors
p

pas k(k + 1) ni k' + 1, donc les symboles (

77 K +1
(Kz)? =Kk xk(k+1)=1+F, donc( + >:1.

P
K +1
- > = 1. Il existe y € Z/pZ \ {0}

Réciproquement, supposons que <

— -1

tel que &' +1 = g2 Alors (ky)? = E x (k
k(k+1
(—( - )> ~1.
g k(k+1
Ceci démontre que (M) = <
p

+1) = k+k? = k(k+1), donc

K +1
p )

(k+1 2k T+
1.d.5.2) D’apres la question précédente, Z<—+)> = Z<—+>, en conve-
p p

1

a a
nant que (—) = <—> Mais l'application x —— 27" est une bijection involutive de

p p
Z/pZ\{O} dans lui- méme, etp—1 '=—1 '="T=p—1,
-2 = p—1 =
(k+1) k+1 k 1 _ _
donc ( > (—) = (—) - <— 0—1=—1,car (1)2 =1, donc
Z >t o)) - o

k=1

>
Il

1

-

2.a.a) Soit x € Z\ pZ. Notons G = {z"/k € Z}. G est le groupe multiplicatif engendré
par T dans Z/pZ \ {0} (on a bien T # 0). D’apres le théoreme de Lagrange, Card(G)
divise Card(Z/pZ \ {0}) =p — 1.

De plus d’apres le cours sur les groupes cycliques, pour tout h € Z,

7" =1 <= Card(G)|h, donc 777! =1, ce qu’il fallait démontrer.

2.a.3) Notons g application proposée par 1’énoncé. Pour tout = € Z/pZ \ {0},
g(g(z)) = g(z7'a) = (z7'a)"'a = =, donc g est une involution.

Pour tout z,y € Z/pZ \ {0}, notons Ry si et seulement si [zt = y ouy = f(x)]. En
utilisant le fait que xRy <= {z, f(z)} = {y, f(y)}, on vérifie que R est une relation
d’équivalence, c’est-a-dire que pour tout z,y,z € Z/pZ \ {0}, xRz, xRy = yRx et
[tRy,yRz] = xRz.

a

De plus, si f(x) = z, alors 2 = @, ce qui est faux car (—) = —1, donc les classes
p

d’équivalence sont toutes de cardinal 2.

Comme elles forment une partition de Z/pZ \ {0},

ona(p—1)= H H k= H a, car si C' est une classe d’équivalence,

Celz/pZ\{0}]/R  keC Celz/pZ\{0}]/R
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elle est de la forme C' = {x, f(z)}, donc H k=azf(x
keC

@I

Finalement, (p — 1)! =

2.a.0) D’apres la question 2.a.a, pour tout x € Z/pZ*, x est une racine du polynome
P = X?P~! — 1, & coefficients dans le corps Z/pZ*.

Posons Q = H (X —x): P et @ sont tous deux unitaires, donc deg(P — Q) < p—1,

T €L/ pL*

or pour tout x € Z/pZ*, (P — @Q)(x) = 0, donc P — ) possede au moins p — 1
racines, ce qui d’apres le principe de rigidité des polynomes entraine que P = ). En
particulier, —1 = P(0) = Q(0) = H (—2) = (=1)*"(p — 1)!, or p est impair, donc

x€EL/pL*
(p—1Dl=—1][p]
2.a.y) Si E) = —1, d’apres la question précédente et le théoreme de Wilson, modulo
p
p—1 a
p,az =(p —1).5—15(—).
p

. . a
Si maintenant (—

p
donca’z =k?'=1= <2> d’apres le théoreme d’Euler.
p

=1, alors il existe k € Z tel que a = k?,

N—

-

Remarque : on peut éviter l'utilisation de la question 2.a.8 : le point précédent
—1

montre que les p RQ de Z/ pZ* sont tres exactement les racines du polynome

X5 — 1, car il est de degré 5=, donc il ne peut posseder d’autres racines. Or si x est

NRQ dans Z/pZ*, alors (z 21) —1=0, donc z°5 = +1. Ainsi, 2"z = —1.
) 10 1-1
o Modulo 31, 100 = 7, donc 10 = 70 = 8, donc (3—1> =107z = (10%)° = 8°. De

10
plus, 8 = 64 = 2, donc 8 = §(8%)? = 8 x 4 = 1. Ainsi, (ﬁ) = 1 modulo 31, or

<:1))(1)> € {—1,1}, donc (;—?) =1

2.b) p étant impair, p = 1 modulo 4 ou p = 3.
-1
Supposons d’abord que p = 1 modulo 4. Alors ’%1 est pair, donc (—) =(-1)z =1
p

-1 -1
modulo p, or (—) € {—1,1}, donc (—) =1.
p p

Supposons maintenant que p = 3 modulo 4. Alors 5= L est impair,

—1 p—1 —1
donc <?> = (—1)"2 = —1 modulo p, donc (?) =—1.

2.c.ar) Supposons qu’aucun diviseur premier de n n’est congru a 3 modulo 4.
n = 3 modulo 4, donc n est impair, donc ses diviseurs premiers sont aussi impairs,

donc ils sont tous congrus a 1 modulo 4. Ainsi, si p est un diviseur premier de n, dans
Z7)47,p = 1.
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D’apres le cours, l'entier n se décompose comme un produit de nombres premiers p;
qui sont bien sir tous des diviseurs premiers de n, donc pour tout i, p; = 1, donc

3=n= H p; = 1, ce qui est faux. Ainsi, il existe bien un diviseur premier de n qui

est congru a 3 modulo 4.

2.c.3) Soit (z,y,2) € Z> une solution de 1'équation.

©  Supposons que y est pair : il existe k € Z tel que y = 2k.

Modulo 4, y*> = 8k3 = 0, donc 22 = —1 — y> +8(22 + 1) = —1 = 3. Or, si z est
pair x = 2h, donc 22 = 4h? = 0 modulo 4, et si x est impair, x = 2h + 1, donc
22 = 4h? + 4h + 1 = 1 modulo 4, donc on n’a jamais 2% = 3. Ainsi y est impair.

o Onax?+1=(222+1))2 -y =(222+1) —y)A4,

o A= (2(22+1))*+yx2(22+1) +y* = 2y +y? modulo 4, or y est de la forme 2k + 1,
donc 2y = 4h + 2 = 2 modulo 4 et y?> = 4h®> + 4h + 1 = 1. Ainsi A = 3 modulo 4.

o D’apres la question précédente, il existe un nombre premier p, diviseur de A avec

-1
p = 3 modulo 4. Modulo p, A =0, donc 22 +1 = 0. Ainsi —1 = 22, donc (—) =1,
p

ce qui est faux car p = 3 modulo 4. On aboutit a une contradiction, sous I’hypothese
que (z,y, z) est une solution de I’équation.

Ainsi cette équation n’a aucune solution dans Z3.

o Si (z,y) € Z* est une solution de 'équation de Lebesgue, alors (z,y,0) est une
solution de 1’équation précédente dans Z* ce qui est impossible, donc I’équation de
Lebesgue n’admet aucune solution dans Z2.

3.a)
- 1
— 1) T= (1)%, donc (—) ~1
p _
— 2) Si a = b modulo p, alors @ = b, donc d’apres la fin de I'introduction, a est

b
RQ mod p si et seulement si b est RQ mod p, donc (2) = (—)

p
2

— 3) a? = (a)?, donc (a_) =1.

p
a b p=1 p1 p-1 _ rab
— 4) D’apres la questloI; 2), modulo p, <5> X (}—)) =azbz =(ab)z = <?>7
< ) < ) <%) sont dans {—1, 1}, donc ils sont égaux.

3b)Onaa=a Hpi , avec pour tout i € {1,..., N}, s; pair : posons s; = 2t;. Ainsi
i=1

a=ab’>oub= pr’ Alors d’apres la propriété 4) précédente puis la propriété 3),

i=1
/

(1) =(9)(5) = (%)
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4) Lemme de Gauss

4a) Soit i,j € {1 Tl} avec ¢ > j. Supposons que r; = ;. Alors, dans Z/pZ,
a=T; =T; = ja, doncz—jxa—O ora # 0 et Z/pZ est un corps, donc ¢ — j = 0,
ce qui est impossible car 1 <i—j <i < p21 < p—1. Ainsi, r; # ;.

4.b

)— 1) Par construction, les entiers uy, ..., us, vy, ..., v sont exactement les entiers
T Toct dans un ordre différent, donc ils sont deux a deux distincts et forment
{rl,...,r%}.

— 2) Soiti € {1,...,s} et € {1,...,t}. Supposons que u; = p — vj.
Il existe k,h € {1,..., 7%1} tels que w; =1y, et v; = ry.
Alors, dans Z/pZ, h+k xa =7, +7, =u;+v; =p =0, donc h+k = 0, ce
qui est impossible car 1 < h 4+ k < 2’%1 =p— 1. Ainsi u; # p — v,.

De plus, par construction, les uq, ..., us sont deux a deux distincts, ainsi que les
p—u1,...,p— v, donc les entiers uq, ..., us,p — vy, ...,p — v; sont deux a deux
distincts.

Pour tout j € {1,...,t}, &t =p— & >p—1)] >p—(p—1)=1,

donc uy, ..., us,p — vy, ... ,p — vy constltuent b= L entiers deux & deux distincts
de {1,...,’%1}. Ainsi, {uy, ..., us,p — ,...,p—vt} = {1,...,71}.

4.c)
¢ Raisonnons modulo p : B
Up e Us X VLU =T Tpod = 0X (2a) x - x (B2a) = a"z (1)) et
(—1) uy - - - ug xvl-;-lvtzul---us X(p—v)-(p—v)=1x2x---X ’%1 (7%1)!,
donc dans Z/pZ, @'z (52)! = (=1)4(22)!, or dans le corps Z/pZ,
1

[asy

2

(p;l)!:Txﬁx.--xp%l#o,donCET:(— ).OronavuqueapzlEG),dOHC

G

o Prenons p =29 et a = 8 : les restes modulo p de ja pour j variant de 1 a ’%1 =14

N

> = (—1)" modulo p, mais <9) et (—1)" sont dans {—1,1}, donc ils sont égaux.
p

sont respectivement, en soulignant ceux qui sont supérieurs a 1%1 =15:

8
8,16,24,3,11,19,27,6,14,22,1,9,17,25. Ainsi ¢ = 7 puis (-) — (1) = —1.

29
4.d)
2
o Aveca=2 onar =2, ..., rec1 = 27%1 =p—1, donc (—) = (—1)", ou1 t est le
p
nombre des entiers parmi {2,4,...,p — 1} qui sont supérieurs a 5.
Orpour n € {1,..., 22}, 2n < L «= n < |2|, donc t = 251 — [pj
o Si p= 1 modulo 4, alors en posant p = 1+ 4k, p? =1+ 8k + 16k2,
donc p = k + 2k* = k modulo 2 et & — [2] = 2k — k = —k = k modulo 2, donc

LpJ = 2— modulo 2.
Slnon p =3 modulo 4, donc en posant p = —1 + 4k, p*> = 1 — 8k + 16k?, donc

’% = —k+2k? = k modulo 2 et £+ — | 2| = (—=1+42k) — (k— 1) = k modulo 2, donc
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p=l _|p| ==L
on a encore 5= — | F] = P modulo 2.

p2-1

o Ainsi (%) = (1) = (~1)"3
()= =)= = cam

4.e) On suppose que p = 8n + 7 est premier.
2 p— p 2 —

Alors <_> = (_1)7< R (—1)E+OE+) — 1 mais on a aussi (—) = 2" modulo
p

p
p, donc 2% = 1 modulo p, c’est-a-dire : p = 8n + 7]24n+3 1.
Or on peut montrer par récurrence sur n que pour tout n € N*, 8n + 7 < 2443 — 1,
car si 8n + 7 < 297+3 — 1 alors 24 FVF3 1 = 24321 1 > 24(8p + 7+ 1) — 1, donc
21+ 1 >80+ 16x8—1>8n+15=8(n+1)+7.
Ainsi, 2473 — 1 n’est pas un nombre premier.

Partie 11

l.a) Card({a eN/0<a< g}) =L et Card({b € N/0 < b < %}) = 1 donc

Card({(a,b) EN?/0<a<ZetO<b< g}) =t L

1.b) Supposons qu'il existe (m,n) € {1,..., ’%1} x {1,..., %} tel que (m,n) soit un
point du segment [O,C]. Alors * = %, donc pn = gm. Ainsi p|gm, mais p et ¢ sont
premiers entre eux, donc d’apres le théoreme de Gauss, p|m, ce qui est impossible car
1 <m < p-—1. Ainsi le segment [O, C| ne posséde aucun point & coordonnées entieres.

1.c) Soit (5,k) € {1,..., ;%1} x {1,..., q;—l} Le point (j, k) est dans le triangle OAC
si et seulement si 1 < k£ < % 7. Pour j fixé, il y a exactement [%J entiers k dans

{1,..., %} vérifiant k < %q (on remarque que j?q ¢ N), donc le nombre de points de

p—1

S
N*? situés dans le triangle OAC est Z L‘ﬂj
=1 P

De méme, pour k € {1,..., q;—l} fixé, il y a exactement L%pj entiers j dans {1,..., ;%1}

vérifiant j < %p, donc le nombre de points de N*? situés dans le triangle OBC' est

qg—1
2

> 7]

= 1

4.d)

o (u+v)+ (u+pt —v) = 2u+ pt = pt modulo 2. De plus p est impair, donc p = 1
modulo 2, puis (v + v) + (u + pt — v) =t modulo 2.

p—1 p—1

2

s t 2
—1
o Onau+v:ZTj et u+pt—v=2ui+2(p—vj)22j:p 3 , donc,
i=1 j=1

i=1
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modulo 2, t = (u+v) + (u+pt —v) = —|—er

o Pour toutj e{l,..., ’%1}, écrivons la lelSlOIl euchdienne de jgparp: jq = ojp+r;.
Ainsi a; = L%J, done, toujours modulo 2,
p=1 p=1 p=1 p=1 p=1
2 jq 2 2 ' pg ] 2 pz 1 2

' {?JEpZajEZ(jq—rj)qu—' =g —i—er,
Jj=1 j=1 j=1 j=1 =1

< Jq
alnsl t = L—J

=1 P

p—1

p—1 a1
q\ (P ZVPT(]J—FZLQJ e
donc (—) (—) = (—1)/7t k=1 = (—1)= "z , d’apres la question c.
b/ \q
2.a) <Q> = - (12) si et seulement si 25= L = L est impair, donc si et seulement si 271 et
p q

% sont impairs, donc si et seulement si p = 3 et ¢ = 3 modulo 4.

2.b) 6417 = 32.23.31, donc (%) - (%) (%).

On a 23 = 3 modulo 4 et 6607 = 3 modulo 4, donc (£> <

23\ 6\ 2 3 0607
modulo 23, donc <W> = —<2—3) = _<ﬁ> (2—3>

2 2321
D’apres 1.4.c, <%> = (—1) o= (—=1)% =1, de plus 3 = 3 modulo 4 et 23 = 3

modulo 4, donc (%) = —(?) = —(%) = —(—1)% =1
2

Ainsi,

6607
) or 6607 = 6

23

(6607
De plus, 31 = 3 modulo 4 et 6607 = 3 modulo 4,

2
done (g5) == (1) =~ (31) = -(Gr) =1

donc finalement, <—):
onc Inalemen 6607
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3) Test de Pépin

o Supposons que F), est premier. Comme 3 = 3 modulo 4 et F}, = 22" 41 = 1 modulo

3 F, n
4 (car m > 1), on a : (F) = (?>, or, modulo 3, F,, = (—=1)*" +1 = 2, donc

3 2 2_ 3 o1
<—) = <—) = (—1)3Tl = —1, mais on a vu que <F) = 3% modulo F,, donc

F, 3
Fp—
37 = —1 modulo F,. )
n—1
o Réciproquement, supposons que 3~ 2 = —1 modulo F,,.

Fp—1

2
Alors 3f»=1 = (3 2 ) = 1 modulo F,,.

Soit p un diviseur premier de F,, (nécessairement p > 5 car 2 et 3 ne divisent pas F},).
Alors 3»~1 = 1 modulo p.
p est premier avec 3, donc 3 € Z/pZ \ {0}. Si 'on note « 'ordre de 3 pour la multipli-

cation, on sait que 3° = 1 <= a|k, donc en particulier, a|F, — 1 = 22",
Mais 3°% = —1 # 1 modulo p, donc « ne divise pas £2= = 22"~1 Ainsi, o = 22".

Mais « est le cardinal du groupe engendré par 3, donc « 2§ p—1. Ainsi F,, < p et p|F,,
donc F,, = p est premier.

o Fy=2% 41 =4 294 967 297.

On calcule 377 = 32" modulo F5 en utilisant I'algorithme d’exponentiation rapide :
on pose xo = 3% = 3 et on définit la suite (z,) par la relation de récurrence suivante :
Tpy1 est le reste de la division euclidienne de z?2 par Fj.

Le programme Python suivant effectue le calcul de x3; :

x=3
n = 2%x(2%*x5)+1
print(’n= ’,n)

for i in range(31)
X = x*¥%2 J n
print(’37(27’,i+1,7)= ’,x)

Voici les résultats qu’il produit :

n= 4294967297

37(27 1 )= 9

37(2" 2 )= 81

37(2" 3 )= 6561

37(2" 4 )= 43046721
37(2° 5 )= 3793201458
37(2° 6 )= 1461798105
37(27 7 )= 852385491
37(2" 8 )= 547249794
37(27 9 )= 1194573931

37(27 10 )= 2171923848
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37(27 11 )= 3995994998
37(27 12 )= 2840704206
37(27 13 )= 1980848889
37(27 14 )= 2331116839
37(27 15 )= 2121054614
37(2° 16 )= 2259349256
37(27 17 )= 1861782498
37(2° 18 )= 1513400831
37(27 19 )= 2897320357
37(27 20 )= 367100590

37(2° 21 )= 2192730157
37(27 22 )= 2050943431
37(27 23 )= 2206192234
37(27 24 )= 2861695674
37(27 256 )= 2995335231
37(2" 26 )= 3422723814
37(27 27 )= 3416557920
37(2° 28 )= 3938027619
37(27 29 )= 2357699199
37(2" 30 )= 1676826986
37(27 31 )= 10324303

231

Ainsi, 37 = 32" =10 324 303 % —1 modulo 4 294 967 297, donc Fj est composé.

4.a) Il nous faut discuter suivant la congruence de p modulo 4, pour utiliser la loi de
réciprocité quadratique, et la congruence de p modulo 3, pour simplifier (g),(YoﬁJune

discussion selon la valeur de p modulo 12.

Si p = —1 modulo 12, il existe k£ € N* tel que p = 12k — 1.
3

Modulo 4, on a 3 = 3 et p = 3, donc <—> ::——<§>,Inam p = —1 modulo 3, donc
p

~1 2 3
<§> - <?> - (g) — 1 (déja vu). On en déduit que (2—9) ~1.
Les autres cas se traitent de fagcon analogue.

-3 -1\ /3
4.b) (——) = (——)(—) ce qui permet de conclure en utilisant les questions 1.2.b et
p

p p
I1.4.a.
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