
Résumé de cours :

Semaine 15, du 5 janvier au 9

Les espaces vectoriels (fin)

Notation. K désigne un corps quelconque.

1 La structure d’algèbre (fin)

Exemple. Soit E un K-espace vectoriel et u ∈ GL(E). Alors l’application w 7−→ uwu−1 est un
automorphisme de l’algèbre L(E). Ce type d’automorphisme est appelé un automorphisme intérieur.
Il faut savoir le démontrer.

Propriété. Une composée de morphismes d’algèbres est un morphisme d’algèbres.
L’application réciproque d’un isomorphisme d’algèbres est un isomorphisme d’algèbres.
L’image directe ou réciproque d’une sous-algèbre par un morphisme d’algèbres est une sous-algèbre.

2 Théorie de la dimension

Notation. On fixe un K-espace vectoriel E et un ensemble quelconque I (éventuellement infini).

2.1 Familles libres et génératrices

Définition. Soit x = (xi)i∈I une famille de vecteurs de E.

x est libre ssi ∀(αi)i∈I ∈ K(I),
(∑

i∈I

αixi = 0 =⇒ (∀i ∈ I αi = 0)
)
.

x est liée ssi ∃(αi)i∈I ∈ K(I) \ {0},
∑
i∈I

αixi = 0.

x est génératrice dans E ssi ∀x ∈ E, ∃(αi)i∈I ∈ K(I),
∑
i∈I

αixi = x.

x est une base de E si et seulement si elle est libre et génératrice dans E.

Définition. x, y ∈ E sont colinéaires si et seulement si la famille (x, y) est liée.

Propriété. Soit e = (ei)i∈I une famille de vecteurs de E. e est une base de E si et seulement si

∀x ∈ E, ∃ !(αi)i∈I ∈ K(I),
∑
i∈I

αiei = x. Dans ce cas, pour x ∈ E, on appelle coordonnées de x dans

la base (ei)i∈I l’unique famille presque nulle de scalaire (αi)i∈I telle que x =
∑
i∈I

αiei.
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2.2 Dimension d’un espace vectoriel

Définition. E est de dimension finie si et seulement si il possède une famille génératrice finie.

Lemme : Soit n ∈ N et e1, . . . , en ∈ E.
Toute famille (x1, . . . , xn+1) de n+ 1 vecteurs de Vect(e1, . . . , en) est liée.
Il faut savoir le démontrer.

Corollaire. Si (e1, . . . , en) est une famille génératrice de E, alors toute famille libre de E est de
cardinal inférieur ou égal à n.

Théorème de la base incomplète : Soient E un K-espace vectoriel de dimension finie et (ei)i∈I

une famille génératrice de E. Soit J ⊂ I tel que (ei)i∈J est une famille libre.
Alors il existe un ensemble L avec J ⊂ L ⊂ I tel que (ei)i∈L est une base de E.
Il faut savoir le démontrer.

Propriété. Soit (ei)i∈I une famille libre de vecteurs de E. Soit ej ∈ E, où j /∈ I.
La famille (ei)i∈I∪{j} est libre si et seulement si ej /∈ Vect(ei)i∈I .

Propriété.
Soient E un K-espace vectoriel et g = (ei)i∈I une famille génératrice de E.
On dit qu’une sous-famille libre (ei)i∈J de g est maximale dans g si et seulement si pour tout i0 ∈ I \J ,
la famille (ei)i∈J∪{i0} est liée.
Si (ei)i∈J est libre maximale dans g, alors c’est une base de E.

Corollaire. Une famille libre de vecteurs de E est maximale si et seulement si en lui ajoutant un
vecteur elle devient liée.
Toute famille libre maximale de vecteurs de E est une base de E.

Corollaire. Soit E un K-espace vectoriel de dimension finie.
Toute famille libre de E peut être complétée en une base de E.

Définition. Soit E un K-espace vectoriel de dimension finie.
E admet au moins une base. Toutes les bases de E sont finies et ont même cardinal. Ce cardinal est
appelé la dimension de E et est noté dim(E) ou dimK(E).

Propriété. Soit E un K-espace vectoriel de dimension finie égale à n et soit e une famille de E. e
est une base de E si et seulement si e est libre et de cardinal n, ou encore si et seulement si e est
génératrice et de cardinal n.
Il faut savoir le démontrer.

Propriété. Soit E un K-espace vectoriel de dimension finie égale à n. Toute famille libre de E a au
plus n éléments et toute famille génératrice de E a au moins n éléments.

Théorème. Soit E un K-espace vectoriel de dimension quelconque.
Soit F et G deux sous-espaces vectoriels de E avec G de dimension finie et F ⊂ G.
Alors F est de dimension finie avec dim(F ) ≤ dim(G).
De plus [F = G ⇐⇒ dim(F ) = dim(G)].
Il faut savoir le démontrer.

3 Base canonique

Propriété. Soit n ∈ N∗. Kn est un K-espace vectoriel de dimension n dont une base est
c = (c1, . . . , cn), où pour tout i ∈ {1, . . . , n}, ci = (δi,j)1≤j≤n. c est la base canonique de Kn.
Les coordonnées de x ∈ Kn dans la base c sont les composantes de x.

©Éric Merle 2 MPSI2, LLG
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Propriété. Soit I un ensemble quelconque. Pour tout i ∈ I, on note ci = (δi,j)j∈I . Ainsi c = (ci)i∈I

est une famille de K(I). C’est une base de K(I), appelée la base canonique de K(I). De plus, pour tout
x = (αi)i∈I ∈ K(I) : les coordonnées de x sont ses composantes.
Il faut savoir le démontrer.

Corollaire. La base canonique de K[X] est la famille (Xn)n∈N.

4 Exemples

Propriété. Dans K2, deux vecteurs u =

(
u1

u2

)
et v =

(
v1
v2

)
forment une base de K2 si et seulement

si u1v2 − u2v1
∆
= detc(u, v) ̸= 0.

Propriété. Toute sur-famille d’une famille génératrice est génératrice.
Toute sous-famille d’une famille libre est libre.

Propriété. Une famille de vecteurs est libre si et seulement si toute sous-famille finie de cette famille
est libre.

Théorème. dim(E1 × · · · × En) = dim(E1) + · · ·+ dim(En).
Il faut savoir le démontrer.

5 Application linéaire associée à une famille de vecteurs

Propriété. Soit x = (xi) ∈ EI . Notons
Ψx : K(I) −→ E

(αi)i∈I 7−→
∑
i∈I

αixi .

Ψx est une application linéaire.
• x est une famille libre si et seulement si Ψx est injective.
• x est une famille génératrice si et seulement si Ψx est surjective.
• x est une base si et seulement si Ψx est un isomorphisme.
Ψx est appelée l’application linéaire associée à la famille de vecteurs x.
Il faut savoir le démontrer.

Propriété. Soit x = (xi)i∈I une famille de vecteurs de E. x est libre si et seulement si, pour tout

y ∈ Vect(x), il existe une unique famille presque nulle de scalaires (αi)i∈I telle que y =
∑
i∈I

αixi.

Propriété. Si e = (ei)i∈I est une base de E, alors E est isomorphe à K(I).

6 Image d’une famille par une application linéaire

Notation. Si u ∈ L(E,F ) et x = (xi)i∈I ∈ EI , on notera (u(xi))i∈I = u(x).

Propriété. Avec cette notation, Ψu(x) = u ◦Ψx.

Théorème.
• L’image d’une famille libre par une injection linéaire est une famille libre.
• L’image d’une famille génératrice par une surjection linéaire est génératrice.
• L’image d’une base par un isomorphisme est une base.
Il faut savoir le démontrer.
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Théorème. Deux espaces de dimensions finies ont la même dimension si et seulement si ils sont
isomorphes.
Il faut savoir le démontrer.

Propriété. Soit E et F deux espaces de dimensions finies et soit f ∈ L(E,F ).
Si f est injective, alors dim(E) ≤ dim(F ).
Si f est surjective, alors dim(E) ≥ dim(F ).

Propriété. Soient E et F deux K-espaces vectoriels de dimensions quelconques. Soient u ∈ L(E,F )
et G un sous-espace vectoriel de E de dimension finie. Alors
u(G) est de dimension finie et dim(u(G)) ≤ dim(G), avec égalité lorsque u est injective.

Propriété. L’image d’une famille génératrice par une application linéaire u engendre Im(u).

Propriété. L’image d’une famille liée par une application linéaire est liée.

Théorème.
On suppose que E est un K-espace vectoriel admettant une base e = (ei)i∈I .
Soit f = (fi)i∈I une famille quelconque de vecteurs d’un second K-espace vectoriel F .
Il existe une unique application linéaire u ∈ L(E,F ) telle que, ∀i ∈ I u(ei) = fi.

De plus, (fi)i∈I est

 libre
génératrice
une base

si et seulement si u est

 injective
surjective
bijective

.

Il faut savoir le démontrer.

Corollaire.
Soit E et F deux espaces vectoriels de dimensions finies et soit u ∈ L(E,F ).
Si dim(E) = dim(F ), alors u injective ⇐⇒ u surjective ⇐⇒ u bijective.

Propriété. Soit E un K-espace vectoriel de dimension finie et u ∈ L(E). Alors
u inversible dans L(E) ⇐⇒ u inversible à droite dans L(E)

⇐⇒ u inversible à gauche dans L(E)
.

Exercice. Soit A une K-algèbre et B une sous-algèbre de A de dimension finie. Soit b ∈ B.
Montrer que si b est inversible dans A, alors b−1 ∈ B.
Il faut savoir le démontrer.

Propriété. Si E admet une base (ei)i∈I , alors L(E,F ) est isomorphe à F I .
Il faut savoir le démontrer.

Théorème. dim(L(E,F )) = dim(E)× dim(F ).

7 Suppléments au programme

Propriété. Soient F et G sont deux sous-espaces vectoriels de dimensions finies d’un K-espace
vectoriel tels que F+G est directe. Alors F⊕G est de dimension finie et dim(F⊕G) = dim(F )+dim(G).
Il faut savoir le démontrer.

Propriété. Si u ∈ L(E,F ) et si H ⊕Ker(u) = E, alors u|Im(u)
H est un isomorphisme.

Il faut savoir le démontrer.

Formule du rang : Soit u ∈ L(E,F ) avec E de dimension finie. Alors
dim(E) = dim(Im(u)) + dim(Ker(u)). On dit que dim(Im(u)) est le rang de u, il est noté rg(u).
Il faut savoir le démontrer.

Formule de Grassmann : Soient F et G sont deux sous-espaces vectoriels de dimensions finies d’un
K-espace vectoriel. Alors F+G est de dimension finie et dim(F+G) = dim(F )+dim(G)−dim(F ∩G).
Il faut savoir le démontrer.

©Éric Merle 4 MPSI2, LLG
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Espaces vectoriels normés

8 Définition d’une norme

Définition. Soit E un K-espace vectoriel . On appelle norme sur E toute application ∥.∥ : E −→ R
telle que, pour tout (x, y, λ) ∈ E × E ×K,

⋄ ∥x∥ ≥ 0 (positivité).
⋄ ∥x∥ = 0 =⇒ x = 0 (∥.∥ est définie),
⋄ ∥λx∥ = |λ|∥x∥ (∥.∥ est homogène), et
⋄ ∥x+ y∥ ≤ ∥x∥+ ∥y∥, cette dernière propriété étant appelée l’inégalité triangulaire.

Si ∥.∥ est une norme sur E, le couple (E, ∥.∥) est appelé un espace vectoriel normé.

Remarque. Si E est un espace vectoriel normé , ∥0∥ = 0.

Corollaire de l’inégalité triangulaire. ∀(x, y) ∈ E2 |∥x∥ − ∥y∥| ≤ ∥x− y∥.
Il faut savoir le démontrer.

Définition.
Soient E un espace vectoriel normé et u ∈ E. u est unitaire si et seulement si ∥u∥ = 1.

Si u ̸= 0, on appelle vecteur unitaire associé à u le vecteur
u

∥u∥
, qui est bien unitaire.

Définition. Soient E un espace vectoriel normé et F un sous-espace vectoriel de E.
La restriction à F de la norme de E fait de F un espace vectoriel normé.

Exemple. Sur R et sur C, |.| est une norme.

9 Les normes 1, 2 et ∞.

9.1 Cas des sommes finies.

Propriété. Sur Kn, on dispose de trois normes classiques.

∥.∥1 : Kn −→ R+

x = (x1, . . . , xn) 7−→ ∥x∥1 =

n∑
i=1

|xi|
,

∥.∥2 : Kn −→ R+

x = (x1, . . . , xn) 7−→ ∥x∥2 =

√√√√ n∑
i=1

|xi|2
, et

∥.∥∞ : Kn −→ R+

x = (x1, . . . , xn) 7−→ ∥x∥∞ = max
1≤i≤n

|xi| .

Il faut savoir le démontrer pour ∥.∥1 et ∥.∥2.

Propriété. (Hors programme) Soit p ∈]1,+∞[.

Alors

∥.∥p : Kn −→ R+

x = (x1, . . . , xn) 7−→ ∥x∥p =

(
n∑

i=1

|xi|p
) 1

p est une norme sur Kn.

Remarque. ∀x ∈ Kn ∥x∥p −→
p→+∞

∥x∥∞. Cela justifie la notation ∥.∥∞.
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Propriété. Soient p ∈ N∗ et E1, . . ., Ep p K-espaces vectoriels munis de normes respectivement
notées ∥.∥E1

, . . ., ∥.∥Ep
. Alors E = E1 × · · ·×Ep est un espace vectoriel normé si on le munit de l’une

des normes classiques suivantes.

N1 : E −→ R+

x = (x1, . . . , xp) 7−→ N1(x) =

p∑
i=1

∥xi∥Ei

,

N2 : E −→ R+

x = (x1, . . . , xp) 7−→ N2(x) =

√√√√ p∑
i=1

∥xi∥2Ei

, et

N∞ : E −→ R+

x = (x1, . . . , xp) 7−→ N∞(x) = max
1≤i≤p

∥xi∥Ei
.

9.2 Cas des intégrales sur un intervalle compact

Propriété. Soient (a, b) ∈ R2 avec a < b. Sur C([a, b],K), on dispose de trois normes classiques.

∥.∥1 : C([a, b],K) −→ R+

f 7−→ ∥f∥1 =

∫ b

a

|f(x)|dx
,

∥.∥2 : C([a, b],K) −→ R+

f 7−→ ∥f∥2 =

√∫ b

a

|f(x)|2dx
, et

∥.∥∞ : C([a, b],K) −→ R+

f 7−→ ∥f∥∞ = sup
x∈[a,b]

|f(x)| .

Il faut savoir le démontrer pour ∥.∥1 et ∥.∥∞.

Propriété. (Hors programme) Soit p ∈]1,+∞[.

Alors

∥.∥p : C([a, b],K) −→ R+

f 7−→ ∥f∥p =

(∫ b

a

|f(x)|p dx

) 1
p est une norme sur C([a, b],K).

10 Distance

Définition. Soit E un espace vectoriel normé .

On appelle distance associée à la norme ∥.∥ de E, l’application
d : E2 −→ R+

(x, y) 7−→ ∥x− y∥ .

Définition. Soient E un espace vectoriel normé dont la distance associée est notée d et A une partie
de E. La restriction de d à A2 est appelée la distance induite par d sur A.

Propriété. Avec les notations précédentes, pour tout x, y, z ∈ E,
— d(x, y) ∈ R+ (positivité) ;
— d(x, y) = 0 ⇐⇒ x = y (séparation) ;
— d(x, y) = d(y, x) (symétrie) ;
— d(x, z) ≤ d(x, y) + d(y, z) (inégalité triangulaire).

Définition. On appelle espace métrique tout couple (E, d) où E est un ensemble et où d : E2 −→ R+

est une application telle que, pour tout x, y, z ∈ E,
— d(x, y) = 0 ⇐⇒ x = y (séparation) ;
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— d(x, y) = d(y, x) (symétrie) ;
— d(x, z) ≤ d(x, y) + d(y, z) (inégalité triangulaire).

Les seuls espaces métriques qui sont au programme sont les (A, dA) où A est une partie d’un espace
vectoriel normé E et où dA est la distance induite sur A par la distance associée à la norme de E.
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