
MPSI 2

Programme des colles de mathématiques.

Semaine 13 : du lundi 12 janvier au vendredi 16.

Liste des questions de cours

1◦) Montrer qu’une intersection quelconque de sous-espaces vectoriels est un sous-espace vectoriel.

2◦) Si A une partie d’un K-espace vectoriel E, précisez les éléments de Vect(A), en justifiant.

3◦) Montrer que L(E,F ) est un K-espace vectoriel.

4◦) Décrire les formes linéaires de Kn.

5◦) Si u et v sont deux endomorphismes qui commutent, montrer que Im(u) et Ker(u) sont stables
par v.

6◦) On considère l’équation suivante en l’inconnue P ∈ R[X] ; (E) : P (X + 1)− P (X) = 2X + 1.
Montrer que (E) est une équation linéaire puis la résoudre.

7◦) Si E est un K-espace vectoriel, montrer que L(E) est une K-algèbre.

8◦) Soit E un K-espace vectoriel et u ∈ GL(E). Montrer que w 7−→ uwu−1 est un automorphisme
de l’algèbre L(E).

9◦) Enoncer et démontrer le théorème de la base incomplète.

10◦) dim(E1 × · · · × En) = ? : énoncé et démonstration.

11◦) Si e = (ei)i∈I est une base de E et f = (fi)i∈I ∈ F I , montrer qu’il existe une unique application
linéaire u ∈ L(E,F ) telle que u(ei) = fi et donner une CNS portant sur (fi) pour que u soit injective
(resp : surjective).

12◦) Soit A une K-algèbre et B une sous-algèbre de A de dimension finie. Soit b ∈ B. Montrer que si
b est inversible dans A, alors b−1 ∈ B.

Thèmes de la semaine

1 Groupes, anneaux et corps : En révisions

Il est conseillé de démarrer par un premier exercice portant sur ces chapitres.

2 Les espaces vectoriels

Il s’agit du premier chapitre d’algèbre linéaire. C’est nouveau pour les élèves, on ne doit
pas attendre une grande mâıtrise du domaine de leur part. De plus, les notions suivantes
ne sont pas connues des élèves :

— Les matrices ;
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— rang d’une famille de vecteurs, d’une application linéaire ;
— théorie des systèmes linéaires (ils savent cependant résoudre des systèmes linéaires simples) ;
— projecteurs et symétries.
— Trace d’un endomorphisme ;
— hyperplans et dualité ;
— les déterminants ;
— la théorie de la réduction.

2.1 La structure algébrique d’espace vectoriel

Notation. K désigne un corps quelconque.

2.1.1 Définition et exemples

Vecteurs et scalaires.
Exemples : Kn, K[X], EI , sur-corps de K, produit d’espaces vectoriels.

Sous-espaces vectoriels.

2.1.2 Sous-espace vectoriel engendré par une partie

Une intersection d’une famille de sous-espaces vectoriels est un sous-espace vectoriel.

Vect(A) =

{∑
a∈A

αaa/(αa)a∈A ∈ K(A)

}
.

Droite vectorielle.

Soit (xi)i∈I une famille de vecteurs d’un K-espace vectoriel E. Alors Vect(xi)i∈I n’est pas modifié si
l’on effectue l’une des opérations élémentaires suivantes :

— échanger xi0 et xi1 , où i0, i1 ∈ I avec i0 ̸= i1 ;
— multiplier xi0 par α ∈ K avec α ̸= 0 ;
— ajouter à l’un des xi une combinaison linéaire des autres xj .

Somme de p sous-espaces vectoriels.

Somme directe de p sous-espaces vectoriels (seulement la définition, aucun développement pour le
moment).

2.1.3 Les applications linéaires

Morphisme, isomorphisme, endomorphisme, automorphisme, forme linéaire.

Dual de E : E∗ = L(E,K).

Si u est linéaire, u
(
Vect(xi)i∈I

)
= Vect(u(xi))i∈I .

Composée de deux applications linéaires.
Isomorphisme réciproque.

L(E,F ) est un K-espace vectoriel.

Sous-espace stable par un endomorphisme, endomorphisme induit.

Images directe et réciproque d’un sous-espace vectoriel par une application linéaire.

Noyau et image d’une application linéaire.

Si u et v sont deux endomorphismes qui commutent, alors Im(u) et Ker(u) sont stables par v.

uv = 0 ⇐⇒ Im(v) ⊂ Ker(u).
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Équation linéaire (E) : f(x) = y en l’inconnue x ∈ E, où f ∈ L(E,F ) et y ∈ F .
Equation homogène associée : l’ensemble des solutions est Ker(f).
(E) est compatible si et seulement si y ∈ Im(f). Dans ce cas, la solution générale de (E) s’obtient en
ajoutant à une solution particulière de (E) la solution générale de (H).

2.1.4 Espaces affines

Si A et B sont deux points d’un K-espace affine,
−−→
AB = B−A est l’unique vecteur x tel que A+x = B.

Relation de Chasles.
Définition d’un parallélogramme.

Si l’on fixe un point d’un espace affine E , E possède naturellement une srructure d’espace vectoriel.
Réciproquement, tout espace vectoriel possède une structure naturelle d’espace affine.

2.1.5 La structure d’algèbre

Algèbre commutative ou non commutative, intègre ou non intègre.
Si E est un K-espace vectoriel, alors (L(E),+, ., ◦) est une K-algèbre.
Le groupe des inversibles de L(E) est noté (GL(E), ◦).

Sous-algèbres.

morphismes d’algèbres.

Automorphismes intérieurs.

Composition de morphismes d’algèbres, isomorphisme réciproque, images directe et réciproque d’une
sous-algèbre.

2.2 Familles de vecteurs

Notation. E désigne un K-espace vectoriel , où K est un corps quelconque.

2.2.1 Familles libres et génératrices

Familles libres, liées, génératrices, bases.
Coordonnées d’un vecteur dans une base.

2.2.2 Dimension d’un espace vectoriel

Définition. E est de dimension finie si et seulement si il possède une famille génératrice finie.

Lemme : Toute famille (x1, . . . , xn+1) de n+ 1 vecteurs de Vect(e1, . . . , en) est liée.

Théorème de la base incomplète.
Famille libre maximale.

Dimension d’un espace vectoriel de dimension finie.
Si dim(E) = n, e est une base de E si et seulement si e est libre et de cardinal n, ou encore si et
seulement si e est génératrice et de cardinal n.

Si F ⊂ G, dim(F ) ≤ dim(G), avec égalité si et seulement si F = G.

dim(E1 × · · · × En) = dim(E1) + · · ·+ dim(En).

2.2.3 Exemples

Base canonique de K(I).

Dans K2, deux vecteurs forment une base si et seulement si leur déterminant est non nul.
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2.2.4 Application linéaire associée à une famille de vecteurs

Si x = (xi) ∈ EI , on note
Ψx : K(I) −→ E

(αi)i∈I 7−→
∑
i∈I

αixi .

x est une famille libre (resp : génératrice) si et seulement si Ψx est injective (resp : surjective).
Si e = (ei)i∈I est une base de E, alors E est isomorphe à K(I).

2.2.5 Image d’une famille par une application linéaire

Notation. Si u ∈ L(E,F ) et x = (xi)i∈I ∈ EI , on notera (u(xi))i∈I = u(x). Alors Ψu(x) = u ◦Ψx.
Image d’une famille libre (resp : génératrice) par une injection (resp : surjection) linéaire.

Deux espaces de dimensions finies ont la même dimension si et seulement si ils sont isomorphes.
dim(u(G)) ≤ dim(G), avec égalité lorsque u est injective.

Théorème. Si e = (ei)i∈I est une base de E et f = (fi)i∈I ∈ F I , il existe une unique application
linéaire u ∈ L(E,F ) telle que u(ei) = fi. CNS portant sur (fi) pour que u soit injective (resp :
surjective).

Soit u ∈ L(E,F ) avec dim(E) = dim(F ), alors u injective ⇐⇒ u surjective ⇐⇒ u bijective.
Si E admet une base (ei)i∈I , alors L(E,F ) est isomorphe à F I .
dim(L(E,F )) = dim(E)× dim(F ).

Formule du rang.

Prévisions pour la semaine prochaine :

Normes et suites de vecteurs.
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