DM 27 : un corrigé

Questions préliminaires

1°)

¢ L’addition n’est pas une loi interne sur C*, car par exemple, 1 et —1 sont dans C*,
mais 1 4+ (—1) = 0 n’est pas dans C*. A fortiori, (C*, +) n’est pas un groupe.

o D’apres le cours, (C,+, x) est un corps, donc C* est I'ensemble des inversibles de
I'anneau (C, +, x) et, toujours d’apres le cours, c’est donc un groupe pour la multipli-
cation.

2°) o Soit z € G.

Soit n € N. Notons R(n) 'assertion : g(z™) = g(z)".

Pour n = 0, on sait d’apres le cours sur les morphismes de groupes que

g(a") = g(1) =1 = g(x)", d’'ott R(0).

Pour n € N, supposons R(n) et montrons R(n + 1).

g(z"™) = g(x™.z) = g(z™).g(x) car g est un morphisme, donc d’apres R(n),
g(a™*!) = g(x)"g(x) = g(x)"*", ce qui prouve R(n +1).

D’apres le principe de récurrence, pour tout n € N, g(z") = g(z)".

Soit maintenant n € Z\N. Alors, par définition de 2", g(z™) = g((z™")™!), donc d’apres
le cours sur les morphismes de groupes, g(z") = (g ( ~))~, or —n € N, donc ce qui
précede permet d’écrire que g(2™) = (g(x)™)~! = g(x)", ce qu il fallait démontrer.

o En notation additive, si g est un caractére d’'un groupe (G,+), on a donc : pour
tout x € G et a € Z, g(ax) = g(x)*.

Partie 1 : Caracteéres de Z et de R

3°) Soit g un caractere de Z.
D’apres la question précédente, pour tout a € Z, g(a) = g(a x 1) = g(1)%, donc si g est
un caractere, il existe r € C* tel que, pour tout a € Z, g(a) =
Réciproquement, si g est de la forme a — r%, ou r € C*, on vérifie aisément que, pour
tout a,b € Z, gla+b) = g(a)g(b), donc g est bien un caractere de Z. En conclusion, les
— C

our e C.

re’

caracteres de Z sont exactement les applications de la forme



4°)

o Pour tout r,s € R, on a g(r +s) = g(r)g(s), et g est dérivable, donc en dérivant
selon r a s fixé, on obtient, pour tout r,s € R, ¢'(r + s) = ¢'(r)g(s). De plus ¢(0) = 1,
car g est un morphisme de groupes, donc, en remplagant le couple (7, s) par (0,t), on
obtient que, pour tout t € R, ¢'(t) = ¢'(0)g(t), ce qu'il fallait démontrer en posant
c=40).

o Posons h(t) = g(t)e™, pour tout t € R. h est dérivable et h/(t) = e~ (¢'(t) — cg(t)),
donc B/(t) = 0, ce qui prouve que h est une application constante. Or h(0) = ¢g(0) =1,
donc h est 'application constante égale a 1. Ainsi, on a montré que si g est un caractere
dérivable sur R, alors il existe ¢ € C tel que g = (t — e).

Réciproquement, si g est de cette forme, on vérifie aisément que g(r + s) = g(r)g(s)
pour tout r, s € R.

En conclusion, 'ensemble des caractéres dérivables de R est {t — e / ¢ € C}.

5°) Soit g un caractere continu de R.
g
Si, pour tout € € R, / g(t) dt = 0, alors en dérivant par rapport a €, on obtient que
0
g(e) = 0 pour tout € € R, ce qui est faux car g est a valeurs dans C*. Ainsi, il existe
g

e € R tel que/ g(t) dt #0.
0

3 3
Pour tout r € R, / g(r+1t) dt = g(r)/ g(t) dt, puis par changement de variables,
0 0

€ r+e
g(?")/ g(t) dt = / g(t) dt, donc en notant G une primitive de g, on peut écrire
0 r
G(r+¢)—G(r)
Jo 9(t)dt

que, pour tout r € R, g(r) = ., or G est de classe O, donc, € étant

fixé, g est aussi de classe C!.

Ainsi, 'ensemble des caracteres continus de R est inclus dans ’ensemble des caracteres
dérivables de R. L’inclusion réciproque étant évidente, d’apres la question précédente,
'ensemble des caracteres continus de R est {t — e / ¢ € C}.

Partie 2 : Liberté de ’ensemble des caracteres
Cas d’un groupe fini

6°) Soit g un caractere de G. Soit x € G. D’apres le cours, 2" = 1, donc d’apres la
question 2, 1 = g(1) = g(z") = g(x)", ce qui prouve que g(z) € U,.

1
7°) ¢ Supposons d’abord que g = h. Alors (g|h) = (g|lg) = — E lg(x)]> = 1, car
n
zeG
d’apres la question précédente, pour tout = € G, g(x) € U.

¢ On suppose maintenant que g # h. Ainsi, il existe zg € G tel que g(zo) # h(zo).



Lorsque z € U, 2Z = |z]? = 1, donc Z = 1. Ainsi, d’aprés la premiere question
) ) ) )

1
1 z
— Z @ L’application G G
n zeG t

est une bijection, dont la bijection
> o

h(z)

— .
réciproque est G G_l donc par Changement de variable,
— {E x

h(zox)

(glh) = Z gExox Z g car g et h sont des morphismes.
9(
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8°) G est fini, donc 'ensemble des applications de G dans U,, étant fini, G est aussi

Ainsi (glh) = # 1, donc le complexe (g|h) est bien nul.

fini. Soit (ay),e¢ € CY une famille de complexes telle que Z agg = 0.

9€g
Ainsi, pour tout z € G, Zagg(x) =0
geg ]
Soit h € G. Alors 0 = Z (Zagg > () = Zagﬁ Zg(m)h(:c),
xGG geg geg z€G
donc 0 = Z ay(g|h). Alors, d’apres la question précédente, 0 = ay,(h|h) = ay,.

9eg
Ceci prouve que G est libre.

Cas général

9°) Soit 2,y € G. On a g(zy) = g(2)g(y),

or g(xy) Zx\zgz xy) ZAigi(x)gi( ) et g(z ZAlg’
i=1

donc Z Xigi(2)(g:(y) — 9(y)) = 0.
i=1
Fixons y dans G et posons, pour tout i € N, p; = N(gi(y) — g(y)). Alors on peut

écrire que Zuzgl 0, or (g1,...,9n) est supposé libre, donc pour tout i € N,,

0 = i = Mliy) - 9(0).
g est non nul, car g est a valeurs dans C*, donc il existe iy € N,, tel que \;, # 0. Alors

on peut affirmer que que g = g;,, ce qu’il fallait démontrer.

10°) D’apres le cours, il suffit de montrer que toute partie finie de G est libre, ce que
I’'on va démontrer par récurrence sur le cardinal de la partie finie.

Soit n € N. On note R(n) l'assertion suivante : toute famille de n caracteres distincts
de G est libre.

Pour n = 0, une famille vide est toujours libre, d’ou R(0).

Pour n =1, si g € G, alors g # 0, donc la famille (g) est libre, d’ou R(1).

Pour n € N*, supposons R(n) et montrons R(n + 1).

3



Soit g1,...,gne1 n+ 1 caracteres de G que 'on suppose distincts deux a deux.
n+1

Soit ag, ..., a1 € C tels que Zaigi = 0.
i=1
Supposons qu’il existe ig € N, ;1 tel que oy, # 0. Quitte a réordonner les vecteurs

iy vy Gntl, on peut supposer que g = n + 1.

Alors g1 = Z Aigi, en posant \; = — i

On+1

D’apres R(n), (gl, ..., gn) est libre, donc d’apres la question précédente, il existe i € N,,
tel que g1 = ¢;, ce qui est faux par hypothese. Ainsi, pour tout i € N,, 11, a; = 0, ce
qui prouve que la famille (g1, ..., gn+1) est libre. On a montré R(n + 1).

Le principe de récurrence permet de conclure.

Partie 3 : Le groupe dual

11°) o Soit f, g € Hom(G, H). Montrons que fg est encore un élément de Hom(G, H) :
Soit z,y € G : (fg)(zy) = f(zy)g(zy) par définition de fg, or f et g sont des
morphismes, donc (fg)(zy) = f(x)f(y)g(x)g(y). De plus H est commutatif, donc
(fo)(@y) = f(@)g(x)f(y)g(y) = (f9)(@)-(f9)(y)-

Ainsi, la définition de fg lorsque f, g € Hom(G, H) est une loi interne sur Hom(G, H).
o Pour tout f,g € Hom(G, H), pour tout = € G,

(fg)(z) = f(x)g(x) = g(z)f(z) = (9f)(x), car H est abélien, donc fg = gf. Cette loi
interne est donc commutative.

¢ Notons 1 I'application de G dans H constante, égale a 1. On vérifie que, pour tout
x,y € G, 1(xy) = 1(x)1(y), donc 1 € Hom(G, H).

On vérifie facilement que, pour tout f € Hom(G, H), 1f = f, donc 1 est un élément
neutre.

o Pour tout f,g,h € Hom(G, H), pour tout z € G,

(f(gh)(z) = f(x)[(gh)(x)] = f(x)[g(x)h(x)], or la multiplication dans H est associa-
tive, donc (f(gh))(z) = [f(z)g(x)]h(z) = ((fg)h)(x). Ainsi, f(gh) = (fg)h, ce qui

prouve l’associativité.

o Soit f € Hom(G, H). Pour tout x € G, posons g(x) = f(x)~L.

Soit x,y € G : g(zy) = f(axy)™' = (f(2)f(y)) ™' = f(y)"'f(x)~!, or H est commutatif,
donc g(zy) = f(x)" f(y)™* = g(x)g(y). Ceci prouve que g € Hom(G, H).

De plus, pour tout z € G, (fg)(z) = f(z)f(x)™' = 1, donc fg = 1. Ceci montre que
tout élément de Hom(G, H) possede un inverse dans Hom(G, H).

¢ En conclusion, Hom(G, H) est un groupe abélien, dont ’élément neutre est 1 et tel
que, pour tout f € Hom(G, H), pour tout = € G, (f~!)(x) = f(z)~".

o Lorsque (H,.) = (C*,.), qui est bien commutatif, Hom(G, H) = G, donc G possede
une structure de groupe abélien.



12°)

o Soit 7 = (a b) une transposition de S,,. Il existe o € S, telle que o(a) = 1 et
o(b) = 2 (en fait il en existe exactement (m — 2)! et (m —2)! > 1 car m > 2). Alors on
vérifie que 7 = o 1(1 2)o : en effet, o7 (1 2)o(a) = o7 1(1 2)(1) = c71(2) = b = 7(a),
o1 2)a(b) =011 2)(2) =07(1) = a = 7(b) et lorsque x € N,,, \ {a, b},

o(x) ¢ {1,2} (car o est injective), donc (1 2)(o(z)) = o(z),

puis 071(1 2)o(x) = 07 lo(x) = 2 = 7(x).

o Soit g € G. Alors, avec les notations précédentes,

g((a b)) = g(o)tg((12))g(c) = g((1 2)), car la multiplication dans C est commutative.
De plus g((1 2))* = g((12)?) = g(Idn,,) = 1, done g((12)) € {1, ~1}.

Supposons d’abord que ¢g((1 2)) = 1. Ainsi, pour toute transposition 7 de S,,, g(7) = 1.
D’apres le cours, si 0 € S,,, 0 se décompose comme un produit de transpositions. Or
g est un morphisme, donc g(o) = 1. Ainsi, g est 'application constante égale a 1.
Supposons maintenant que g((1 2)) = —1, alors en reprenant le raisonnement précédent,
pour tout 0 € S;,, g(0) = (—1)" ot n est le nombre de transpositions qui interviennent
dans la décomposition de . Ainsi, g est la signature, notée €.

Réciproquement, on sait que ces deux applications sont bien des morphimes.

En conclusion, le groupe dual de S, est égal {1,e}.

13°) Notons encore G le groupe dual de Z/nZ.

o D’apres la question 8, pour tout g € G, p(g) = g(1) € U,.

o Soit g,h € G. p(gh) = (gh)(1) = g(1)h(1) = p(g)¢(h), donc ¢ est un morphisme

de G dans U,,.

o Soit g € Ker(p). On a g(1) = 1, donc pour tout k € Z, d’apres la question 2,

g(k) = g(k.1) = g(1)F = 1. Ainsi Ker(¢) = {1}, ce qui prouve que ¢ est injective.

9: Z/nZ — (Ck g est correctement défini, carsi h, k € Z
k o—

avec h = k, alors k — h est un multiple de n, or o™ =1, donc " =1 puis o* = ah

Pour tout h, k € Z, g(h+k) = afa” = g(h)g(k), donc g € G. De plus ¢(g) = g(1) =

donc ¢ est une surjection de G dans U,,.

En conclusion, ¢ est un isomorphisme de G dans U,,.

o Soit a € U,,. Notons

k—h

14°) ¢ Lorsque f € Hom(Gy X - -+ X Gy, H), on note, pour tout ¢ € N,
r f(lGu"'71Gi_17m71G’¢+17"'71Gm).
Soit 7 € N,,, et f € Hom(G; X --- X G,,,, H). Montrons que ¢;(f) € Hom(G;, H). En
effet, pour tout =,y € G,
Sﬁl(f)(l'y> = f(lGn ) 1Gi,17 zy, 1G¢+17 ) 1Gm)

= f((1G17 R 1Gi717 z, 1Gi+17 ) 1Gm)-(1G17 ) 1Gi717 Y, 1G¢+17 SR 1Gm>>7
or f est un morphisme, donc

gD,(f)(:L‘y) - f((lGl? AR ]‘Gi—17I7 1Gi+1’ SRR 1Gm))’f((1G17 R ]‘Gi—l’y7 1Gi+1’ SRR 1G'm))

= @il ) (@)ei(f) ().
Ainsi, en posant, pour tout f € Hom(G1 X+ X Gy, H), o(f) = (wi(f))1<i<m, applica-

tion ¢ ainsi définie va de Hom(G; X - - - X G, H) dans Hom(G4, H) X - - - x Hom(G,,, H).
Il reste a montrer que ¢ est un isomorphisme.



o Soit f,g € Hom(Gy X -+ X Gy, H). Soit i € N,,,. Pour tout z € G,
gDAfg)(iC) = (fg)(lGn SRR 1G2‘717x7 1Gi+17 SRR 1Gm>
= f(1G17 ceey 1Gi_1,$, 1Gi+17 ceey le)g(lGu NP 1@1_1,1’, 1Gi+17 ceey 1Gm)
= pi(f)(z)pi(9)(2)
= (wi(f)ei(g))(@),
done ¢i(f£g) = wi(F)i(g). On en déduit que
e(f9) = (@ilf9)h<i<m = (@i f)pi(9)h<i<m = ©(f)-¢(g) dapres la loi d'un groupe
produit. Ainsi ¢ est un morphisme de groupes.
o Soit f € Ker(p). Alors (¢i(f))i<icm = @(f) = (Lhom(G1,H)» - - - » LHom(Gm,H)), donc
pour tout i € Ny, pour tout z; € Gi, f(lay, -5l %is lai,, -5 la,) = 1.
Soit © = (z1,...,2) € Gy X -+ X Gp,. On a

T = H(lGu o lan i la,,, -5 1a,), or f est un morphisme,
i=1

donc f(z Hf loys e s T lan,, - la,) = L.
Ainsi, f = 1. Donc Ker( ) = {1}, ce qui prouve que ¢ est injective.
o Soit (fi,.... fm) € HHom(Gi,H).

Pour tout x = (z1,...,2,) € Gy X -+ X Gy, posons f(z Hfl ;).

Montrons que f € Hom(Gy X -+ X G,,, H) et que ¢(f) = (fl,...,fm).
Soit x = (z1,...,x,) € Gy X xGmety—(yl,...,ym)eGlx -x G,

Alors f(zy) = f((z1v1, - -+ s TmYm)) Hfl i) = (Hf’ x; )(Hfl i ) car H est

abélien. Ainsi, f(zy) = f(x)f(y), ce qu1 prouve que f e Hom(G, X x Gm, H).
Soit i € N,,, soit z; € G;. Alors
0i(f)(:) = f(lay, - 1T e,y - -5 La,,) = fi(xi), car pour tout j € Ny, \ {i},
fj(lGj) =1u. Ail’lSi, pour tout 1€ Nm7 @l(f) = fi> puis @(f) = <f17 SR fm)
Ceci prouve que ¢ est surjectif.
En conclusion, ¢ est un isomorphisme.
15°)
o D’apres I'énoncé, il existe un isomorphisme f de G dans G' = Z/nZ x - - - X Z/n,ZL.
Si g € Hom(G’,C*) est un caractere de G’, posons ¥(g) =go f.
Pour tout g € Hom(G',C*), ¥(g) est un morphisme en tant que composé de mor-
phismes, donc ¥(g) € Hom(G, C*). Ceci montre que ¥ est une application de Hom(G’, C*)
dans Hom(G, C*). Montrons que ¢’est un isomorphisme.
o Il est clair que W est bijective et que son application réciproque
Hom(G C*) — Hom(G',C*)
g — gof! '
o Soit g, h € Hom(G', C*). Pour tout = € G, ¥(gh)(z) = (gh)(f(z)) = g(f(z)).h(f(x)),
par définition du produit dans Hom(G’, C*),



donc ¥ (gh)(x) = ¥(g)(z).V(h)(z) = [¥(g).V(h)](x). Ainsi, U(gh) = ¥(g).¥(h), ce qui
montre que ¥ est un morphisme.

o Ainsi, Hom(G, C*), le groupe dual de G, est isomorphe

a Hom(Z/mZ x - - - x Z/n,Z,C*), lequel est d’apres la question précédente isomorphe

a [ [ Hom(z/n;Z,C").

i=1
o Soiti € N,,. D’apres la question 13, Hom(Z/n;Z, C*) est isomorphe a U,,,. Ce dernier
est un groupe cyclique d’ordre n;, donc d’apres le cours, il est isomorphe Z/n;Z. 11 existe
donc un isomorphisme f; de Hom(Z/n;Z, C*) dans Z/n;Z.

Pour tout g = (g1,...,9m) € HHom(Z/niZ, C*), posons f(g) = (fi(9:))1<i<m- On
i=1
vérifie alors que f est un isomorphisme de HHom(Z/ n;Z,C*) dans HZ/ n;Z, selon
i=1 i=1
les mémes techniques que précédemment. Ainsi, par composition d’isomorphismes7 on
a montré que G est 1somorphe a G : G est isomorphe a Hom(Z/an XX ZL[n,Z,C*),

lequel est isomorphe a HHom Z/n;Z,C*) qui est isomorphe a HZ/n,Z lequel est

=1 =1
isomorphe a G d’apres l énonce.

16°)
¢ Si G n’est pas abélien, G est abélien donc G et GG ne sont pas isomorphes.
o On a vu en question 3 que lorsque G = Z, alors G = {g. / r € C*}, ou

gr: 2 — C . L’application ¢ — 9 est une bijection dont la bijection
a — 7r° e
- — C - .
réciproque est , donc d’apres le cours G = Z est dénombrable alors
— g(1)

que G n’est pas dénombrable. Il n’existe donc pas de bijection de G dans son groupe
dual et donc a fortiori ils ne sont pas isomorphes.

17°)

o Soit z € G et g € G =Hom(G,C*). Alors ¥(x)(g) = g(z) € C*, donc ¥(x) est bien
une application de G dans C*.

o Soit g,h € G. Soit x € G. V(z)(gh) = (gh)(z) = g(x)h(x), par définition du produit
dans G, donc ¥(z)(gh) = V(z)(g).¥(z)(h), ce qui prouve que ¥(z) est un morphisme
de G dans C*. Ainsi, ¥(z) est un élément du dual de G, c’est-a-dire du bidual de G,
que l'on notera G. R

Ceci prouve que V¥ est une application de G dans G.

¢ Soit x,y € G. Soit g € G.

Y(zy)(9) = g(zy) = g(x)g(y) = Y(x)(9)-Y(y)(g) = (¥(2).¥(y))(g), par définition du
produit dans G = Hom(G, C*), donc ¥(zy) = ¥(z).¥(y), ce qui prouve que ¥ est un
morphisme de groupes.

o Soit x € Ker(¥). ¥(x) = 15, donc pour tout g € G, 1 = ¥(x)(g) = g(z).



Admettons temporairement que x # 1 = [3g € G, ¢g(x) # 1]. Alors par contraposée,
on a z = 1, donc Ker(¥) = {1} ce qui prouve que ¥ est injective.

De plus, d’apres la questionld appliquée aux groupes abéliens finis G et G,

|G| = |G| = |G|, donc ¥ est un isomorphisme de G dans son bidual.

Il reste cependant a démontrer la propriété admise temporairement.

o Premier cas : supposons que G est le groupe Z/nZ, ou n € N*. On a vu en question

. Z/nZ — C* _
g /n_ 2k €st un élément de G. De plus, si g(k) = 1,

13 I’applicati
que 'application T,

alors —~ =0 [27], donc k = 0 [n], puis & = 0. Ainsi, par contraposée, si x € Z/nZ

avec = # 0, alors g(x) # 1, donc la propriété est démontrée lorsque G est le groupe
Z/nZ.
¢ Second cas : Supposons qu’il existe ¢ € N* et ng,...,n, € N*
tels que G = Z/mZ X --- X Z/n,Z.
Soit z = (k1,...,k,) € G tel que = # 0. Il existe j € N, tel que k; # 0.
g: G — C*
Notons alors _ _ 2ivh; [l s’agit de la composée du morphisme
(h17...,hq) — e "

G — Gj
. R — B
tant que composé de morphismes de groupes. De plus, pour les mémes raisons qu’au
premier cas, g(x) # 1.
o Dernier cas : cas général. (G,.) étant un groupe abélien, d’apres ’énoncé, il existe
un isomorphisme f de G dans un groupe de la forme G' = Z/mZ x --- x Z/n,Z.
Soit x € G avec x # 1. f étant injective, f(z) # 0, donc d’apres le second cas, il existe
g € Hom(G’,C*) tel que g(f(z)) # 1. Alors g o f est un élément du dual de G tel que

(go f)(x) # 1.

utilisé au premier cas avec la j-eme projection ( ,donc g € G, en



