
DM 27 : un corrigé

Questions préliminaires

1◦)
⋄ L’addition n’est pas une loi interne sur C∗, car par exemple, 1 et −1 sont dans C∗,
mais 1 + (−1) = 0 n’est pas dans C∗. A fortiori, (C∗,+) n’est pas un groupe.
⋄ D’après le cours, (C,+,×) est un corps, donc C∗ est l’ensemble des inversibles de
l’anneau (C,+,×) et, toujours d’après le cours, c’est donc un groupe pour la multipli-
cation.

2◦) ⋄ Soit x ∈ G.
Soit n ∈ N. Notons R(n) l’assertion : g(xn) = g(x)n.
Pour n = 0, on sait d’après le cours sur les morphismes de groupes que
g(x0) = g(1) = 1 = g(x)0, d’où R(0).
Pour n ∈ N, supposons R(n) et montrons R(n+ 1).
g(xn+1) = g(xn.x) = g(xn).g(x) car g est un morphisme, donc d’après R(n),
g(xn+1) = g(x)ng(x) = g(x)n+1, ce qui prouve R(n+ 1).
D’après le principe de récurrence, pour tout n ∈ N, g(xn) = g(x)n.
Soit maintenant n ∈ Z\N. Alors, par définition de xn, g(xn) = g((x−n)−1), donc d’après
le cours sur les morphismes de groupes, g(xn) = (g(x−n))−1, or −n ∈ N, donc ce qui
précède permet d’écrire que g(xn) = (g(x)−n)−1 = g(x)n, ce qu’il fallait démontrer.
⋄ En notation additive, si g est un caractère d’un groupe (G,+), on a donc : pour
tout x ∈ G et a ∈ Z, g(ax) = g(x)a.

Partie 1 : Caractères de Z et de R

3◦) Soit g un caractère de Z.
D’après la question précédente, pour tout a ∈ Z, g(a) = g(a× 1) = g(1)a, donc si g est
un caractère, il existe r ∈ C∗ tel que, pour tout a ∈ Z, g(a) = ra.
Réciproquement, si g est de la forme a 7−→ ra, où r ∈ C∗, on vérifie aisément que, pour
tout a, b ∈ Z, g(a+ b) = g(a)g(b), donc g est bien un caractère de Z. En conclusion, les

caractères de Z sont exactement les applications de la forme
Z −→ C∗

a 7−→ ra
, où r ∈ C∗.
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4◦)
⋄ Pour tout r, s ∈ R, on a g(r + s) = g(r)g(s), et g est dérivable, donc en dérivant
selon r à s fixé, on obtient, pour tout r, s ∈ R, g′(r + s) = g′(r)g(s). De plus g(0) = 1,
car g est un morphisme de groupes, donc, en remplaçant le couple (r, s) par (0, t), on
obtient que, pour tout t ∈ R, g′(t) = g′(0)g(t), ce qu’il fallait démontrer en posant
c = g′(0).
⋄ Posons h(t) = g(t)e−ct, pour tout t ∈ R. h est dérivable et h′(t) = e−ct(g′(t)−cg(t)),
donc h′(t) = 0, ce qui prouve que h est une application constante. Or h(0) = g(0) = 1,
donc h est l’application constante égale à 1. Ainsi, on a montré que si g est un caractère
dérivable sur R, alors il existe c ∈ C tel que g = (t 7−→ ect).
Réciproquement, si g est de cette forme, on vérifie aisément que g(r + s) = g(r)g(s)
pour tout r, s ∈ R.
En conclusion, l’ensemble des caractères dérivables de R est {t 7−→ ect / c ∈ C}.

5◦) Soit g un caractère continu de R.

Si, pour tout ε ∈ R,
∫ ε

0

g(t) dt = 0, alors en dérivant par rapport à ε, on obtient que

g(ε) = 0 pour tout ε ∈ R, ce qui est faux car g est à valeurs dans C∗. Ainsi, il existe

ε ∈ R tel que

∫ ε

0

g(t) dt ̸= 0.

Pour tout r ∈ R,
∫ ε

0

g(r + t) dt = g(r)

∫ ε

0

g(t) dt, puis par changement de variables,

g(r)

∫ ε

0

g(t) dt =

∫ r+ε

r

g(t) dt, donc en notant G une primitive de g, on peut écrire

que, pour tout r ∈ R, g(r) =
G(r + ε)−G(r)∫ ε

0
g(t)dt

, or G est de classe C1, donc, ε étant

fixé, g est aussi de classe C1.
Ainsi, l’ensemble des caractères continus de R est inclus dans l’ensemble des caractères
dérivables de R. L’inclusion réciproque étant évidente, d’après la question précédente,
l’ensemble des caractères continus de R est {t 7−→ ect / c ∈ C}.

Partie 2 : Liberté de l’ensemble des caractères

Cas d’un groupe fini

6◦) Soit g un caractère de G. Soit x ∈ G. D’après le cours, xn = 1, donc d’après la
question 2, 1 = g(1) = g(xn) = g(x)n, ce qui prouve que g(x) ∈ Un.

7◦) ⋄ Supposons d’abord que g = h. Alors ⟨g|h⟩ = ⟨g|g⟩ =
1

n

∑
x∈G

|g(x)|2 = 1, car

d’après la question précédente, pour tout x ∈ G, g(x) ∈ U.
⋄ On suppose maintenant que g ̸= h. Ainsi, il existe x0 ∈ G tel que g(x0) ̸= h(x0).
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Lorsque z ∈ U, zz = |z|2 = 1, donc z = 1
z
. Ainsi, d’après la première question,

⟨g|h⟩ =
1

n

∑
x∈G

g(x)

h(x)
. L’application

G −→ G
x 7−→ x0x

est une bijection, dont la bijection

réciproque est
G −→ G
x 7−→ x−1

0 x
, donc par changement de variable,

⟨g|h⟩ = 1

n

∑
x∈G

g(x0x)

h(x0x)
=

g(x0)

h(x0)

1

n

∑
x∈G

g(x)

h(x)
car g et h sont des morphismes.

Ainsi ⟨g|h⟩ = g(x0)

h(x0)
⟨g|h⟩, or g(x0)

h(x0)
̸= 1, donc le complexe ⟨g|h⟩ est bien nul.

8◦) G est fini, donc l’ensemble des applications de G dans Un étant fini, G est aussi

fini. Soit (αg)g∈G ∈ CG une famille de complexes telle que
∑
g∈G

αgg = 0.

Ainsi, pour tout x ∈ G,
∑
g∈G

αgg(x) = 0

Soit h ∈ G. Alors 0 =
1

n

∑
x∈G

(∑
g∈G

αgg(x)
)
h(x) =

∑
g∈G

αg
1

n

∑
x∈G

g(x)h(x),

donc 0 =
∑
g∈G

αg⟨g|h⟩. Alors, d’après la question précédente, 0 = αh⟨h|h⟩ = αh.

Ceci prouve que G est libre.

Cas général

9◦) Soit x, y ∈ G. On a g(xy) = g(x)g(y),

or g(xy) =
n∑

i=1

λigi(xy) =
n∑

i=1

λigi(x)gi(y) et g(x)g(y) =
n∑

i=1

λigi(x)g(y),

donc
n∑

i=1

λigi(x)(gi(y)− g(y)) = 0.

Fixons y dans G et posons, pour tout i ∈ Nn, µi = λi(gi(y) − g(y)). Alors on peut

écrire que
n∑

i=1

µigi = 0, or (g1, . . . , gn) est supposé libre, donc pour tout i ∈ Nn,

0 = µi = λi(gi(y)− g(y)).
g est non nul, car g est à valeurs dans C∗, donc il existe i0 ∈ Nn tel que λi0 ̸= 0. Alors
on peut affirmer que que g = gi0 , ce qu’il fallait démontrer.

10◦) D’après le cours, il suffit de montrer que toute partie finie de G est libre, ce que
l’on va démontrer par récurrence sur le cardinal de la partie finie.
Soit n ∈ N. On note R(n) l’assertion suivante : toute famille de n caractères distincts
de G est libre.
Pour n = 0, une famille vide est toujours libre, d’où R(0).
Pour n = 1, si g ∈ G, alors g ̸= 0, donc la famille (g) est libre, d’où R(1).
Pour n ∈ N∗, supposons R(n) et montrons R(n+ 1).
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Soit g1, . . . , gn+1 n+ 1 caractères de G que l’on suppose distincts deux à deux.

Soit α1, . . . , αn+1 ∈ C tels que
n+1∑
i=1

αigi = 0.

Supposons qu’il existe i0 ∈ Nn+1 tel que αi0 ̸= 0. Quitte à réordonner les vecteurs
g1, . . . , gn+1, on peut supposer que i0 = n+ 1.

Alors gn+1 =
n∑

i=1

λigi, en posant λi = − αi

αn+1

.

D’après R(n), (g1, . . . , gn) est libre, donc d’après la question précédente, il existe i ∈ Nn

tel que gn+1 = gi, ce qui est faux par hypothèse. Ainsi, pour tout i ∈ Nn+1, αi = 0, ce
qui prouve que la famille (g1, . . . , gn+1) est libre. On a montré R(n+ 1).
Le principe de récurrence permet de conclure.

Partie 3 : Le groupe dual

11◦) ⋄ Soit f, g ∈ Hom(G,H). Montrons que fg est encore un élément de Hom(G,H) :
Soit x, y ∈ G : (fg)(xy) = f(xy)g(xy) par définition de fg, or f et g sont des
morphismes, donc (fg)(xy) = f(x)f(y)g(x)g(y). De plus H est commutatif, donc
(fg)(xy) = f(x)g(x)f(y)g(y) = (fg)(x).(fg)(y).
Ainsi, la définition de fg lorsque f, g ∈ Hom(G,H) est une loi interne sur Hom(G,H).
⋄ Pour tout f, g ∈ Hom(G,H), pour tout x ∈ G,
(fg)(x) = f(x)g(x) = g(x)f(x) = (gf)(x), car H est abélien, donc fg = gf . Cette loi
interne est donc commutative.
⋄ Notons 1 l’application de G dans H constante, égale à 1H . On vérifie que, pour tout
x, y ∈ G, 1(xy) = 1(x)1(y), donc 1 ∈ Hom(G,H).
On vérifie facilement que, pour tout f ∈ Hom(G,H), 1f = f , donc 1 est un élément
neutre.
⋄ Pour tout f, g, h ∈ Hom(G,H), pour tout x ∈ G,
(f(gh))(x) = f(x)[(gh)(x)] = f(x)[g(x)h(x)], or la multiplication dans H est associa-
tive, donc (f(gh))(x) = [f(x)g(x)]h(x) = ((fg)h)(x). Ainsi, f(gh) = (fg)h, ce qui
prouve l’associativité.
⋄ Soit f ∈ Hom(G,H). Pour tout x ∈ G, posons g(x) = f(x)−1.
Soit x, y ∈ G : g(xy) = f(xy)−1 = (f(x)f(y))−1 = f(y)−1f(x)−1, or H est commutatif,
donc g(xy) = f(x)−1f(y)−1 = g(x)g(y). Ceci prouve que g ∈ Hom(G,H).
De plus, pour tout x ∈ G, (fg)(x) = f(x)f(x)−1 = 1H , donc fg = 1. Ceci montre que
tout élément de Hom(G,H) possède un inverse dans Hom(G,H).
⋄ En conclusion, Hom(G,H) est un groupe abélien, dont l’élément neutre est 1 et tel
que, pour tout f ∈ Hom(G,H), pour tout x ∈ G, (f−1)(x) = f(x)−1.
⋄ Lorsque (H, .) = (C∗, .), qui est bien commutatif, Hom(G,H) = G, donc G possède
une structure de groupe abélien.
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12◦)
⋄ Soit τ = (a b) une transposition de Sm. Il existe σ ∈ Sm telle que σ(a) = 1 et
σ(b) = 2 (en fait il en existe exactement (m− 2)! et (m− 2)! ≥ 1 car m ≥ 2). Alors on
vérifie que τ = σ−1(1 2)σ : en effet, σ−1(1 2)σ(a) = σ−1(1 2)(1) = σ−1(2) = b = τ(a),
σ−1(1 2)σ(b) = σ−1(1 2)(2) = σ−1(1) = a = τ(b) et lorsque x ∈ Nm \ {a, b},
σ(x) /∈ {1, 2} (car σ est injective), donc (1 2)(σ(x)) = σ(x),
puis σ−1(1 2)σ(x) = σ−1σ(x) = x = τ(x).
⋄ Soit g ∈ G. Alors, avec les notations précédentes,
g((a b)) = g(σ)−1g((1 2))g(σ) = g((1 2)), car la multiplication dans C est commutative.
De plus g((1 2))2 = g((1 2)2) = g(IdNm) = 1, donc g((1 2)) ∈ {1,−1}.
Supposons d’abord que g((1 2)) = 1. Ainsi, pour toute transposition τ de Sm, g(τ) = 1.
D’après le cours, si σ ∈ Sm, σ se décompose comme un produit de transpositions. Or
g est un morphisme, donc g(σ) = 1. Ainsi, g est l’application constante égale à 1.
Supposons maintenant que g((1 2)) = −1, alors en reprenant le raisonnement précédent,
pour tout σ ∈ Sm, g(σ) = (−1)n où n est le nombre de transpositions qui interviennent
dans la décomposition de σ. Ainsi, g est la signature, notée ε.
Réciproquement, on sait que ces deux applications sont bien des morphimes.
En conclusion, le groupe dual de Sm est égal {1, ε}.

13◦) Notons encore G le groupe dual de Z/nZ.
⋄ D’après la question 8, pour tout g ∈ G, φ(g) = g(1) ∈ Un.
⋄ Soit g, h ∈ G. φ(gh) = (gh)(1) = g(1)h(1) = φ(g)φ(h), donc φ est un morphisme
de G dans Un.
⋄ Soit g ∈ Ker(φ). On a g(1) = 1, donc pour tout k ∈ Z, d’après la question 2,
g(k) = g(k.1) = g(1)k = 1. Ainsi Ker(φ) = {1}, ce qui prouve que φ est injective.

⋄ Soit α ∈ Un. Notons
g : Z/nZ −→ C∗

k 7−→ αk . g est correctement défini, car si h, k ∈ Z

avec h = k, alors k − h est un multiple de n, or αn = 1, donc αk−h = 1 puis αk = αh.
Pour tout h, k ∈ Z, g(h+k) = αkαh = g(h)g(k), donc g ∈ G. De plus φ(g) = g(1) = α,
donc φ est une surjection de G dans Un.
En conclusion, φ est un isomorphisme de G dans Un.

14◦) ⋄ Lorsque f ∈ Hom(G1 × · · · ×Gm, H), on note, pour tout i ∈ Nm,
φi(f) : Gi −→ H

x 7−→ f(1G1 , . . . , 1Gi−1
, x, 1Gi+1

, . . . , 1Gm)
.

Soit i ∈ Nm et f ∈ Hom(G1 × · · · × Gm, H). Montrons que φi(f) ∈ Hom(Gi, H). En
effet, pour tout x, y ∈ Gi,
φi(f)(xy) = f(1G1 , . . . , 1Gi−1

, xy, 1Gi+1
, . . . , 1Gm)

= f((1G1 , . . . , 1Gi−1
, x, 1Gi+1

, . . . , 1Gm).(1G1 , . . . , 1Gi−1
, y, 1Gi+1

, . . . , 1Gm)),
or f est un morphisme, donc
φi(f)(xy) = f((1G1 , . . . , 1Gi−1

, x, 1Gi+1
, . . . , 1Gm)).f((1G1 , . . . , 1Gi−1

, y, 1Gi+1
, . . . , 1Gm))

= φi(f)(x)φi(f)(x).
Ainsi, en posant, pour tout f ∈ Hom(G1×· · ·×Gm, H), φ(f) = (φi(f))1≤i≤m, l’applica-
tion φ ainsi définie va de Hom(G1×· · ·×Gm, H) dans Hom(G1, H)×· · ·×Hom(Gm, H).
Il reste à montrer que φ est un isomorphisme.
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⋄ Soit f, g ∈ Hom(G1 × · · · ×Gm, H). Soit i ∈ Nm. Pour tout x ∈ Gi,
φi(fg)(x) = (fg)(1G1 , . . . , 1Gi−1

, x, 1Gi+1
, . . . , 1Gm)

= f(1G1 , . . . , 1Gi−1
, x, 1Gi+1

, . . . , 1Gm)g(1G1 , . . . , 1Gi−1
, x, 1Gi+1

, . . . , 1Gm)
= φi(f)(x)φi(g)(x)
= (φi(f)φi(g))(x),

donc φi(fg) = φi(f)φi(g). On en déduit que
φ(fg) = (φi(fg))1≤i≤m = (φi(f)φi(g))1≤i≤m = φ(f).φ(g) d’après la loi d’un groupe
produit. Ainsi φ est un morphisme de groupes.
⋄ Soit f ∈ Ker(φ). Alors (φi(f))1≤i≤m = φ(f) = (1Hom(G1,H), . . . , 1Hom(Gm,H)), donc
pour tout i ∈ Nm, pour tout xi ∈ Gi, f(1G1 , . . . , 1Gi−1

, xi, 1Gi+1
, . . . , 1Gm) = 1.

Soit x = (x1, . . . , xm) ∈ G1 × · · · ×Gm. On a

x =
m∏
i=1

(1G1 , . . . , 1Gi−1
, xi, 1Gi+1

, . . . , 1Gm), or f est un morphisme,

donc f(x) =
m∏
i=1

f(1G1 , . . . , 1Gi−1
, xi, 1Gi+1

, . . . , 1Gm) = 1.

Ainsi, f = 1. Donc Ker(φ) = {1}, ce qui prouve que φ est injective.

⋄ Soit (f1, . . . , fm) ∈
m∏
i=1

Hom(Gi, H).

Pour tout x = (x1, . . . , xm) ∈ G1 × · · · ×Gm, posons f(x) =
m∏
i=1

fi(xi).

Montrons que f ∈ Hom(G1 × · · · ×Gm, H) et que φ(f) = (f1, . . . , fm).
Soit x = (x1, . . . , xm) ∈ G1 × · · · ×Gm et y = (y1, . . . , ym) ∈ G1 × · · · ×Gm.

Alors f(xy) = f((x1y1, . . . , xmym)) =
m∏
i=1

fi(xiyi) =
( m∏

i=1

fi(xi)
)( m∏

i=1

fi(yi)
)
, car H est

abélien. Ainsi, f(xy) = f(x)f(y), ce qui prouve que f ∈ Hom(G1 × · · · ×Gm, H).
Soit i ∈ Nm, soit xi ∈ Gi. Alors
φi(f)(xi) = f(1G1 , . . . , 1Gi−1

, xi, 1Gi+1
, . . . , 1Gm) = fi(xi), car pour tout j ∈ Nm \ {i},

fj(1Gj
) = 1H . Ainsi, pour tout i ∈ Nm, φi(f) = fi, puis φ(f) = (f1, . . . , fm).

Ceci prouve que φ est surjectif.
En conclusion, φ est un isomorphisme.

15◦)
⋄ D’après l’énoncé, il existe un isomorphisme f de G dans G′ = Z/n1Z×· · ·×Z/nqZ.
Si g ∈ Hom(G′,C∗) est un caractère de G′, posons Ψ(g) = g ◦ f .
Pour tout g ∈ Hom(G′,C∗), Ψ(g) est un morphisme en tant que composé de mor-
phismes, donc Ψ(g) ∈ Hom(G,C∗). Ceci montre que Ψ est une application deHom(G′,C∗)
dans Hom(G,C∗). Montrons que c’est un isomorphisme.
⋄ Il est clair que Ψ est bijective et que son application réciproque

est
Hom(G,C∗) −→ Hom(G′,C∗)

g 7−→ g ◦ f−1 .

⋄ Soit g, h ∈ Hom(G′,C∗). Pour tout x ∈ G, Ψ(gh)(x) = (gh)(f(x)) = g(f(x)).h(f(x)),
par définition du produit dans Hom(G′,C∗),
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donc Ψ(gh)(x) = Ψ(g)(x).Ψ(h)(x) = [Ψ(g).Ψ(h)](x). Ainsi, Ψ(gh) = Ψ(g).Ψ(h), ce qui
montre que Ψ est un morphisme.
⋄ Ainsi, Hom(G,C∗), le groupe dual de G, est isomorphe
à Hom(Z/n1Z× · · · × Z/nqZ,C∗), lequel est d’après la question précédente isomorphe

à
m∏
i=1

Hom(Z/niZ,C∗).

⋄ Soit i ∈ Nm. D’après la question 13, Hom(Z/niZ,C∗) est isomorphe à Uni
. Ce dernier

est un groupe cyclique d’ordre ni, donc d’après le cours, il est isomorphe Z/niZ. Il existe
donc un isomorphisme fi de Hom(Z/niZ,C∗) dans Z/niZ.

Pour tout g = (g1, . . . , gm) ∈
m∏
i=1

Hom(Z/niZ,C∗), posons f(g) = (fi(gi))1≤i≤m. On

vérifie alors que f est un isomorphisme de
m∏
i=1

Hom(Z/niZ,C∗) dans
m∏
i=1

Z/niZ, selon

les mêmes techniques que précédemment. Ainsi, par composition d’isomorphismes, on
a montré que G est isomorphe à G : G est isomorphe à Hom(Z/n1Z×· · ·×Z/nqZ,C∗),

lequel est isomorphe à
m∏
i=1

Hom(Z/niZ,C∗) qui est isomorphe à
m∏
i=1

Z/niZ lequel est

isomorphe à G d’après l’énoncé.

16◦)
⋄ Si G n’est pas abélien, G est abélien donc G et G ne sont pas isomorphes.
⋄ On a vu en question 3 que lorsque G = Z, alors G = {gr / r ∈ C∗}, où
gr : Z −→ C∗

a 7−→ ra
. L’application

C∗ −→ G
r 7−→ gr

est une bijection dont la bijection

réciproque est
G −→ C∗

g 7−→ g(1)
, donc d’après le cours G = Z est dénombrable alors

que G n’est pas dénombrable. Il n’existe donc pas de bijection de G dans son groupe
dual et donc a fortiori ils ne sont pas isomorphes.

17◦)
⋄ Soit x ∈ G et g ∈ G = Hom(G,C∗). Alors Ψ(x)(g) = g(x) ∈ C∗, donc Ψ(x) est bien
une application de G dans C∗.
⋄ Soit g, h ∈ G. Soit x ∈ G. Ψ(x)(gh) = (gh)(x) = g(x)h(x), par définition du produit
dans G, donc Ψ(x)(gh) = Ψ(x)(g).Ψ(x)(h), ce qui prouve que Ψ(x) est un morphisme
de G dans C∗. Ainsi, Ψ(x) est un élément du dual de G, c’est-à-dire du bidual de G,

que l’on notera Ĝ.
Ceci prouve que Ψ est une application de G dans Ĝ.
⋄ Soit x, y ∈ G. Soit g ∈ G.
Ψ(xy)(g) = g(xy) = g(x)g(y) = Ψ(x)(g).Ψ(y)(g) = (Ψ(x).Ψ(y))(g), par définition du

produit dans Ĝ = Hom(G,C∗), donc Ψ(xy) = Ψ(x).Ψ(y), ce qui prouve que Ψ est un
morphisme de groupes.
⋄ Soit x ∈ Ker(Ψ). Ψ(x) = 1Ĝ, donc pour tout g ∈ G, 1 = Ψ(x)(g) = g(x).
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Admettons temporairement que x ̸= 1 =⇒ [∃g ∈ G, g(x) ̸= 1]. Alors par contraposée,
on a x = 1, donc Ker(Ψ) = {1} ce qui prouve que Ψ est injective.
De plus, d’après la question15 appliquée aux groupes abéliens finis G et G,
|G| = |G| = |Ĝ|, donc Ψ est un isomorphisme de G dans son bidual.
Il reste cependant à démontrer la propriété admise temporairement.
⋄ Premier cas : supposons que G est le groupe Z/nZ, où n ∈ N∗. On a vu en question

13 que l’application
g : Z/nZ −→ C∗

k 7−→ e
2iπk
n

est un élément de G. De plus, si g(k) = 1,

alors
2πk

n
≡ 0 [2π], donc k ≡ 0 [n], puis k = 0. Ainsi, par contraposée, si x ∈ Z/nZ

avec x ̸= 0, alors g(x) ̸= 1, donc la propriété est démontrée lorsque G est le groupe
Z/nZ.
⋄ Second cas : Supposons qu’il existe q ∈ N∗ et n1, . . . , nq ∈ N∗

tels que G = Z/n1Z× · · · × Z/nqZ.
Soit x = (k1, . . . , kq) ∈ G tel que x ̸= 0. Il existe j ∈ Nq tel que kj ̸= 0.

Notons alors
g : G −→ C∗

(h1, . . . , hq) 7−→ e
2iπhj
nj

. Il s’agit de la composée du morphisme

utilisé au premier cas avec la j-ème projection
G −→ Gj

(h1, . . . , hq) 7−→ hj
, donc g ∈ G, en

tant que composé de morphismes de groupes. De plus, pour les mêmes raisons qu’au
premier cas, g(x) ̸= 1.
⋄ Dernier cas : cas général. (G, .) étant un groupe abélien, d’après l’énoncé, il existe
un isomorphisme f de G dans un groupe de la forme G′ = Z/n1Z× · · · × Z/nqZ.
Soit x ∈ G avec x ̸= 1. f étant injective, f(x) ̸= 0, donc d’après le second cas, il existe
g ∈ Hom(G′,C∗) tel que g(f(x)) ̸= 1. Alors g ◦ f est un élément du dual de G tel que
(g ◦ f)(x) ̸= 1.
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