DM 28 : Produit tensoriel

Il s’agit d’un sujet supplémentaire pour votre travail personnel.
Il n’est pas a rendre.
Un corrigé sera fourni le jeudi 15 janvier.

K désigne un corps quelconque.

Partie I : applications bilinéaires

Lorsque E, F' et G sont trois K-espaces vectoriels, si b est une application de £ x F' dans
G, on dit que b est bilinéaire si et seulement si , pour tout z,y € E, pour tout z,t € F
et pour tout a € K, b(ax + vy, z) = ab(x, z) + by, 2) et b(z, az +t) = ab(x, z) + b(x, t).
1°) Montrer que (z,y) — xy est une application bilinéaire de R? dans R.

Plus généralement, si A est une K-algeébre, montrer que (x,y) — zy est une applica-
tion bilinéaire de A? dans A.

2°) On note E l'espace vectoriel des applications continues de [0,1] dans C et F
I'espace vectoriel des applications de classe C' de R dans C. Pour tout (f,g) € E x F,
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on pose b(f,g) = / F(®)(g(t) + 24 (t)) dt. Montrer que b est bilinéaire.
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3°) Lorsque E,F et G sont 3 K-espaces vectoriels, montrer que ’ensemble noté
B(E, F;G) des applications bilinéaires de E' x F' dans G est un K-espace vectoriel.

4°) Lorsque E est un K-espace vectoriel , on note L(E) I’ensemble des endomorphismes
de L.

On suppose que E, F' et G sont 3 K-espaces vectoriels. Montrer que B(E, F;G) est
isomorphe & L(E, L(F,G)).

Partie II : unicité du produit tensoriel

Dans cette partie, on fixe deux K-espaces vectoriels notés E et F'.
Soit P un troisieme K-espace vectoriel et
u une application bilinéaire de £ x F' dans P.

5°) Lorsque G est un K-espace vectoriel, montrer que I’application ¢ — £ ou est une
application linéaire de L(P,G) dans B(FE, F'; G).



Lorsque, pour tout K-espace vectoriel GG, ’application ¢ — ¢ o u est un isomorphisme
de L(P,G) dans B(E, F;G), on dit que P, muni de u, est un produit tensoriel de F
par F.

6°) Soit P’ un K-espace vectoriel et ' € B(E, F'; P').

On suppose que P muni de u est un produit tensoriel de E par F.

Montrer que P’ muni de u' est aussi un produit tensoriel de E par F' si et seulement si
il existe un isomorphisme h de P dans P’ tel que v’ = h o w.

On peut donc dire que, si le produit tensoriel de E par F' existe, alors il est unique a
un isomorphisme pres.

Ainsi, lorsque P muni de u est un produit tensoriel de E par F, on dira que P est le
produit tensoriel de E par F, et on le notera £ ® F'. De plus, pour tout (z,y) € E'x F,
on notera r ® y = u(x,y).

Alors, pour tout K-espace vectoriel G et pour toute application bilinéaire b de ' x F'
dans G, il existe une unique application linéaire b’ de F ® F' dans G telle que, pour
tout (x,y) € E x F, b(xz,y) = V(x ® y). On convient d’identifier b et ¥/, de sorte que
toute application bilinéaire b de E' x F' dans GG peut étre vue comme une application
linéaire de F ® F' dans G.

De plus, tout autre produit tensoriel de E par F' se déduit de E® F' par un isomorphisme
h de E® F dans un K-espace vectoriel P’ : alors P’ est un produit tensoriel de E par F
muni de ' = hou. Sil’'on note P' = ER'F, et pour tout (x,y) € EXF,u/(z,y) = z®'y,
alors : pour tout (z,y) € EX F, z ® y = h(zx ®vy).

Partie III : quotient d’espaces vectoriels

Dans cette partie, on fixe un K-espace vectoriel F et un sous-espace vectoriel F' de F.
Pour tout z,y € E/, on convient que z R y si et seulement si z —y € F'.

7°) Montrer que R est une relation d’équivalence.

Lorsque x € F, on note T la classe d’équivalence de = pour cette relation d’équivalence.
De plus I'ensemble quotient £//R est noté E/F : c’est le quotient de 'espace vectoriel
E par 'espace vectoriel F'.

On définit sur E//F une addition et une multiplication par des scalaires en convenant
que, pour tout z,y € Eet a € K, T+7 =2 + y et .T = ax.

8°) Montrer que ces égalités structurent F/F en un K-espace vectoriel.

9°) On suppose que G est un sous-espace vectoriel de E tel que F®G = E, ¢’est-a-dire
tel que E=F + G et FNG = {0}.
Montrer que E/F est isomorphe a G.

T
10°) Pour cette seule question, F = R3 et F = { y| ER/z+y+2= 0}.
z
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On note G la droite vectorielle engendrée par | 1
1

Montrer E = F @ G puis que E/F est une droite vectorielle.

Partie IV : existence du produit tensoriel

Dans cette partie, on fixe a nouveau deux K-espaces vectoriels notés E et F.

Lorsque I est un ensemble quelconque et que (x;);c; est une famille d’éléments de K,
on dit que cette famille est presque nulle si et seulement si {i € I / x; # 0} est fini.
On note KU 'ensemble des familles presque nulles d’éléments de K.

11°) Montrer que K@) est un K-espace vectoriel.
Osii#j
lsii=7j"
Pour tout ¢ € I, on note ¢; = (8, ;) jer-

Pour tout ¢,j € I, on pose §; ; =

12°) Montrer que la famille (¢;);c; est une base de K.
On dit que (c¢;)ies est la base canonique de K.

On note @ = KE*F) et (c, 1) e.perxr la base canonique de Q.

On note également Ay = {Caeterf — Ce s —cop |/ @ €K, e, € E, f € F}

et Ay = {Ce,af—i-f’ — Qe f — Ce / aekK, ecFE, f f/ S F}

Enfin, on note S le sous-espace vectoriel de () engendré par A; U Ay et P =Q/S.

13°) Montrer que (e, f) — . s est une application bilinéaire de E x F' dans P, que
I’'on notera wu.

14°) Montrer que P muni de u est un produit tensoriel de E par F.

Partie V : Newton < Leibniz

15°) Soit a,b € Ret n € N.

Calculer la dérivée n-ieme de t — e®.

A partir de la formule de Leibniz, relative a la dérivée n-ieme du produit de deux
fonctions, retrouver la formule du binome de Newton relative au développement de

(a+0b)".

Réciproquement, nous souhaitons retrouver la formule de Leibniz a partir de la formule
du binome de Newton.

On note F le R-espace vectoriel des applications de classe C*° de R dans R (on ne
demande pas de prouver que c’est un R-espace vectoriel).

16°) Montrer qu’il existe un unique triplet (dy, do, p) tels que d; et dy sont des endomor-
phismes de E@ F et p € L(E®E, E) et tels que, pour tout f,g € F, di(f®g) = f'®g,
d(f@g)=f®7g et p(f ®9) = fg.

On note d I'application de FE dans E définie par d(f) = f'.
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17°) Montrer que, pour tout n € N, d"p = p(d; + ds)", ou le produit utilisé est la
composition.

18°) Conclure.



