DM 28 : un corrigé

Partie I : applications bilinéaires

1°) o Pour tout z,y, 2,t € R et pour tout a € R, on a bien : (ax+vy)z = a(zz) + (y2)
et z(az +1t) = a(xz) + (xt). Ainsi, (z,y) — zy est une application bilinéaire de R?
dans R.
¢ On suppose que A est une K-algebre. Alors le calcul précédent est encore valable :
Pour tout x,y,z,t € A et pour tout @ € K, on a bien : (ax + y)z = a(xz) + (yz) et
r(az +1t) = a(rz) + (zt) : (x,y) — zy est une application bilinéaire de A% dans A.
20) Soit anfl S E, gl(),gl eFetaeC.
blafo+ fi1,90) = / (afot) + f1(8))(g0(t) + 2g5(t)) dt
0
1 1
= a/ fo(t)(g0(t) + 2g5()) dt +/ fi(t)(go(t) +2g5(t)) dt
0 0
= ab1(f07 gO) + b(f17 90)7 et
b(fo,ago+g1) = / Jo(t)(augo(t) + 2090(t) + g1 () + 24 (1)) dt
0
1

—a / folt)(golt) + 245(1)) di + / folt) (1 (t) + 29, (1)) dt

= Oéb((.]fo, go) + b(f(b gl>7

donc b est bien une application bilinéaire.
3°) D’apres le cours, 'ensemble F(E x F,G) des applications de F x F dans G est
un K-espace vectoriel, car G est un K-espace vectoriel. Montrons que B(E, F'; G) est
un sous-espace vectoriel de F(E x F, Q).
Déja, I'application identiquement nulle est clairement bilinéaire, donc B(E, F'; G) # 0.
Soit f,g € B(E,F;G) et a € K.
Soit z,y € E, z,t € F et f € K.
(af+9)(Bx+y.2) =af(Br+y 2)+9(Br+y,2)

= a(Bf(z,2) + f(y,2) + Bg(x, 2) + g(y, 2) et
Blaf +g)(z, 2) + (af + 9)(y, 2) = Baf(z, z) + Bg(z,2) + af(y,2) + 9(y, 2),
done (af +g)(Bz +y, 2) = Blaf + 9)(z,2) + (af + 9)(y, 2).
De méme, on montre que (af + g)(z, fz +t) = Blaf + g)(x, z) + (af + g)(z, 1), donc
af +g € B(E, F;G), ce quil fallait démontrer.

4°) Lorsque b € B(E, F;G) et x € E, notons b(z,.) 'application de F' dans G définie
par : pour tout y € F, b(x,.)(y) = b(z,y).



Pour tout z,t € F et a € K,

b(z, )(az +1t) =b(z,az +t) = ab(x, z) + b(x,t) = ab(z,.)(z) + b(x, .)(t),

donc b(x,.) € L(F,G).

Ainsi, I'application ¢(b) : x —— b(x,.) est une application de FE dans L(F,G).
Vérifions que p(b) est linéaire : soit z,y € E et a € K. Pour tout z € F,

(o) (e + y)](2) = blax +y,2) = ab(z, 2) + b(y, z) = [ap(b)(z) + ¢(b)(y)](2), donc
p(b)(ax +y) = ap(b)(z) + ¢(b)(y).

Ainsi ¢ est une application de B(FE, F';G) dans L(E, L(F,G)).

Il reste a montrer que c¢’est un isomorphisme.

Soit b,0' € B(E, F;G) et a € K. Pour tout (z,y) € £ x F,

plab+0)(z)(y) = (ab+b)(x,y) = ab(z,y) + V' (z,y) = [ap(b) + o (b')](x,y), donc ¢
est linéaire.

Soit b € Kerp. Pour tout (z,y) € E x F, 0 = ¢(b)(z)(y) = b(x,y), donc b = 0. Ainsi,
Keryp = {0}, donc ¢ est injective.

Soit ¢ € L(E, L(F,QG)). Pour tout (z,y) € E x F, posons b(x,y) = {(z)(y). On vérifie
que b est bilinéaire de £ x F' dans G. De plus, pour tout (z,y) € E x F|

o(b)(z)(y) = b(x,y) = £(x)(y), donc p(b) = ¢, ce qui prouve que @ est surjective.

On a donc montré que lapplication b — (z —— b(z,.)) est un isomorphisme de
B(E, F;G) dans L(E, L(F,Q)).

Partie II : unicité du produit tensoriel

5°) Soit G un K-espace vectoriel. Lorsque ¢ € L(P,G), u étant une application de
E x F dans P, par composition, ¢ o u est une application de E x F' dans G. De plus,
fow est bien une application bilinéaire : en effet, pour tout z,y € E, z,t € F et a € K,
Coulax +y,z) =Ll au(z,z) +uly, 2)) = al(u(z,2)) + {(u(y, z)), pour bilinéarité de u
puis par linéarité de ¢, donc £ o u(ax +y,2) = al ou(z, z) + L o u(y, 2).

De méme, on vérifie que Lo u(z,az +t) = al ou(z, z) + £ o u(z,t).

Ainsi ¢ : ¢ — {owu est une application de L(P,G) dans B(E, F; G).

Il reste a montrer qu’elle est linéaire.

Soit ¢, € L(P,G) et a € K. Pour tout (z,y) € E' x F,

plal + 1) (z,y) = (al + ) (u(z,y)) = al(u(z,y)) + '(u(@,y)) = [p(l) + o(0)](z,y),

ce qu’il fallait démontrer.

6°) D’apres I'énoncé, P muni de u est un produit tensoriel de E par F si et seulement
si, pour tout K-espace vectoriel G, pour toute application bilinéaire b de £ x F' dans
G, il existe une unique application linéaire ¢ de P dans G telle que b = ¢ o u.

¢ Supposons que P’ muni de u' est un produit tensoriel de F par F.

u' est une application bilinéaire de E' x I dans P’, donc en appliquant ’affirmation
précédente avec G = P’ et b = u/, il existe une application linéaire h de P dans P’ telle
que v’ = h o .

Mais (P, u) et (P',u’) jouent des roles symétriques, donc il existe également une appli-
cation linéaire ' de P’ dans P telle que u = h' o u/.



On en déduit que u = h' o howu = Idp o u, or d’apres la propriété énoncée en début de
question avec G = P et b = u il existe une unique application h” de P dans P telle que
u = h"owu, donc W' o h = Idp. Par symétrie, on obtient également que h o h' = Idp:,
donc h est une bijection linéaire, ¢’est un isomorphisme de P dans P’
¢ Supposons qu'il existe un isomorphisme h de P et P’ tel que v’ = h o u.
Soit G un K-espace vectoriel.
wo: L(P,G) — B(E,F;G) ot P L(P',G) — B(E,F;G)

{ — fou 0 — Vou =0ohou’
On sait que ¢( est un isomorphisme et il s’agit de montrer que ¢, est un isomorphisme.
v: L(P,G) — L(PG)

0 — (oh
Pour tout ¢ € L(P',G), poo W (') = po('oh) = ohou= ¢1({), donc p; = pgo U,
et il suffit de montrer que ¥ est un isomorphisme. C’est clair car on vérifie que ¥
est bien linéaire et que si 'on note ¥ = (¢ — £ o h™'), alors ¥ o W' = Idypg) et
\I// oW = ]dL(p/7g).

Notons

Notons

Partie III : quotient d’espaces vectoriels

7°) Pour tout x € E, x —x =0 € F, car I est un sous-espace vectoriel, donc =z R z,
ce qui prouve que R est réflexive.
Soit z,y € E tels que z Ry. Alorsy —x = —(z —y) € F car x —y € F et car F est
un sous-espace vectoriel, donc y R x, ce qui prouve que R est symétrique.
Soit z,y,z € Ftelsquex Ryety Rz Alorsx—y € Fety—z¢€F,or F est stable
pour l'addition, donc x —z =x —y+y— z € F. Ainsi, x R z, ce qui prouve que R est
transitive.
On a donc montré que R est une relation d’équivalence.
8°)
o Pour montrer que cette définition de I'addition dans E/F est correcte, il faut établir
que la quantité = + y dépend seulement de T et de 7, c’est-a-dire que sia’ =T et ¢ = 7,
alors 2/ +9y =7 +y. Clest vraicarsiaz’/ =T ety =7, alorsz —a' € Fety—y € F,
donc (z+y)— (@' +y)=(—2)+(y—y) e Fpusa’+y =z +y.
De méme, il faut montrer que @z ne dépend que de T (et de a) : supposons que T = .
Alors x — 2/ € F, mais F est un sous-espace vectoriel, donc a(x — ') € F, puis
ar = ar'.
Il est clair que pour tout z,y € Eet a € K, T+y € E/F et aT € E/F.
o Les propriétés caractéristiques d'un K-espace vectoriel pour E/F se déduisent alors
facilement de celles de F :
— Pour tout z,9,2 € E, T+ U+2) =2+ (y+ 2)
dans F est associative, donc T + (¥ + z) = (T + 7)
E/F est aussi associative.
— De méme, on montre la commutativité : T +y =7y + T.
— Pour tout € E, 0 +7 = 7, donc 0 est neutre.

(x +y) + z, car 'addition
+ Z. Ainsi l'addition dans

<



— Pour tout x € B, T+ —x = 0, donc —z est le symétrique de T, ce qui permettra
d’écrire que —x = —7T.
On a ainsi montré que (E/F,+) est un groupe abélien.
De plus, on vérifie facilement que, pour tout x,y € E, pour tout «, 5 € K,
~ a@+7) = (a7) + (a7),
— (a+P)z = (ax) + (P7),
— (af)T = a(PT) et
— gz =T.
Ainsi, (E/F,+,.) est bien un K-espace vectoriel.
f: G — EJF
r =
et a €K, flar +y) = af(x) + f(y), donc f est une application linéaire.
Soit € Kerf. AlorsT =0 =0, donc z € F. Ainsi, z € FNG = {0}, donc Kerf = {0},
ce qui prouve que f est injective.
Soit z € E/F. 1l existe x € E tel que z = 7. Mais F = F + G, donc il existe y € F' et
teGtelquexr =y+t. Alors 2 =7+t=1¢ cary € Fdoncy =0 = 0. Ainsi, z = f(t),
ce qui prouve que f est surjective.
Ainsi f est un isomorphisme de G sur E/F, ce qu'il fallait démontrer.

10°)

9°) Posons . D’apres la question précédente, pour tout z,y € GG

x T 1
o Soit | y | € FNG. Ainsi, v +y+z=0etilexiste A€ Rtelque | y | =A| 1|,
z z 1
c’est-a-dire tel que r =y = 2z = A. On en déduit que 0 =z +y + 2z = 3\, donc A =0
x
puis | y | =0. Ainsi F NG = {0}.
z
x
o Soit X = [ y | € R% On cherche A € R et a,b € R tels que
z
1 a
X=X|1]|+ b . On doit avoir A\ +a =2, A\+b=yet A\—a—b= =z En
1 —a—b

sommant ces trois égalités, on obtient 3\ =z + y + z.

Posons donc A = %(z+y+z), a=x—\et b=y — A\ Alors, on vérifie que \ +a = x,
A+b=yet A\—a—0b=z: pour la derniere égalité,
A—a—b=z(@+y+z2)—(e—3@@+y+2)—(y—s3(x+y+2) ==z

1 a
Ainsi, X =X | 1 | + b € G+ F,donc E = F+G. On avuque FNG = {0},
1 —a—2>b

donc £ = F @ G.

. L : F
o Alors, d’apres la question précédente, / /

8 @
SIS

— . .
est un isomorphisme,
—



1
donc E/F =1Im(f) = f(G) ={f(Xe) /] A € R}, en posant e = | 1

1
Ainsi, E/F = {Xe / A € R}, donc E/F est l'espace vectoriel engendré par le vecteur
€. Or e # 0 et f est injective, donc € # 0, ce qui prouve que F/F est bien une droite
vectorielle.

Partie IV : existence du produit tensoriel

11°) D’apres le cours, K est un K-espace vectoriel, donc il s’agit de montrer que K
est un sous-espace vectoriel de K.

La famille nulle appartient & K, donc K £ (.

Soit ((as), (b;), a) € KU x KO x K.

Soit ¢ € I. Sia; =0 et b; =0, alors aa; + b; = 0. La contraposée de cette implication
est : Vi € I [aa; +b; # 0= (a; # 0 ou b; # 0)], donc

{iel/aa;+b; #0} C ({t € I/a; #0}U{i € I/b; # 0}), ainsi {i € I /aa; +b; # 0}
est fini, ce qui prouve que a(a;) + (b;) € KUY, ce qu'il fallait démontrer.

12°) o Soit (ay)ier € KO Z a;c; = Z a;(6; ;) jer- 11 s’agit bien d’une somme

el el
tel que a;#0

finie, donc E oC; = ( E 041-52-7]4) . () jer = ()ier.
i€l icr 7€
tel que a;#0

o Soit 7 = (1;);e; € KU, Pour tout (o) € K, on vient de montrer que
T = Z%‘Cz‘ <= = = (;)ier, donc cela prouve l'existence et 'unicité d’'une famille
icl
() € KD telle que = = Z a;c;, ce qu'il fallait démontrer.
icl
u: ExXF — P
(e, f) > Coy
u(oe + €', f) = Caete gy O Caeter,f — QCe g — Cerp € Ay C S, donc
0 = Caete,f — QCe = Corf —m—a@—m— u(ae—l—e’,f) —aule, f) —u(€, f).
On a donc prouvé que u(ae + €, f) = au(e, f) + u(€, f).
De méme on montre que u(e, af + f') = aule, f) + u( , f)), donc u est bilinéaire.

13°) Notons .Soit e,¢’ € B, f € Fet aek.

14°) Soit G un K-espace vectoriel et b € B(FE, F'; G). 1l s’agit de montrer qu'il existe
une unique application linéaire ¢ € L(P,G) telle que b = ¢ o w.

o Commengons par ["unicité : supposons que ¢, ¢ € L(P,G) et b= {ou = {'ou. Alors,
pour tout (z,y) € E x F, l(¢;,) = {'(¢yy), donc ¢, € Ker(¢ —¢'). On en déduit que
Ker(¢ — ') contient V = Vect({¢,, / (z,y) € E x F'}),

or V= { Z Oy yCry [(Qay) € K(EXF)} = { Z Qg yCay [(Oay) € K(EXF)}

(w,y)_eExF (z,y)EEXF
donc V = {X / X € Q}, car (czy)(zy)cExr €st une base de Q. Ainsi, V = P, donc
Ker(¢{ —¢') = P, donc ¢ — ¢’ = 0, ce qui prouve l'unicité.

5



o xzstzn:ce Q:K(EXF) — QG

Posons X = (Cay)@yeexr +— L(X)= Z Qg yb(,y) -

(z,y)EEXF
Montrons que L est linéaire : Soit X = (a,,) € Q, Y = (fsy) € Q et A e K.
LOAX +Y) = L((Aay + Bey)) = D (Awy + Bug)b(z,y) = AL(X) + L(Y).

(z,y)EEXF
Montrons que S C Ker(L) : Soit e,e’ € E, f € F et a € K. Par linéarité de L,
L(Caerer.f — QCef — Corf) = L(Caete ) — @L(Cef) — L(cer ), puis par définition de L,
L(coeter,f — 0Cep — Cerg) = blae + €, f) —able, f) — b(e, f), or b est bilinéaire, donc
Caetel,f — OCep — Cor.p € Ker(L).
De méme, on montre que, pour tout e € E, f, f' € F et a € K,
Ceaftf — 0Ce g — Cepr € Ker(L), donc Ker(L) contient Vect(A; U Ay) = S.
Ainsi, pour tout X,Y € Q tels que X =Y, X —Y € S, donc L(X —Y) = 0, donc
L(X) = L(Y). Ainsi, L(X) ne dépend que de X, donc on peut poser, pour tout X € Q,
((X) = L(X). Ceci définit une application ¢ de P dans G. Montrons que ¢ convient.
Pour tout X,Y € Q et a € K,
((aX +Y)=0aX+Y)=LaX+Y)=aL(X)+ L) = al(X) + (YY),
donc ¢ € L(P,G).
Soit (z,y) € E x F. Lou(z,y) = l(Csy) = L(czy) = b(x,y), donc £ ou = b, ce qu'il
fallait démontrer.

Partie V : Newton <= Leibniz

n
15°) Par récurrence sur n, on montre que, pour tout n € Net t € R, —(e™) = a"e™.

dtm
Posons f(t) = e et g(t) = €. Soit n € N.

Partons de la formule de Leibniz : pour tout t € R, (fg)™(t) = Z (Z) FE ) gm=R (1),
k=0

n

or fg(t) = el donc on obtient : (a+b)"el*+)t = Z (Z
k=0

la formule du binéme de Newton en simplifiant par e(*+??

) afe® e On en déduit

, qui est bien non nul.

16°) L’application (f,g) — f’ ® g est clairement bilinéaire de £ x E dans £ ® F,
donc par définition du produit tensoriel, il existe une unique application linéaire d; de
E®FE dans E® E telle que, pour tout (f, g) € E?, di(f®g) = f'®g. Un raisonnement
similaire établit ’existence et 'unicité de dy et de p.

17°) Soit f,g € E.dp(f ®g)=d(fg) = f'9+ fg

et p(di+do)(f@g)=p(f' @9+ f®¢) = fg+ fg, par linéarité de p, donc pour tout
fr9 € E, dp(f®g)=pld+da)(f®g)

Or d’apres la question 14, avec les notations de cette question,

pour tout z € P = E® F, il existe (Qyy)(zy)cmxF € R(ExF)



tel que 2 = (ax,y)(a:,y)EExF = Z Qg yCory = Z aw,y%a
(z,y)EEXF (z,y)EEXF

donc z = Z Oy yT QY.

(z,y)eEXF
Ainsi, avec les notations de la question actuelle, E® E = Vect({f®g / f,g € E}). Or
on vient de voir que Ker(dp — p(d; + dy)) contient {f ® g / f,g € E}, donc il contient
E ® E. Ainsi, dp — p(d, + dy) = 0.
On a donc prouvé que dp = p(d; + d3). On en déduit alors facilement par récurrence
sur n que, pour tout n € N, d"p = p(d; + dy)".

18°) Pour tout f,g € E, dida(f ® g) = di(f @ ¢') = f'® ¢ = dods(f ® g). Ainsi,
Ker(dydy — dody) contient {f ® g / f,9 € E} et comme précédemment, on en déduit
que dydy = dsdy. On peut donc appliquer la formule du binéme de Newton a (d; 4 ds)"

n

dans 'anneau (L(F ® E),+,0) : sil'on fixe n € N, (dy + dy)" = Z <Z) drdnF.
k=0

On en déduit alors la formule de Leibniz : pour tout f,g € E
n

oy =alf @ 9) = sl + (e 9) = (Y () i) £ ),

k=0
donc (fg)" = Z (Z) fE g,

k=0



