
DM 28 : un corrigé

Partie I : applications bilinéaires

1◦) ⋄ Pour tout x, y, z, t ∈ R et pour tout α ∈ R, on a bien : (αx+ y)z = α(xz)+ (yz)
et x(αz + t) = α(xz) + (xt). Ainsi, (x, y) 7−→ xy est une application bilinéaire de R2

dans R.
⋄ On suppose que A est une K-algèbre. Alors le calcul précédent est encore valable :
Pour tout x, y, z, t ∈ A et pour tout α ∈ K, on a bien : (αx + y)z = α(xz) + (yz) et
x(αz + t) = α(xz) + (xt) : (x, y) 7−→ xy est une application bilinéaire de A2 dans A.

2◦) Soit f0, f1 ∈ E, g0, g1 ∈ F et α ∈ C.

b(αf0 + f1, g0) =

∫ 1

0

(αf0(t) + f1(t))(g0(t) + 2g′0(t)) dt

= α

∫ 1

0

f0(t)(g0(t) + 2g′0(t)) dt+

∫ 1

0

f1(t)(g0(t) + 2g′0(t)) dt

= αb(f0, g0) + b(f1, g0), et

b(f0, αg0 + g1) =

∫ 1

0

f0(t)(αg0(t) + 2αg′0(t) + g′1(t) + 2g′1(t)) dt

= α

∫ 1

0

f0(t)(g0(t) + 2g′0(t)) dt+

∫ 1

0

f0(t)(g1(t) + 2g′1(t)) dt

= αb(f0, g0) + b(f0, g1),
donc b est bien une application bilinéaire.

3◦) D’après le cours, l’ensemble F(E × F,G) des applications de E × F dans G est
un K-espace vectoriel, car G est un K-espace vectoriel. Montrons que B(E,F ;G) est
un sous-espace vectoriel de F(E × F,G).
Déjà, l’application identiquement nulle est clairement bilinéaire, donc B(E,F ;G) ̸= ∅.
Soit f, g ∈ B(E,F ;G) et α ∈ K.
Soit x, y ∈ E, z, t ∈ F et β ∈ K.
(αf + g)(βx+ y, z) = αf(βx+ y, z) + g(βx+ y, z)

= α(βf(x, z) + f(y, z)) + βg(x, z) + g(y, z) et
β(αf + g)(x, z) + (αf + g)(y, z) = βαf(x, z) + βg(x, z) + αf(y, z) + g(y, z),
donc (αf + g)(βx+ y, z) = β(αf + g)(x, z) + (αf + g)(y, z).
De même, on montre que (αf + g)(x, βz + t) = β(αf + g)(x, z) + (αf + g)(x, t), donc
αf + g ∈ B(E,F ;G), ce qu’il fallait démontrer.

4◦) Lorsque b ∈ B(E,F ;G) et x ∈ E, notons b(x, .) l’application de F dans G définie
par : pour tout y ∈ F , b(x, .)(y) = b(x, y).
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Pour tout z, t ∈ F et α ∈ K,
b(x, .)(αz + t) = b(x, αz + t) = αb(x, z) + b(x, t) = αb(x, .)(z) + b(x, .)(t),
donc b(x, .) ∈ L(F,G).
Ainsi, l’application φ(b) : x 7−→ b(x, .) est une application de E dans L(F,G).
Vérifions que φ(b) est linéaire : soit x, y ∈ E et α ∈ K. Pour tout z ∈ F ,
[φ(b)(αx + y)](z) = b(αx + y, z) = αb(x, z) + b(y, z) = [αφ(b)(x) + φ(b)(y)](z), donc
φ(b)(αx+ y) = αφ(b)(x) + φ(b)(y).
Ainsi φ est une application de B(E,F ;G) dans L(E,L(F,G)).
Il reste à montrer que c’est un isomorphisme.
Soit b, b′ ∈ B(E,F ;G) et α ∈ K. Pour tout (x, y) ∈ E × F ,
φ(αb + b′)(x)(y) = (αb + b′)(x, y) = αb(x, y) + b′(x, y) = [αφ(b) + φ(b′)](x, y), donc φ
est linéaire.
Soit b ∈ Kerφ. Pour tout (x, y) ∈ E × F , 0 = φ(b)(x)(y) = b(x, y), donc b = 0. Ainsi,
Kerφ = {0}, donc φ est injective.
Soit ℓ ∈ L(E,L(F,G)). Pour tout (x, y) ∈ E × F , posons b(x, y) = ℓ(x)(y). On vérifie
que b est bilinéaire de E × F dans G. De plus, pour tout (x, y) ∈ E × F ,
φ(b)(x)(y) = b(x, y) = ℓ(x)(y), donc φ(b) = ℓ, ce qui prouve que φ est surjective.
On a donc montré que l’application b 7−→ (x 7−→ b(x, .)) est un isomorphisme de
B(E,F ;G) dans L(E,L(F,G)).

Partie II : unicité du produit tensoriel

5◦) Soit G un K-espace vectoriel. Lorsque ℓ ∈ L(P,G), u étant une application de
E × F dans P , par composition, ℓ ◦ u est une application de E × F dans G. De plus,
ℓ◦u est bien une application bilinéaire : en effet, pour tout x, y ∈ E, z, t ∈ F et α ∈ K,
ℓ ◦ u(αx+ y, z) = ℓ(αu(x, z) + u(y, z)) = αℓ(u(x, z)) + ℓ(u(y, z)), pour bilinéarité de u
puis par linéarité de ℓ, donc ℓ ◦ u(αx+ y, z) = αℓ ◦ u(x, z) + ℓ ◦ u(y, z).
De même, on vérifie que ℓ ◦ u(x, αz + t) = αℓ ◦ u(x, z) + ℓ ◦ u(x, t).
Ainsi φ : ℓ 7−→ ℓ ◦ u est une application de L(P,G) dans B(E,F ;G).
Il reste à montrer qu’elle est linéaire.
Soit ℓ, ℓ′ ∈ L(P,G) et α ∈ K. Pour tout (x, y) ∈ E × F ,
φ(αℓ + ℓ′)(x, y) = (αℓ + ℓ′)(u(x, y)) = αℓ(u(x, y)) + ℓ′(u(x, y)) = [αφ(ℓ) + φ(ℓ′)](x, y),
ce qu’il fallait démontrer.

6◦) D’après l’énoncé, P muni de u est un produit tensoriel de E par F si et seulement
si, pour tout K-espace vectoriel G, pour toute application bilinéaire b de E × F dans
G, il existe une unique application linéaire ℓ de P dans G telle que b = ℓ ◦ u.
⋄ Supposons que P ′ muni de u′ est un produit tensoriel de E par F .
u′ est une application bilinéaire de E × F dans P ′, donc en appliquant l’affirmation
précédente avec G = P ′ et b = u′, il existe une application linéaire h de P dans P ′ telle
que u′ = h ◦ u.
Mais (P, u) et (P ′, u′) jouent des rôles symétriques, donc il existe également une appli-
cation linéaire h′ de P ′ dans P telle que u = h′ ◦ u′.
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On en déduit que u = h′ ◦ h ◦ u = IdP ◦ u, or d’après la propriété énoncée en début de
question avec G = P et b = u il existe une unique application h′′ de P dans P telle que
u = h′′ ◦ u, donc h′ ◦ h = IdP . Par symétrie, on obtient également que h ◦ h′ = IdP ′ ,
donc h est une bijection linéaire, c’est un isomorphisme de P dans P ′.
⋄ Supposons qu’il existe un isomorphisme h de P et P ′ tel que u′ = h ◦ u.
Soit G un K-espace vectoriel.

Notons
φ0 : L(P,G) −→ B(E,F ;G)

ℓ 7−→ ℓ ◦ u et
φ1 : L(P ′, G) −→ B(E,F ;G)

ℓ′ 7−→ ℓ′ ◦ u′ = ℓ′ ◦ h ◦ u .
On sait que φ0 est un isomorphisme et il s’agit de montrer que φ1 est un isomorphisme.

Notons
Ψ : L(P ′, G) −→ L(P,G)

ℓ′ 7−→ ℓ′ ◦ h .

Pour tout ℓ′ ∈ L(P ′, G), φ0 ◦Ψ(ℓ′) = φ0(ℓ
′ ◦ h) = ℓ′ ◦ h ◦ u = φ1(ℓ

′), donc φ1 = φ0 ◦Ψ,
et il suffit de montrer que Ψ est un isomorphisme. C’est clair car on vérifie que Ψ
est bien linéaire et que si l’on note Ψ′ = (ℓ 7−→ ℓ ◦ h−1), alors Ψ ◦ Ψ′ = IdL(P,G) et
Ψ′ ◦Ψ = IdL(P ′,G).

Partie III : quotient d’espaces vectoriels

7◦) Pour tout x ∈ E, x− x = 0 ∈ F , car F est un sous-espace vectoriel, donc x R x,
ce qui prouve que R est réflexive.
Soit x, y ∈ E tels que x R y. Alors y − x = −(x − y) ∈ F car x − y ∈ F et car F est
un sous-espace vectoriel, donc y R x, ce qui prouve que R est symétrique.
Soit x, y, z ∈ E tels que x R y et y R z. Alors x− y ∈ F et y − z ∈ F , or F est stable
pour l’addition, donc x− z = x− y+ y− z ∈ F . Ainsi, x R z, ce qui prouve que R est
transitive.
On a donc montré que R est une relation d’équivalence.

8◦)
⋄ Pour montrer que cette définition de l’addition dans E/F est correcte, il faut établir
que la quantité x+ y dépend seulement de x et de y, c’est-à-dire que si x′ = x et y′ = y,
alors x′ + y′ = x+ y. C’est vrai car si x′ = x et y′ = y, alors x− x′ ∈ F et y − y′ ∈ F ,
donc (x+ y)− (x′ + y′) = (x− x′) + (y − y′) ∈ F puis x′ + y′ = x+ y.
De même, il faut montrer que αx ne dépend que de x (et de α) : supposons que x = x′.
Alors x − x′ ∈ F , mais F est un sous-espace vectoriel, donc α(x − x′) ∈ F , puis
αx = αx′.
Il est clair que pour tout x, y ∈ E et α ∈ K, x+ y ∈ E/F et αx ∈ E/F .
⋄ Les propriétés caractéristiques d’un K-espace vectoriel pour E/F se déduisent alors
facilement de celles de E :

— Pour tout x, y, z ∈ E, x + (y + z) = x+ (y + z) = (x+ y) + z, car l’addition
dans E est associative, donc x + (y + z) = (x + y) + z. Ainsi l’addition dans
E/F est aussi associative.

— De même, on montre la commutativité : x+ y = y + x.
— Pour tout x ∈ E, 0 + x = x, donc 0 est neutre.
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— Pour tout x ∈ E, x+−x = 0, donc −x est le symétrique de x, ce qui permettra
d’écrire que −x = −x.

On a ainsi montré que (E/F,+) est un groupe abélien.
De plus, on vérifie facilement que, pour tout x, y ∈ E, pour tout α, β ∈ K,

— α(x+ y) = (αx) + (αy),
— (α + β)x = (αx) + (βx),
— (αβ)x = α(βx) et
— 1Kx = x.

Ainsi, (E/F,+, .) est bien un K-espace vectoriel.

9◦) Posons
f : G −→ E/F

x 7−→ x
. D’après la question précédente, pour tout x, y ∈ G

et α ∈ K, f(αx+ y) = αf(x) + f(y), donc f est une application linéaire.
Soit x ∈ Kerf . Alors x = 0 = 0, donc x ∈ F . Ainsi, x ∈ F ∩G = {0}, donc Kerf = {0},
ce qui prouve que f est injective.
Soit z ∈ E/F . Il existe x ∈ E tel que z = x. Mais E = F +G, donc il existe y ∈ F et
t ∈ G tel que x = y+ t. Alors z = y+ t = t, car y ∈ F donc y = 0 = 0. Ainsi, z = f(t),
ce qui prouve que f est surjective.
Ainsi f est un isomorphisme de G sur E/F , ce qu’il fallait démontrer.

10◦)

⋄ Soit

x
y
z

 ∈ F ∩G. Ainsi, x+y+z = 0 et il existe λ ∈ R tel que

x
y
z

 = λ

 1
1
1

,

c’est-à-dire tel que x = y = z = λ. On en déduit que 0 = x + y + z = 3λ, donc λ = 0

puis

x
y
z

 = 0. Ainsi F ∩G = {0}.

⋄ Soit X =

x
y
z

 ∈ R3. On cherche λ ∈ R et a, b ∈ R tels que

X = λ

 1
1
1

 +

 a
b

−a− b

. On doit avoir λ + a = x, λ + b = y et λ − a − b = z. En

sommant ces trois égalités, on obtient 3λ = x+ y + z.
Posons donc λ = 1

3
(x+ y + z), a = x− λ et b = y − λ. Alors, on vérifie que λ+ a = x,

λ+ b = y et λ− a− b = z : pour la dernière égalité,
λ− a− b = 1

3
(x+ y + z)− (x− 1

3
(x+ y + z))− (y − 1

3
(x+ y + z)) = z.

Ainsi, X = λ

 1
1
1

+

 a
b

−a− b

 ∈ G+F , donc E = F +G. On a vu que F ∩G = {0},

donc E = F ⊕G.

⋄ Alors, d’après la question précédente,
f : G −→ E/F

x 7−→ x
est un isomorphisme,
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donc E/F = Im(f) = f(G) = {f(λe) / λ ∈ R}, en posant e =

 1
1
1

.

Ainsi, E/F = {λe / λ ∈ R}, donc E/F est l’espace vectoriel engendré par le vecteur
e. Or e ̸= 0 et f est injective, donc e ̸= 0, ce qui prouve que E/F est bien une droite
vectorielle.

Partie IV : existence du produit tensoriel

11◦) D’après le cours, KI est un K-espace vectoriel, donc il s’agit de montrer que K(I)

est un sous-espace vectoriel de KI .
La famille nulle appartient à K(I), donc K(I) ̸= ∅.
Soit ((ai), (bi), α) ∈ K(I) ×K(I) ×K.
Soit i ∈ I. Si ai = 0 et bi = 0, alors αai + bi = 0. La contraposée de cette implication
est : ∀i ∈ I [αai + bi ̸= 0 =⇒ (ai ̸= 0 ou bi ̸= 0)], donc
{i ∈ I/αai + bi ̸= 0} ⊂ ({i ∈ I/ai ̸= 0} ∪ {i ∈ I/bi ̸= 0}), ainsi {i ∈ I/αai + bi ̸= 0}
est fini, ce qui prouve que α(ai) + (bi) ∈ K(I), ce qu’il fallait démontrer.

12◦) ⋄ Soit (αi)i∈I ∈ K(I).
∑
i∈I

αici =
∑
i∈I

tel que αi ̸=0

αi(δi,j)j∈I . Il s’agit bien d’une somme

finie, donc
∑
i∈I

αici =
( ∑

i∈I
tel que αi ̸=0

αiδi,j

)
j∈I

= (αj)j∈I = (αi)i∈I .

⋄ Soit x = (xi)i∈I ∈ K(I). Pour tout (αi) ∈ K(I), on vient de montrer que

x =
∑
i∈I

αici ⇐⇒ x = (αi)i∈I , donc cela prouve l’existence et l’unicité d’une famille

(αi) ∈ K(I) telle que x =
∑
i∈I

αici, ce qu’il fallait démontrer.

13◦) Notons
u : E × F −→ P

(e, f) 7−→ ce,f
. Soit e, e′ ∈ E, f ∈ F et α ∈ K.

u(αe+ e′, f) = cαe+e′,f , or cαe+e′,f − αce,f − ce′,f ∈ A1 ⊂ S, donc
0 = cαe+e′,f − αce,f − ce′,f = cαe+e′,f − αce,f − ce′,f = u(αe+ e′, f)− αu(e, f)− u(e′, f).
On a donc prouvé que u(αe+ e′, f) = αu(e, f) + u(e′, f).
De même on montre que u(e, αf + f ′) = αu(e, f) + u(e, f ′), donc u est bilinéaire.

14◦) Soit G un K-espace vectoriel et b ∈ B(E,F ;G). Il s’agit de montrer qu’il existe
une unique application linéaire ℓ ∈ L(P,G) telle que b = ℓ ◦ u.
⋄ Commençons par l’unicité : supposons que ℓ, ℓ′ ∈ L(P,G) et b = ℓ◦u = ℓ′ ◦u. Alors,
pour tout (x, y) ∈ E × F , ℓ(cx,y) = ℓ′(cx,y), donc cx,y ∈ Ker(ℓ − ℓ′). On en déduit que
Ker(ℓ− ℓ′) contient V = Vect({cx,y / (x, y) ∈ E × F}),
or V =

{ ∑
(x,y)∈E×F

αx,ycx,y /(αx,y) ∈ K(E×F )
}
=

{ ∑
(x,y)∈E×F

αx,ycx,y /(αx,y) ∈ K(E×F )
}

donc V = {X / X ∈ Q}, car (cx,y)(x,y)∈E×F est une base de Q. Ainsi, V = P , donc
Ker(ℓ− ℓ′) = P , donc ℓ− ℓ′ = 0, ce qui prouve l’unicité.
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⋄ Existence :

Posons
L : Q = K(E×F ) −→ G

X = (αx,y)(x,y)∈E×F 7−→ L(X) =
∑

(x,y)∈E×F

αx,yb(x, y) .

Montrons que L est linéaire : Soit X = (αx,y) ∈ Q, Y = (βx,y) ∈ Q et λ ∈ K.

L(λX + Y ) = L((λαx,y + βx,y)) =
∑

(x,y)∈E×F

(λαx,y + βx,y)b(x, y) = λL(X) + L(Y ).

Montrons que S ⊂ Ker(L) : Soit e, e′ ∈ E, f ∈ F et α ∈ K. Par linéarité de L,
L(cαe+e′,f − αce,f − ce′,f ) = L(cαe+e′,f ) − αL(ce,f ) − L(ce′,f ), puis par définition de L,
L(cαe+e′,f − αce,f − ce′,f ) = b(αe + e′, f) − αb(e, f) − b(e′, f), or b est bilinéaire, donc
cαe+e′,f − αce,f − ce′,f ∈ Ker(L).
De même, on montre que, pour tout e ∈ E, f, f ′ ∈ F et α ∈ K,
ce,αf+f ′ − αce,f − ce,f ′ ∈ Ker(L), donc Ker(L) contient Vect(A1 ∪ A2) = S.
Ainsi, pour tout X, Y ∈ Q tels que X = Y , X − Y ∈ S, donc L(X − Y ) = 0, donc
L(X) = L(Y ). Ainsi, L(X) ne dépend que de X, donc on peut poser, pour tout X ∈ Q,
ℓ(X) = L(X). Ceci définit une application ℓ de P dans G. Montrons que ℓ convient.
Pour tout X, Y ∈ Q et α ∈ K,
ℓ(αX + Y ) = ℓ(αX + Y ) = L(αX + Y ) = αL(X) + L(Y ) = αℓ(X) + ℓ(Y ),
donc ℓ ∈ L(P,G).
Soit (x, y) ∈ E × F . ℓ ◦ u(x, y) = ℓ(cx,y) = L(cx,y) = b(x, y), donc ℓ ◦ u = b, ce qu’il
fallait démontrer.

Partie V : Newton ⇐⇒ Leibniz

15◦) Par récurrence sur n, on montre que, pour tout n ∈ N et t ∈ R,
dn

dtn
(eat) = aneat.

Posons f(t) = eat et g(t) = ebt. Soit n ∈ N.

Partons de la formule de Leibniz : pour tout t ∈ R, (fg)(n)(t) =
n∑

k=0

(
n
k

)
f (k)(t)g(n−k)(t),

or fg(t) = e(a+b)t, donc on obtient : (a+b)ne(a+b)t =
n∑

k=0

(
n
k

)
akeatbn−kebt. On en déduit

la formule du binôme de Newton en simplifiant par e(a+b)t, qui est bien non nul.

16◦) L’application (f, g) 7−→ f ′ ⊗ g est clairement bilinéaire de E × E dans E ⊗ E,
donc par définition du produit tensoriel, il existe une unique application linéaire d1 de
E⊗E dans E⊗E telle que, pour tout (f, g) ∈ E2, d1(f⊗g) = f ′⊗g. Un raisonnement
similaire établit l’existence et l’unicité de d2 et de p.

17◦) Soit f, g ∈ E. dp(f ⊗ g) = d(fg) = f ′g + fg′

et p(d1 + d2)(f ⊗ g) = p(f ′ ⊗ g+ f ⊗ g′) = f ′g+ fg′, par linéarité de p, donc pour tout
f, g ∈ E, dp(f ⊗ g) = p(d1 + d2)(f ⊗ g).
Or d’après la question 14, avec les notations de cette question,
pour tout z ∈ P = E ⊗ F , il existe (αx,y)(x,y)∈E×F ∈ R(E×F )
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tel que z = (αx,y)(x,y)∈E×F =
∑

(x,y)∈E×F

αx,ycx,y =
∑

(x,y)∈E×F

αx,ycx,y,

donc z =
∑

(x,y)∈E×F

αx,yx⊗ y.

Ainsi, avec les notations de la question actuelle, E⊗E = Vect({f ⊗ g / f, g ∈ E}). Or
on vient de voir que Ker(dp− p(d1 + d2)) contient {f ⊗ g / f, g ∈ E}, donc il contient
E ⊗ E. Ainsi, dp− p(d1 + d2) = 0.
On a donc prouvé que dp = p(d1 + d2). On en déduit alors facilement par récurrence
sur n que, pour tout n ∈ N, dnp = p(d1 + d2)

n.

18◦) Pour tout f, g ∈ E, d1d2(f ⊗ g) = d1(f ⊗ g′) = f ′ ⊗ g′ = d2d1(f ⊗ g). Ainsi,
Ker(d1d2 − d2d1) contient {f ⊗ g / f, g ∈ E} et comme précédemment, on en déduit
que d1d2 = d2d1. On peut donc appliquer la formule du binôme de Newton à (d1+d2)

n

dans l’anneau (L(E ⊗ E),+, ◦) : si l’on fixe n ∈ N, (d1 + d2)
n =

n∑
k=0

(
n
k

)
dk1d

n−k
2 .

On en déduit alors la formule de Leibniz : pour tout f, g ∈ E

(fg)n = dnp(f ⊗ g) = p(d1 + d2)
n(f ⊗ g) = p

( n∑
k=0

(
n
k

)
dk1d

n−k
2

)
(f ⊗ g),

donc (fg)n =
n∑

k=0

(
n
k

)
f (k)g(n−k).
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