DM 29 : Représentations linéaires d’'un groupe

Dans tout le probleme, K désigne un corps quelconque

et F désigne un K-espace vectoriel.

On note L(F) 'ensemble des endomorphismes de F.
Lorsque u,v € L(FE), on notera uv la composée de u par v.
En particulier, u? désigne u o u.

Partie I : Projecteurs

Soit F' et G deux sous-espaces vectoriels de E.
On dit qu’ils sont supplémentaires dans E si et seulement si ils vérifient 'une des
conditions équivalentes suivantes (on ne demande pas de démontrer ces équivalences) :
— E=F&G;
— E=F+Get FNG ={0};
— Ve e E, I(x1,29) € F XG ©=x1+ x9;

1°) Soit F' et G deux sous-espaces vectoriels supplémentaires dans E.
Pour = € F, on note (p(x), ¢(z)) I'unique couple de F' x G tel que = = p(z) + q(x).
On dit que p est le projecteur sur F' parallelement a GG et que ¢ est le projecteur sur GG
parallelement a F'. Montrer les propriétés suivantes :

— p et ¢ sont des endomorphismes de F';

—pP=pet ¢ =q;

— ptaq=lIdg;

— pg=qp=0.
2°) Lorsque p € L(E), on dit que p est un projecteur si et seulement si p* = p.
Montrer qu’en effet, dans ce cas, p est le projecteur sur Im(p) parallelement a Ker(p).
On commencera par démontrer que, pour tout x € E, [z = p(z) <= x € Im(p)].

3°) Pour chacun des endomorphismes suivants (on ne demande pas de montrer que ce
sont bien des endomorphismes), montrer que c’est un projecteur et préciser son noyau
et son image.

— Id E 3

— Oy

— L’application p; : K? — K2 définie par py (g) = (g)



4°) On suppose que FE est 'espace vectoriel des fonctions de R dans R.

On suppose que P est ’ensemble des fonctions paires de E et que Z est ’ensemble des
fonctions impaires. On note p le projecteur sur P parallelement a Z.

Pour tout f € E, donner une expression de p(f).

Partie II : Trace d’un endomorphisme

On suppose pour toute la suite de ce probleme que E est de dimension finie et 'on
note n = dim(E).

Lorsque e = (eq, ..., e,) est une base de E, pour tout i € N,,, on note €] la forme linéaire

n
sur F définie par : si x = g xjej, alors ef(r) = x;. Ainsi, I'application e} associe a tout
j=1
vecteur x sa i-eme coordonnée dans la base e. On dit que e} est 'application "i-eme
coordonnée”.

5°) Avec ces notations, si e = (ey,...,e,) est une base de E, montrer que (ej, ..., e})

est une base de E* (ou E* = L(E,K)). On dit que (€], ..., e}) est la base duale de e.

6°) Soit e = (ey,...,e,) une base de E. On note (e7,...,e") la base duale de e.

Soit F' un second K-espace vectoriel de dimension finie. On note f = (fi,..., f,) une
base de I et (f7,..., f;) la base duale de f.

Pour tout (7,7) € N,, x N,,, pour tout = € E, on pose g; ;(z) = e} (x)f;.

Montrer que, pour tout u € L(E, F), u = Z fi(uler))grj-

1<k<n
1<j<p

<i<n est une base de L(E, F).

<j<p

En déduire que (gi,j )

1

1

Lorsque e est une base de E et que v € L(FE), on pose Tr.(u) = Z e (u(e;)) : Tre(u)
i=1

s’appelle la trace de u relativement a la base e.

7°) Lorsque e est une base de F, montrer que Tr, est une forme linéaire sur L(FE).

8°) On suppose que e est une base de E. Soit u,v € L(FE).

Montrer que Tr.(uv) = Z Z ei(v(ei))e; (ule;)).

i=1 j=1
En déduire que Tr.(uv) = Tr.(vu).
9°) On suppose que € = (e1,...,e,) et f = (f1,..., fn) sont deux bases de E.
On note v I'unique endomorphisme de E tel que, pour tout i € N, v(e;) = fi.
Montrer que Tr(u) = Try(vuv™?).
En déduire que Tr.(u) = Try(u).

Ainsi, la quantité Tr.(u) ne dépend pas du choix de la base e, mais dépend seulement
de u. On la note Tr(u). On dit que Tr(u) est la trace de w.
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10°) Soit F' et G deux sous-espaces vectoriels supplémentaires dans E.
On note p le projecteur sur F' parallelement a G.
Montrer que Tr(p) = dim(F).

11°) Soit F' un second K-espace vectoriel de dimension finie.
Soit u € L(E) et v € L(F). On définit un endomorphisme ¥ sur L(F, F') en convenant
que, pour tout f € L(E, F), ¥(f) = vfu. Montrer que Tr(V) = Tr(u)Tr(v).

Partie III : Formule de Burnside

Pour toute la suite du probleme, I" désigne un groupe fini, noté multiplicativement.
Une représentation linéaire de I' est la donnée d'un couple (F, p), ot E est un K-espace
vectoriel de dimension finie et ol p est un morphisme de I' dans (GL(E), o) (le groupe
linéaire de F, constitué des automorphismes de E).

Pour dire que (F, p) est une représentation linéaire de I', on dira plus rapidement que
E est un I'-espace sans toujours préciser p. Dans ce cas, pour tout v € I' et x € E, on

notera .z = p(y)(x).
12°) Montrer que (E, p) est une représentation linéaire de I si et seulement si,
pour tout z,y € E, v,v €'et A € K,
V(r+y)=vzr+ry, 7.(A2)=Ar.2), lraoz=zety.(y.z)= (/)=
13°) Soit £ un [-espace. On pose Er ={z € E /Vy €T, ~ua =z}
, ou |I'| désigne le cardinal de I'.

I ZP IT| désig

yel’
Pour tout +' € T', montrer que p(y') om = .
En déduire que 7 est un projecteur d’image Er, puis que Tr(7) = dim(Er).

On pose ™ =

Lorsque (F, p) est une représentation linéaire de I', pour tout v € ',

on pose Xg(7v) = Tr(p(y)). Ainsi, Xg est une application de I' dans K, que I'on appelle
le caractere de (E, p).

On dit que X est un caractere de I si et seulement si il existe un I'-espace F tel que
X =Xg.

14°) Soit X un caractere de I'. Montrer que tous les I'-espaces E tels que Xz = X ont
la méme dimension, que 1’on exprimera en fonction de X.

15°) Avec les notations de la question 13, montrer que dim(Er) = |F| Z Xg(y
yerl

Pour la suite du probleme, X désigne un ensemble fini.

On appelle action de I'" sur X toute application f de I' x X dans X telle que, en
convenant de noter f(~,z) = 7.z, pour tout 7 € I' et z € X, on ait :

pour tout = € X, pour tout v,y € I, Ip.z = z et v.(v.x) = (vv').x.

16°) Considérons une telle action de I sur X. On définit sur X la relation binaire R
en convenant que, pour tout ,y € X, x Ry <= [Iy €T, y=r~.x].



Montrer que R est une relation d’équivalence.
Lorsque x € X, la classe d’équivalence de x pour la relation R est appelée 'orbite de
x sous l'action de I'.

K* désigne I’ensemble des applications de X dans K. La base canonique de K¥ est la
famille (e;)zex, olt pour tout = € X, pour tout y € X, e,(y) = 0,, (égala 1 siz =y
et a 0 sinon). On ne demande pas de démontrer que c’est bien une base.

On suppose que f est une action de I' sur X.

17°) Montrer qu’en posant, pour tout v € I' et pour tout x € X, p(v)(e
(c’est-a-dire, avec les notations précédentes, v.e, = e,.), le couple (KX
représentation linéaire de T'.

Montrer que, pour tout (f,z,7) € KX x X x T, (v.f)(z) = f(v L.2).

18°) On pose £ = K¥X. On rappelle que Er = {f € E /Vy €T, v.f = f}.
Montrer que dim(Er) est égale au nombre d’orbites de X sous 'action de I'.

2) = €f(ra)
,p) est une

On note Xx le caractere de la représentation linéaire (K*, p).
Pour tout v € I', on note r, le nombre de z € X tels que 7.2 = z :
ainsi, r, = {z € X / y.x = x}|.

19°) Montrer que, pour tout v € I', r, = Xx (7).

En déduire la formule de Burnside : er = s|T'|, ol s est égal au nombre d’orbites

el
de X sous l'action de T.

20°) On suppose que | X| > 2 et que, pour tout z,y € X, il existe v € T tel que
y = ~v.x (on dit que I' agit transitivement sur X). Montrer qu'’il existe v € T" tel que,
pour tout x € X, y.x # x.

Partie IV : Propriétés des caracteres

Dans cette partie, E et F' désignent deux I'-espaces.

Lorsque u € L(E, F) et v € I, on définit v.u € L(E, F) par :
pour tout z € E, (y.u)(z) = v.[u(y ' .2)].

21°) Montrer que L(E, F') devient ainsi un I'-espace,

dont le caractere sera noté Xp (g, r).

22°) Montrer que, pour tout v € I', Xp5,7)(7) = Xe(v ) Xr(7).

=S

~el

23°) Montrer que, pour tout f,g € K'', (f,g) = (g, f).
Soit f € K. Montrer que si, pour tout g € K', (f,g) =0, alors f = 0.

Pour tout f,g € K'', on pose (f, g)

Soit uw € L(E, F). On dit que u est un I'-morphisme de E dans F' si et seulement si,
pour tout v € I'et z € E, on a u(vy.x) = y.u(x).
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On note homp(E, F') 'ensemble des I'-morphismes de E dans F'.

24°) Montrer que dim(homp(E, F)) = (Xg, XF).
En déduire que lorsque E # {0}, (Xg, Xg) € N*.

Pour tout v € ', on pose Xyni(7) = 1.

25°) Montrer que X,,; est un caractere de I'.

Montrer que (Xg, Xynit) = dim(ET).

26°) Si X et X’ sont deux caracteres de I', montrer que y + x’ est un caractere de I'
(on pourra munir le produit cartésien de deux I'-espaces d’une structure de I'-espace).

27°) Soit X un caractere de I'. Pour tout v € T, on pose X*(y) = X(y71).
Montrer que X* est un caractére de I' (on pourra munir le dual d’'un I'-espace d’une
structure de I-espace).

28°) Si X et X’ sont deux caracteres de I', montrer que XX’ est un caractere de T'.



