
DM 29 : Représentations linéaires d’un groupe

Dans tout le problème, K désigne un corps quelconque
et E désigne un K-espace vectoriel.
On note L(E) l’ensemble des endomorphismes de E.
Lorsque u, v ∈ L(E), on notera uv la composée de u par v.
En particulier, u2 désigne u ◦ u.

Partie I : Projecteurs

Soit F et G deux sous-espaces vectoriels de E.
On dit qu’ils sont supplémentaires dans E si et seulement si ils vérifient l’une des
conditions équivalentes suivantes (on ne demande pas de démontrer ces équivalences) :

— E = F ⊕G ;
— E = F +G et F ∩G = {0} ;
— ∀x ∈ E, ∃!(x1, x2) ∈ F ×G x = x1 + x2 ;

1◦) Soit F et G deux sous-espaces vectoriels supplémentaires dans E.
Pour x ∈ E, on note (p(x), q(x)) l’unique couple de F ×G tel que x = p(x) + q(x).
On dit que p est le projecteur sur F parallèlement à G et que q est le projecteur sur G
parallèlement à F . Montrer les propriétés suivantes :

— p et q sont des endomorphismes de E ;
— p2 = p et q2 = q ;
— p+ q = IdE ;
— pq = qp = 0.

2◦) Lorsque p ∈ L(E), on dit que p est un projecteur si et seulement si p2 = p.
Montrer qu’en effet, dans ce cas, p est le projecteur sur Im(p) parallèlement à Ker(p).
On commencera par démontrer que, pour tout x ∈ E, [x = p(x) ⇐⇒ x ∈ Im(p)].

3◦) Pour chacun des endomorphismes suivants (on ne demande pas de montrer que ce
sont bien des endomorphismes), montrer que c’est un projecteur et préciser son noyau
et son image.

— IdE ;
— 0L(E) ;

— L’application p1 : K2 −→ K2 définie par p1

(
x
y

)
=

(
x
0

)
.
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4◦) On suppose que E est l’espace vectoriel des fonctions de R dans R.
On suppose que P est l’ensemble des fonctions paires de E et que I est l’ensemble des
fonctions impaires. On note p le projecteur sur P parallèlement à I.
Pour tout f ∈ E, donner une expression de p(f).

Partie II : Trace d’un endomorphisme

On suppose pour toute la suite de ce problème que E est de dimension finie et l’on
note n = dim(E).

Lorsque e = (e1, . . . , en) est une base de E, pour tout i ∈ Nn, on note e∗i la forme linéaire

sur E définie par : si x =
n∑

j=1

xjej, alors e
∗
i (x) = xi. Ainsi, l’application e∗i associe à tout

vecteur x sa i-ème coordonnée dans la base e. On dit que e∗i est l’application ”i-ème
coordonnée”.

5◦) Avec ces notations, si e = (e1, . . . , en) est une base de E, montrer que (e∗1, . . . , e
∗
n)

est une base de E∗ (où E∗ = L(E,K)). On dit que (e∗1, . . . , e
∗
n) est la base duale de e.

6◦) Soit e = (e1, . . . , en) une base de E. On note (e∗1, . . . , e
∗
n) la base duale de e.

Soit F un second K-espace vectoriel de dimension finie. On note f = (f1, . . . , fp) une
base de F et (f ∗

1 , . . . , f
∗
p ) la base duale de f .

Pour tout (i, j) ∈ Nn × Np, pour tout x ∈ E, on pose gi,j(x) = e∗i (x)fj.

Montrer que, pour tout u ∈ L(E,F ), u =
∑

1≤k≤n
1≤j≤p

f ∗
j (u(ek))gk,j.

En déduire que (gi,j) 1≤i≤n
1≤j≤p

est une base de L(E,F ).

Lorsque e est une base de E et que u ∈ L(E), on pose Tre(u) =
n∑

i=1

e∗i (u(ei)) : Tre(u)

s’appelle la trace de u relativement à la base e.

7◦) Lorsque e est une base de E, montrer que Tre est une forme linéaire sur L(E).

8◦) On suppose que e est une base de E. Soit u, v ∈ L(E).

Montrer que Tre(uv) =
n∑

i=1

n∑
j=1

e∗j(v(ei))e
∗
i (u(ej)).

En déduire que Tre(uv) = Tre(vu).

9◦) On suppose que e = (e1, . . . , en) et f = (f1, . . . , fn) sont deux bases de E.
On note v l’unique endomorphisme de E tel que, pour tout i ∈ Nn, v(ei) = fi.
Montrer que Tre(u) = Trf (vuv

−1).
En déduire que Tre(u) = Trf (u).

Ainsi, la quantité Tre(u) ne dépend pas du choix de la base e, mais dépend seulement
de u. On la note Tr(u). On dit que Tr(u) est la trace de u.
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10◦) Soit F et G deux sous-espaces vectoriels supplémentaires dans E.
On note p le projecteur sur F parallèlement à G.
Montrer que Tr(p) = dim(F ).

11◦) Soit F un second K-espace vectoriel de dimension finie.
Soit u ∈ L(E) et v ∈ L(F ). On définit un endomorphisme Ψ sur L(E,F ) en convenant
que, pour tout f ∈ L(E,F ), Ψ(f) = vfu. Montrer que Tr(Ψ) = Tr(u)Tr(v).

Partie III : Formule de Burnside

Pour toute la suite du problème, Γ désigne un groupe fini, noté multiplicativement.
Une représentation linéaire de Γ est la donnée d’un couple (E, ρ), où E est un K-espace
vectoriel de dimension finie et où ρ est un morphisme de Γ dans (GL(E), ◦) (le groupe
linéaire de E, constitué des automorphismes de E).
Pour dire que (E, ρ) est une représentation linéaire de Γ, on dira plus rapidement que
E est un Γ-espace sans toujours préciser ρ. Dans ce cas, pour tout γ ∈ Γ et x ∈ E, on
notera γ.x = ρ(γ)(x).

12◦) Montrer que (E, ρ) est une représentation linéaire de Γ si et seulement si,
pour tout x, y ∈ E, γ, γ′ ∈ Γ et λ ∈ K,
γ.(x+ y) = γ.x+ γ.y, γ.(λx) = λ(γ.x), 1Γ.x = x et γ.(γ′.x) = (γγ′).x.

13◦) Soit E un Γ-espace. On pose EΓ = {x ∈ E / ∀γ ∈ Γ, γ.x = x}.
On pose π =

1

|Γ|
∑
γ∈Γ

ρ(γ), où |Γ| désigne le cardinal de Γ.

Pour tout γ′ ∈ Γ, montrer que ρ(γ′) ◦ π = π.
En déduire que π est un projecteur d’image EΓ, puis que Tr(π) = dim(EΓ).

Lorsque (E, ρ) est une représentation linéaire de Γ, pour tout γ ∈ Γ,
on pose χE(γ) = Tr(ρ(γ)). Ainsi, χE est une application de Γ dans K, que l’on appelle
le caractère de (E, ρ).
On dit que χ est un caractère de Γ si et seulement si il existe un Γ-espace E tel que
χ = χ

E.

14◦) Soit χ un caractère de Γ. Montrer que tous les Γ-espaces E tels que χ
E = χ ont

la même dimension, que l’on exprimera en fonction de χ.

15◦) Avec les notations de la question 13, montrer que dim(EΓ) =
1

|Γ|
∑
γ∈Γ

χ
E(γ).

Pour la suite du problème, X désigne un ensemble fini.
On appelle action de Γ sur X toute application f de Γ × X dans X telle que, en
convenant de noter f(γ, x) = γ.x, pour tout γ ∈ Γ et x ∈ X, on ait :
pour tout x ∈ X, pour tout γ, γ′ ∈ Γ, 1Γ.x = x et γ.(γ′.x) = (γγ′).x.

16◦) Considérons une telle action de Γ sur X. On définit sur X la relation binaire R
en convenant que, pour tout x, y ∈ X, x R y ⇐⇒ [∃γ ∈ Γ, y = γ.x].
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Montrer que R est une relation d’équivalence.
Lorsque x ∈ X, la classe d’équivalence de x pour la relation R est appelée l’orbite de
x sous l’action de Γ.

KX désigne l’ensemble des applications de X dans K. La base canonique de KX est la
famille (ex)x∈X , où pour tout x ∈ X, pour tout y ∈ X, ex(y) = δx,y (égal à 1 si x = y
et à 0 sinon). On ne demande pas de démontrer que c’est bien une base.
On suppose que f est une action de Γ sur X.

17◦) Montrer qu’en posant, pour tout γ ∈ Γ et pour tout x ∈ X, ρ(γ)(ex) = ef(γ,x)
(c’est-à-dire, avec les notations précédentes, γ.ex = eγ.x), le couple (KX , ρ) est une
représentation linéaire de Γ.
Montrer que, pour tout (f, x, γ) ∈ KX ×X × Γ, (γ.f)(x) = f(γ−1.x).

18◦) On pose E = KX . On rappelle que EΓ = {f ∈ E / ∀γ ∈ Γ, γ.f = f}.
Montrer que dim(EΓ) est égale au nombre d’orbites de X sous l’action de Γ.

On note χ
X le caractère de la représentation linéaire (KX , ρ).

Pour tout γ ∈ Γ, on note rγ le nombre de x ∈ X tels que γ.x = x :
ainsi, rγ = |{x ∈ X / γ.x = x}|.
19◦) Montrer que, pour tout γ ∈ Γ, rγ = χ

X(γ).

En déduire la formule de Burnside :
∑
γ∈Γ

rγ = s|Γ|, où s est égal au nombre d’orbites

de X sous l’action de Γ.

20◦) On suppose que |X| ≥ 2 et que, pour tout x, y ∈ X, il existe γ ∈ Γ tel que
y = γ.x (on dit que Γ agit transitivement sur X). Montrer qu’il existe γ ∈ Γ tel que,
pour tout x ∈ X, γ.x ̸= x.

Partie IV : Propriétés des caractères

Dans cette partie, E et F désignent deux Γ-espaces.
Lorsque u ∈ L(E,F ) et γ ∈ Γ, on définit γ.u ∈ L(E,F ) par :
pour tout x ∈ E, (γ.u)(x) = γ.[u(γ−1.x)].

21◦) Montrer que L(E,F ) devient ainsi un Γ-espace,
dont le caractère sera noté χ

L(E,F ).

22◦) Montrer que, pour tout γ ∈ Γ, χL(E,F )(γ) = χ
E(γ

−1)χF (γ).

Pour tout f, g ∈ KΓ, on pose ⟨f, g⟩ = 1

|Γ|
∑
γ∈Γ

f(γ)g(γ−1).

23◦) Montrer que, pour tout f, g ∈ KΓ, ⟨f, g⟩ = ⟨g, f⟩.
Soit f ∈ KΓ. Montrer que si, pour tout g ∈ KΓ, ⟨f, g⟩ = 0, alors f = 0.

Soit u ∈ L(E,F ). On dit que u est un Γ-morphisme de E dans F si et seulement si,
pour tout γ ∈ Γ et x ∈ E, on a u(γ.x) = γ.u(x).
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On note homΓ(E,F ) l’ensemble des Γ-morphismes de E dans F .

24◦) Montrer que dim(homΓ(E,F )) = ⟨χE, χF ⟩.
En déduire que lorsque E ̸= {0}, ⟨χE, χE⟩ ∈ N∗.

Pour tout γ ∈ Γ, on pose χ
unit(γ) = 1.

25◦) Montrer que χ
unit est un caractère de Γ.

Montrer que ⟨χE, χunit⟩ = dim(EΓ).

26◦) Si χ et χ′ sont deux caractères de Γ, montrer que χ + χ′ est un caractère de Γ
(on pourra munir le produit cartésien de deux Γ-espaces d’une structure de Γ-espace).

27◦) Soit χ un caractère de Γ. Pour tout γ ∈ Γ, on pose χ∗(γ) = χ(γ−1).
Montrer que χ∗ est un caractère de Γ (on pourra munir le dual d’un Γ-espace d’une
structure de Γ-espace).

28◦) Si χ et χ′ sont deux caractères de Γ, montrer que χχ′ est un caractère de Γ.
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