DM 29 : Un corrigé

Partie I : Projecteurs

1°) o Soit z,y € E et a € K.

Alors z = p(z) +q(z) et y = p(y) +q(y), donc az +y = (ap(z) +p(y)) + (aq(z) +q(y))
et (ap(z) +p(y), aq(z) +q(y)) € F x G. D’autre part, ax +y = p(az +y) + q(az + y)
avec (p(az +vy),q(ax +y)) € F x G, donc d’apres ['unicité de la décomposition d'un
vecteur selon F' @ G (cf la derniére condition caractérisant le fait que F' et G sont
supplémentaires dans E), p(az + y) = ap(x) + p(y) et ¢lax +y) = aq(z) + q(y).

On a montré que p,q € L(E).

o Soit z € E. p(x) € F, donc p(x) = p(x) + 0 et p(x) = p(p(x)) + ¢(p(x)), avec
(p(x),0) € F x G et (p(p(z)),q(p(z))) € F x G. Ainsi, toujours d’apres I'unicité de la
décomposition de p(z) selon F'& G, on en déduit que p(p(x)) = p(z) et que q(p(z)) = 0,
pour tout € E. Ceci prouve que p?> = p et gp = 0.

De méme, on montre que ¢> = q et pg = 0.

o Par définition de p et g, pour tout = € E, x = p(z) + q(x), donc p+ ¢ = Idg.

2°) Soit p € L(E) tel que p? = p. Posons F = Im(p) et G = Ker(p).
o Soit x € E tel que p(z) = z. Alors z = p(x) € Im(p) = F.
Réciproquement, si x € F' = Im(p), il existe y € E tel que x = p(y),
donc p(z) = pop(y) = p(y) = = car p est un projecteur.
Ainsi x € F <= p(x) =2 <= (Idg — p)(z) = 0 et Im(p) = F = Ker(Idg — p).
o Soit x € E. p(x — p(z)) = p(x) — p*(x) = 0, car p est un projecteur,
donc = — p(x) € Ker(p). De plus p(x) € Im(p), donc z = p(x) + (z — p(x)).
- ——
eF €G
Ceci démontre que £ = F + G.
o Soit x € FNG. Alors p(x) = z et p(x) =0, donc z = 0. Ainsi F'NG = {0}.
On a montré que E = F & G, d’apres la seconde caractérisation donnée par 1’énoncé.
¢ On peut donc considérer le projecteur u sur F parallelement a G.
Soit x € E. On a vu que z = p(z) + (z — p(z)) avec p(z) € F et x — p(z) € G, donc
u(z) = p(x). Ainsi, p = u est bien le projecteur sur Im(p) parallelement & Ker(p).
3°)
— Pour tout z € E, Id%(x) = z donc Id% = Idp. Ainsi, d’apres la question
précédente, Idg est le projecteur sur Im(/dg) = Idg(E) = E parallelement a
Ker(Idg) = {0}.



— De méme, pour tout x € E, 0?(x) = 0 = 0(x) donc 0> = 0, donc 0 est le
projecteur sur Im(0) = {0} parallelement a Ker(0) = E.

— Pour tout Z €K% pop :; = g), donc p? = p, ce qui prouve que
. 1
p est un projecteur. De plus, Im(p) = {(g) / x € K} = Vect (0) et

Ker(p) = {(g) [ x = 0} = Vect (?) Ainsi, p; est le projecteur sur

Vect <é) parallelement a Vect ((1]> :

4°) D’apres le cours, R® est un R-espace vectoriel. De plus, on vérifie facilement que
P et Z sont non vides et stables par combinaison linéaire, donc ce sont des sous-espaces
vectoriels de RE.

Soit f € PNZ. Alors, pour tout x € R, f(x) = f(—z) = —f(z), donc f(z) = 0. Ainsi
PNZ=/{0}. Deplus, si f € E, en posant pour tout z € R, g(z) = 3(f(z) + f(—x))
et h(z) = 3(f(z) — f(—)), on vérifie que f =g+ h, g€ Pethe I Ainsi d’apres
I’énoncé, on a montré que £ =P & L.

On peut donc définir le projecteur p sur P parallelement a Z, et ce qui précede montre
que, pour tout f € F et x € R, p(f)(z) = 3(f(z) + f(—2)).

Partie II : Trace d’un endomorphisme

5°) ¢ Soit i € N,,. Commengons par montrer que e} est bien une forme linéaire (elle

est bien a valeurs dans K). Soit x = Z xje; et y = Z yje; deux vecteurs de I et soit

Jj=1 Jj=1
n

a € K. Alors axr +y = Z(Oéxj + yj)ej,

j=1
donc ef(ax + y) = ax; +y; = aef(z) + €f(y), ce qui prouve que e} est bien linéaire.
o Ainsi, (e],...,¢e) est une famille de n vecteurs de E*.

D’apres le cours, dim(L(F,K)) = dim(F) x dim(K) = dim(£) = n, donc pour montrer
que c¢’est une base, il suffit de montrer que c¢’est une famille libre : soit (a;)1<i<, € K"

telle que Zaief = 0. Ainsi, pour tout z € F, Zaief () = 0. C’est en particulier
i=1 =1
vrai pour e;, ot j € N,,. Or ef(e;) = 6;; (c’est la i-eme coordonnée de e; dans la base
n

e), donc 0 = Z a;e; (e;) = a;. Ceci prouve que la famille est bien libre, ce qui conclut.
i=1
6°) ¢ Soit u € L(E, F). Pour tout x € E,
P

2) = u( D ci@er) = D erlwulen) = > eil@) Do £ (uler)) ;, done

j=1



hS]
N

ey, Z f k) Gk, (x). Alnsi v = Z f )Gk ;-

]:1 k=1 1<k<n 1<k<n
1<j<p 1<j<p

o Les ef étant lindaires, on vérifie aisément que les g; ; sont linéaires. Ainsi, ce qui
précede prouve que la famille (g; J) iign est génératrice de L(F, F). De plus son cardinal
P

est égal a np = dim(L(E, F)), donc c’est une base de L(E F).
7°) Soit u,v € L(E) et a € K. D’apres la linéarité des , on a

Tre(qu+v) = Z Hoau(e;)+v(e;)) = az u(e;)) —I—Z = aTr.(u)+Tr.(v).
i=1

De plus Tr, est une application de L(E) dans K, donc ¢ est bien une forme linéaire sur

L(E).

n

8°) o Tr.(uv) Ze e;))), or pour tout i € N, v(e;) = Zej—(v(ei))ej, donc
] 1
par linéarité de u et des €}, on obtient que (1) : Tr.(uv) Z Z u(e;)).
=1 j5=1

¢ En utilisant le changement de Variable (i,7) — ( J,t ) qui est bien bijectif de N2 dans

n

lui-méme, on en déduit que Tr.(uv) Z Z e; (v (€;)), puis en intervertissant
7=1 =1
n n
les deux sommes, Tr.(uv) Z Z e;(u (€)). Or si 'on applique la relation
=1 j=1
(1) en remplagant (u,v) par (v,u), on obtient que Tr.(vu) Z Z e (v(ey)),
=1 j=1

donc on a montré que Tr.(uv) = Tr.(vu).

9°) ¢ v transforme la base e en la base f, donc d’apres le cours, v est un automorphisme
de E. En particulier v™! est bien déﬁni et pour tout 7 € N,,, v71(f;) = e;. Ainsi,

Tr(vuv™ Z f(vuwo™(f;) Zf vu(e;)), or pour tout i € N,

u(e;) = Z ei(u(e;))ej, donce par linéarité de v et des f7,
j=1

Tre(vuv™') = Z Z e;(u(e;))fi (v(e;)), or pour tout i,j € N,
=1 j=1
fi((ey)) = fi(f;) = 0y, donc Try(vuv™) Ze = Tr.(u), ce qu’il fallait

démontrer.

o D’apres la question 8, appliquée avec la base f, et en remplacant le couple (u,v)
par (v,uv™t), Trp(v(uv™)) = Trs((uv™)v) = Try(u), donc d’apres le point précédent,
Try(u) = Tre(u).



10°) ¢ Notons a = dim(F'). D’apres le cours, F' possede au moins une base, de

cardinal a, que I'on notera (ey, ..., e,). De méme, G possede au moins une base, notée
(€as1,---,€n). Posons e = (ey,...,€e,) et montrons que e est une base de F.
n a
o Soit (ev)1<i<n € K™ tel que Z a;e; = 0. Posons © = Z aze; ety = Z a;e;. Alors
i=1 i=1 1=a+1
n
x4+y=0,donc z=—y € FNG = {0}. Ainsi, Zaiei =0et Z aze; = 0, or les
i=1 i=a+1
familles (eq,...,e,) et (eqt1,-.-,e,) sont libres, donc pour tout ¢ € N,,, a; = 0. Ceci

prouve que e est libre.
o Soit z € E. Alorsil existe x € F ety € G tels que z = x+y. Or F = Vect(eq, ..., €,)
a

et G = Vect(egi1, ..., €n), donc il existe (a;)1<i<n € K" tel que z = Z ;€
i=1
ety = Z a;e;. Alors z = Z a;e;. Ceci prouve que e est génératrice de E. C’est donc
i=a+1 =1

bien une base de E. .

o Ainsi, Tr(p) = Tr.(p) = Zef(p(ei)). Or, lorsque i € N,, e; € F' = Im(p), donc
=1

d’apres la question 2, p(e;) = e;, puis ef(p(e;)) = 1 et lorsque ’L' € {a+1,...,n},

e; € G = Ker(p), donc p(e;) = 0, puis e} (p(e;)) = 0. Ainsi, Tr(p Z 1 =a=dim(F).

=

11°) Reprenons les notations de la question 6. On a vu que g = (gi,j)léign est une

1<j<p
base de L(E, F) et que pour tout uw € L(E,F), u = Z fi (u(ex))gr,;, donc si I'on
o
note (g; ;) 1<i<n la base duale de g, on voit que, pour tout uw € L(E, F) et k,j € N, xN,,
¥ 1<5<p

G5 (u) = f}(u(ex)).
Ainsi, Tr(¥) = Z g};j(\lf(gk,j Z gkj (VK ju) Z f [vgr.ju(er)], puis

1<k<n 1<k<n 1<k<n

- X Filo(erulen) 1)) = Z_ ei(ulen)) x f[o(f;). Ainsi,
) = (Y eiulen)) x (Do S w()) = Tr(w) x Tro).



Partie III : Formule de Burnside

12°) < Supposons que (E, p) est une représentation linéaire de T.

Soit x,y € E, v,y € 'et A € K.

p(y) est linéaire, donc v.(z +y) = p(y)(z +y) = p(7)(@) + p(V)(y) = v-2 + 7.y, et
7-(Az) = p(7)(Az) = Ap(7)(z) = A(y.2).

De plus, p est un morphisme de groupes, donc p(1r) = Idg et p(vY") = p(v)p(7).

On en déduit que 1p.x = p(1r)(z) = Idg(z) = =

et 7.(v.x) = p(N[p(Y) ()] = p(17) (@) = (7).

¢ Réciproquement, supposons que pour tout x,y € E, 7,7 € I' et A € K,

v(z+y) =vr+ry, 7-(Ar) =Ay.z), Ir(z) =zety.(y.2) = (17).2.

Les deux premiéres propriétés assurent que, pour tout v € I', p() € L(E).

D’apres les deux dernieres propriétés, pour tout v € I', pour tout x € F,

vyt (y.x) =2 =v.(y 1), donc p(7) et p(y~1) sont deux bijections réciproques 1'une
de l'autre. Ainsi, p est une application de I' dans GL(E). Enfin, la derniere propriété
garantit que p est un morphisme de groupes.

13°) o Soit 7' €I, on a
1 1 1
) o = 1 > p(Y)oply) = T > oy = T > p(y7) =7 car y > 'y est

yel’ vyel’ vy’ el
une bijection de T' sur lui-méme, dont la bijection réciproque est v — 4"~ 1.

¢ On en déduit que rom = ﬁ Z p(y)or = |—1£| Z 7w = m, donc 7 est un projecteur.
y'ell ~yel

Si x € Er, pour tout v € I', 7.2 = x, donc 7(x) = x. Ceci prouve que Er C Imm.

Réciproquement : si € Imm alors d’apres la question 2, w(x) = x donc, pour tout

7" € I, en utilisant que p(7')m = 7, on obtient v'.z = p(v')(x) = p(y')on(z) = n(x) ==

et donc x € Er. On a ainsi prouvé que Er = Imm.

o D’apres la question 10, la trace d'un projecteur est égale a la dimension de son

image, donc Tr(7) = dim(Er).

14°) Soient (E,p) et (E', p') deux I'-espaces tels que Xg = Xpr = X.
X(1r) = Xg(1r) = Tr(p(1r)) = Tr(Idg) = dim(E) et X(1r) = Xp/(1r) = dim(E"),
donc dim(F) = dim(£’) = dim(X) = X(1r).

15°) L’application trace étant linéaire, on a

dim(Br) = Te(r) = 17 3 Te(p(3) = 5 3 Xe(9)-
yel vyel
16°) Soit x,y,z € X.
¢ x = lp.x,donc x R x. Ainsi, R est réflexive.
¢ Supposons que x R y. Il existe v € I tel que y = v.x.
Alors v Ly =~v7L.(y.2) = (v 1y).2 = Ip.x = z, donc y R z. Ainsi, R est symétrique.
o Supposons que z R y et que y R z. Il existe v,7 € T tels que y = v.x et z =y,
donc z =~'.(y.x) = (7/7).x. Ainsi, z R z, donc R est transitive.



En conclusion, on a prouvé que R est une relation d’équivalence.

17°) o Soit v € I'. (e4)sex est une base de KX, donc d’apres le cours, il existe un
unique endomorphisme p(v) de KX tel que, pour tout z € X, p(7)(ex) = €.

Soit 7771 € I'. Alors 7(7/6:6) = 7(67’.x) = Cy.(v'x) = E(yy)x = (7’7/)-6;57

donc p(7) o p(v') = p(v7)-

En particulier, p(v)p(7v™') = p(1r) = Idgx = p(vH)p(7), donc p(7y) est un automor-
phisme de K¥ et on vient de montrer que p est bien un morphisme de I' dans G L(K™¥).
o Soit f € KX. Il existe (A\;)zex € KX tel que f = Z Az€z. Alors pour tout z € X,

f(x) = A, donc : pour tout f € KX et z € X, e (f)xeXf(x)

Soit f € KX,y €Tetx € X. (v.f)(x) = ex(v.f), ot v.f = 7. > f(Wey = > F(W)ey,

yeX yeX
mais 7.y = v <= y = v L.z, donc (7.f)(x) = f(y 1.z), ce qui correspond bien a
I’affirmation de I’énoncé.

18°) Soit f € K¥. Alors f € Er si et seulement si Vy € T, 7.f = f, c’est-a-dire si et
seulement si Vy € T, Vo € X, f(y L) = f(z).
Mais l'application v — =1 est une bijection sur I, donc f € Er si et seulement si
Vee X, Vyel, f(yz)= f(x).
Pour tout € X, notons T l'orbite de X : 7 = {y.z/y € T'}.
Alors f € Fr < [Vx € X, Yy € T, f(x)= f(y)].
Ceci montre que les éléments de Er sont exactement les applications de X dansK
possédant une valeur constante sur chaque orbite.
o Pour tout x € X, notons fz = Z ey-
yeT
Montrons que (f.).cx/r est une base de Er.
Si f € Er, en notant A, la valeur constante de f sur l'orbite z, on peut écrire
f= Z Az f.. De plus, pour tout z € X/R, f, € Ep, donc (f.).cx/r est une famille
2€X/R
génératrice de Er.
Supposons que Z A.f. = 0. Pour tout z € X, posons \, = Az
z€X/R
Alors 0 = Z S, = Z A€z, or (e;) est libre, donc les A, sont tous nuls, puis
z€X/R zeX
également les \.. Ainsi, (f.).cx/r est libre. C’est bien une base de Er.
o Alors dim(Er) = | X/R|, ce qu’il fallait démontrer.

19°) o Soit v € I'. Pour tout z € X, p(fy)( 2) = 7V.€g = €4, donc

Tr(p(y) = Y _ ealp(1)(€a)) =D €i(era) = 3 oy =1

zeX zeX zeX
On a bien montré que Xx(v) = r,.

o D’apres la question 18, puis la question 15, s = dim(Er) = |F‘ ZX x(7v), donc
~yel'



d’apres le point précédent, | | Zrﬁ, = s, d’ou le résultat demandé : la formule de

~el
Burnside exprime donc le fait que le nombre d’orbites d’un ensemble X sous 'action

d’un groupe est égal a la valeur moyenne du nombre d’éléments de X invariants sous
I’action de ~, lorsque ~ parcourt tout le groupe.

20°) T agit transitivement, donc s = 1 et la formule de Burnside devient : > r., = |T'|.
~yel

Or, lorsque v = 1p, r, = | X| > 2.

Supposons que 7, > 1 pour tout v € I" alors

T| = er =ry + Z ry > | X|+ (]I = 1) > |I'| + 1, ce qui est impossible donc il

el Y#1lr
existe vy dans I' tel que 7, = 0. Alors, pour tout x € X, v.z # x.

Partie IV : Propriétés des caracteres

21°) Avec des notations qui parlent d’elles-mémes,
pour tout v € I' et u € L(E, F), v.u = pr(y) cuo [pr(7)]
On en déduit que, pour tout v,~" € I', pour tout u,v € L(E, F), pour tout A € K|

-1

— queL(E,F):

— 7.(Mu+v) = pp(y)Aut0) [pp(V)] 7t = Aor(V)ulpp(V)] 7+ pr(v)vlpe(y)] 7 car
pr(7y) est linéaire, donc v.(Au +v) = )\( u) + (y.0);

— lru=u;

1 1

— (v u) = pr(V)pr(Y) o uo [pe(Y)] T o [pe(v)] ™! = pr(vy) o ue [pe(v¥)] ™,
donc v.(y.u) = (vv').u.
Ceci prouve d’apres la question 12 que (v, u) — 7.u est une représentation linéaire

de I' sur L(E, F).

22°) Soit 7 € I Xup)(7) = Tr(priem(1) = Tr (w— pr(7) 0 wo [pr(y)] ), done
d’apres la question 11, Xy, m) () = Tr(pr(7)) Tr(pe(y 1)) = Xe(v " H)XE(7).
230) o ’y — v~ ! est une bijection de I' donc par changement de variables,

1.9) = 15 Zf =7 Zf = (9, /).

yel yel
o Soit f € K telle que (f, g) = 0 pour tout g € KI'. Montrons que f = 0. Soit 7/ € T..
T| siy=9"
0 siy#q" 7
Alors 0 = (f,g) = f(v/). C’est vrai pour tout 4" € I', donc f = 0.

Notons g I'application de I' dans K définie par g(v) = {

24°) D’apres la question précédente,

(Xp, Xp) = (Xp, Xp) = | | ZXE “DXp(7), donc d’apres la question 22,
yel’



Xg, Xp) = |F| ZXﬁ 5,7 (7), puis d’apres la question 15, (Xg, Xp) = dim(L(E, F)p>
~yel

own L(E,F)r={ue€ L(E,F) /Yy €T, yu=u}.

Or, lorsque ¢ € L(E, F),

o ELE,F)r <= (WVyeTl,VrekE, vo(y'z)=¢()

< (Vyel, Vo€ B, p(y'z) =7 ()
< (p € homp(E, F))

donc hom(E, F') est un sous-espace vectoriel de L(E, F),

et <XE,XF> = dlm(homp(E,F))

o On suppose que E # {0}. Alors Idg # 0, or Idg € L(E)r car pour tout v € T,
vIdg = pe(V)depe(y™") = pe(yy™") = Idg, donc L(E)r # {0}. On en déduit que

25°) o D’apres la question 12, on munit K d’une structure de I'-espace en définissant
v.x = x pour tout v € I et tout z € K, c’est-a-dire p(y) = Idg pour tout v € I". Alors,
pour tout v € I', Xg(y) = Tr(Idg) = 1 = Xumt( ), donc Xum-t est bien un caractere.

o Par définition de (.,.), (Xg, Xunit) ZX (), donc d’apres la question 15,
’yEF

(Xg, Xuniz) = dim(Er)

26°) 1l existe des I'-espaces F et F tels que X = Xg et X' = Xp.

Pour tout (x,y) € E x F et v € I, posons v.(x,y) = (v.2,7.y).

On vérifie aisément que, pour tout (z,y), (z',y') € Ex F, A€ K, v,v €T,

V(@ y) + (@ y)] = v.(z,y) +7.(2",y), 7. [Ma, y)] = Alv.(z,9)],

Ir(z,y) = (z,y) et (v/)-(z,y) = 7.[7.(z,9)].

On a ainsi défini une représentation linéaire de I' sur £ x F.

Notons e = (eq,...,e,) et f = (f1,..., fp) des bases de E et de F respectivement.

Pour tout (z,y) € £ x F,

= (Xt S A005) = L0 + 001,

donc b = ((e1,0),...,(en,0),(0, f1),...,(0, f,)) est une famllle génératrice de £ x F,
de cardinal n +p = dim(E x F). C’est donc une base de E' x F' et I’égalité précédente
montre que, pour tout ¢ € N, et j € N, pour tout (z,y) € E x F, bf(z,y) = ef(x) et

b:L+_](x7y> - fj*(y)
ntp P
Soit v € I'. Xpxr(y) = Tr(ppxr(y Zb* v.bg) = Z e;(v.e;) + Zf;(v.fj), donc

i=1 j=1
Xexr(Y) = Tr(pe(y)) + Tr(pr(y))- AlIlSl, XEXp = XE + XF, ce qui prouve que X + X’
est bien un caractere.

27°) 1l existe un I'-espace E tel que X = Xg.
On reprend la structure de I'-espace définie sur K en question 25.
On a Xg« = Xp(px) = X5-Xk, d’apres la question 22. Ainsi, Xg- = X3 Xuni = X



On a donc montré que X3, = Xp«, ce qui prouve que X* est un caractere.

28°) 1l existe des I'-espaces E et F tels que X = Xg et X' = Xp.
Alors comme (X*)* = X, on a XX' = (X*)*X' = X},.Xp = Xp(g+,F),
donc XX’ est un caractere.

Ce probleme est une adaptation d'un sujet donné a I’ENS Lyon en 1997. Les parties |
et II mettent en place des notions qui feront plus tard partie de votre cours d’algebre
linéaire. Les parties III et IV correspondent aux parties I et II du sujet ’ENS. Ce
dernier possede encore 2 parties qui développent la théorie des représentations linéaires
de groupes. Le sujet ainsi qu'un corrigé sont facilement accessibles sur internet.



