
DM 29 : Un corrigé

Partie I : Projecteurs

1◦) ⋄ Soit x, y ∈ E et α ∈ K.
Alors x = p(x)+ q(x) et y = p(y)+ q(y), donc αx+y = (αp(x)+p(y))+(αq(x)+ q(y))
et (αp(x) + p(y), αq(x) + q(y)) ∈ F ×G. D’autre part, αx+ y = p(αx+ y) + q(αx+ y)
avec (p(αx + y), q(αx + y)) ∈ F × G, donc d’après l’unicité de la décomposition d’un
vecteur selon F ⊕ G (cf la dernière condition caractérisant le fait que F et G sont
supplémentaires dans E), p(αx+ y) = αp(x) + p(y) et q(αx+ y) = αq(x) + q(y).
On a montré que p, q ∈ L(E).
⋄ Soit x ∈ E. p(x) ∈ F , donc p(x) = p(x) + 0 et p(x) = p(p(x)) + q(p(x)), avec
(p(x), 0) ∈ F ×G et (p(p(x)), q(p(x))) ∈ F ×G. Ainsi, toujours d’après l’unicité de la
décomposition de p(x) selon F⊕G, on en déduit que p(p(x)) = p(x) et que q(p(x)) = 0,
pour tout x ∈ E. Ceci prouve que p2 = p et qp = 0.
De même, on montre que q2 = q et pq = 0.
⋄ Par définition de p et q, pour tout x ∈ E, x = p(x) + q(x), donc p+ q = IdE.

2◦) Soit p ∈ L(E) tel que p2 = p. Posons F = Im(p) et G = Ker(p).
⋄ Soit x ∈ E tel que p(x) = x. Alors x = p(x) ∈ Im(p) = F .
Réciproquement, si x ∈ F = Im(p), il existe y ∈ E tel que x = p(y),
donc p(x) = p ◦ p(y) = p(y) = x car p est un projecteur.
Ainsi x ∈ F ⇐⇒ p(x) = x ⇐⇒ (IdE − p)(x) = 0 et Im(p) = F = Ker(IdE − p).
⋄ Soit x ∈ E. p(x− p(x)) = p(x)− p2(x) = 0, car p est un projecteur,
donc x− p(x) ∈ Ker(p). De plus p(x) ∈ Im(p), donc x = p(x)︸︷︷︸

∈F

+(x− p(x))︸ ︷︷ ︸
∈G

.

Ceci démontre que E = F +G.
⋄ Soit x ∈ F ∩G. Alors p(x) = x et p(x) = 0, donc x = 0. Ainsi F ∩G = {0}.
On a montré que E = F ⊕G, d’après la seconde caractérisation donnée par l’énoncé.
⋄ On peut donc considérer le projecteur u sur F parallèlement à G.
Soit x ∈ E. On a vu que x = p(x) + (x − p(x)) avec p(x) ∈ F et x − p(x) ∈ G, donc
u(x) = p(x). Ainsi, p = u est bien le projecteur sur Im(p) parallèlement à Ker(p).

3◦)
— Pour tout x ∈ E, Id2E(x) = x donc Id2E = IdE. Ainsi, d’après la question

précédente, IdE est le projecteur sur Im(IdE) = IdE(E) = E parallèlement à
Ker(IdE) = {0}.
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— De même, pour tout x ∈ E, 02(x) = 0 = 0(x) donc 02 = 0, donc 0 est le
projecteur sur Im(0) = {0} parallèlement à Ker(0) = E.

— Pour tout

(
x
y

)
∈ K2, p ◦ p

(
x
y

)
=

(
x
0

)
, donc p2 = p, ce qui prouve que

p est un projecteur. De plus, Im(p) =
{(

x
0

)
/ x ∈ K

}
= Vect

(
1
0

)
et

Ker(p) =
{(

x
y

)
/ x = 0

}
= Vect

(
0
1

)
. Ainsi, p1 est le projecteur sur

Vect

(
1
0

)
parallèlement à Vect

(
0
1

)
.

4◦) D’après le cours, RR est un R-espace vectoriel. De plus, on vérifie facilement que
P et I sont non vides et stables par combinaison linéaire, donc ce sont des sous-espaces
vectoriels de RR.
Soit f ∈ P ∩ I. Alors, pour tout x ∈ R, f(x) = f(−x) = −f(x), donc f(x) = 0. Ainsi
P ∩ I = {0}. De plus, si f ∈ E, en posant pour tout x ∈ R, g(x) = 1

2
(f(x) + f(−x))

et h(x) = 1
2
(f(x) − f(−x)), on vérifie que f = g + h, g ∈ P et h ∈ I. Ainsi d’après

l’énoncé, on a montré que E = P ⊕ I.
On peut donc définir le projecteur p sur P parallèlement à I, et ce qui précède montre
que, pour tout f ∈ E et x ∈ R, p(f)(x) = 1

2
(f(x) + f(−x)).

Partie II : Trace d’un endomorphisme

5◦) ⋄ Soit i ∈ Nn. Commençons par montrer que e∗i est bien une forme linéaire (elle

est bien à valeurs dans K). Soit x =
n∑

j=1

xjej et y =
n∑

j=1

yjej deux vecteurs de E et soit

α ∈ K. Alors αx+ y =
n∑

j=1

(αxj + yj)ej,

donc e∗i (αx+ y) = αxi + yi = αe∗i (x) + e∗i (y), ce qui prouve que e∗i est bien linéaire.
⋄ Ainsi, (e∗1, . . . , e

∗
n) est une famille de n vecteurs de E∗.

D’après le cours, dim(L(E,K)) = dim(E)×dim(K) = dim(E) = n, donc pour montrer
que c’est une base, il suffit de montrer que c’est une famille libre : soit (αi)1≤i≤n ∈ Kn

telle que
n∑

i=1

αie
∗
i = 0. Ainsi, pour tout x ∈ E,

n∑
i=1

αie
∗
i (x) = 0. C’est en particulier

vrai pour ej, où j ∈ Nn. Or e∗i (ej) = δi,j (c’est la i-ème coordonnée de ej dans la base

e), donc 0 =
n∑

i=1

αie
∗
i (ej) = αj. Ceci prouve que la famille est bien libre, ce qui conclut.

6◦) ⋄ Soit u ∈ L(E,F ). Pour tout x ∈ E,

u(x) = u
( n∑

k=1

e∗k(x)ek

)
=

n∑
k=1

e∗k(x)u(ek) =
n∑

k=1

e∗k(x)

p∑
j=1

f ∗
j (u(ek))fj, donc
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u(x) =

p∑
j=1

n∑
k=1

e∗k(x)f
∗
j (u(ek))fj =

∑
1≤k≤n
1≤j≤p

f ∗
j (u(ek))gk,j(x). Ainsi u =

∑
1≤k≤n
1≤j≤p

f ∗
j (u(ek))gk,j.

⋄ Les e∗i étant linéaires, on vérifie aisément que les gi,j sont linéaires. Ainsi, ce qui
précède prouve que la famille (gi,j) 1≤i≤n

1≤j≤p
est génératrice de L(E,F ). De plus son cardinal

est égal à np = dim(L(E,F )), donc c’est une base de L(E,F ).

7◦) Soit u, v ∈ L(E) et α ∈ K. D’après la linéarité des e∗i , on a

Tre(αu+v) =
n∑

i=1

e∗i (αu(ei)+v(ei)) = α

n∑
i=1

e∗i (u(ei))+
n∑

i=1

e∗i (v(ei)) = αTre(u)+Tre(v).

De plus Tre est une application de L(E) dans K, donc c’est bien une forme linéaire sur
L(E).

8◦) ⋄ Tre(uv) =
n∑

i=1

e∗i (u(v(ei))), or pour tout i ∈ Nn, v(ei) =
n∑

j=1

e∗j(v(ei))ej, donc

par linéarité de u et des e∗i , on obtient que (1) : Tre(uv) =
n∑

i=1

n∑
j=1

e∗j(v(ei))e
∗
i (u(ej)).

⋄ En utilisant le changement de variable (i, j) 7−→ (j, i) qui est bien bijectif de N2
n dans

lui-même, on en déduit que Tre(uv) =
n∑

j=1

n∑
i=1

e∗i (v(ej))e
∗
j(u(ei)), puis en intervertissant

les deux sommes, Tre(uv) =
n∑

i=1

n∑
j=1

e∗j(u(ei))e
∗
i (v(ej)). Or si l’on applique la relation

(1) en remplaçant (u, v) par (v, u), on obtient que Tre(vu) =
n∑

i=1

n∑
j=1

e∗j(u(ei))e
∗
i (v(ej)),

donc on a montré que Tre(uv) = Tre(vu).

9◦) ⋄ v transforme la base e en la base f , donc d’après le cours, v est un automorphisme
de E. En particulier, v−1 est bien défini et pour tout i ∈ Nn, v

−1(fi) = ei. Ainsi,

Trf (vuv
−1) =

n∑
i=1

f ∗
i (vuv

−1(fi)) =
n∑

i=1

f ∗
i (vu(ei)), or pour tout i ∈ Nn,

u(ei) =
n∑

j=1

e∗j(u(ei))ej, donc par linéarité de v et des f ∗
i ,

Trf (vuv
−1) =

n∑
i=1

n∑
j=1

e∗j(u(ei))f
∗
i (v(ej)), or pour tout i, j ∈ Nn,

f ∗
i (v(ej)) = f ∗

i (fj) = δi,j, donc Trf (vuv
−1) =

n∑
i=1

e∗i (u(ei)) = Tre(u), ce qu’il fallait

démontrer.
⋄ D’après la question 8, appliquée avec la base f , et en remplaçant le couple (u, v)
par (v, uv−1), Trf (v(uv

−1)) = Trf ((uv
−1)v) = Trf (u), donc d’après le point précédent,

Trf (u) = Tre(u).
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10◦) ⋄ Notons a = dim(F ). D’après le cours, F possède au moins une base, de
cardinal a, que l’on notera (e1, . . . , ea). De même, G possède au moins une base, notée
(ea+1, . . . , en). Posons e = (e1, . . . , en) et montrons que e est une base de E.

⋄ Soit (αi)1≤i≤n ∈ Kn tel que
n∑

i=1

αiei = 0. Posons x =
a∑

i=1

αiei et y =
n∑

i=a+1

αiei. Alors

x + y = 0, donc x = −y ∈ F ∩ G = {0}. Ainsi,
a∑

i=1

αiei = 0 et
n∑

i=a+1

αiei = 0, or les

familles (e1, . . . , ea) et (ea+1, . . . , en) sont libres, donc pour tout i ∈ Nn, αi = 0. Ceci
prouve que e est libre.
⋄ Soit z ∈ E. Alors il existe x ∈ F et y ∈ G tels que z = x+y. Or F = Vect(e1, . . . , ea)

et G = Vect(ea+1, . . . , en), donc il existe (αi)1≤i≤n ∈ Kn tel que x =
a∑

i=1

αiei

et y =
n∑

i=a+1

αiei. Alors z =
n∑

i=1

αiei. Ceci prouve que e est génératrice de E. C’est donc

bien une base de E.

⋄ Ainsi, Tr(p) = Tre(p) =
n∑

i=1

e∗i (p(ei)). Or, lorsque i ∈ Na, ei ∈ F = Im(p), donc

d’après la question 2, p(ei) = ei, puis e∗i (p(ei)) = 1 et lorsque i ∈ {a + 1, . . . , n},

ei ∈ G = Ker(p), donc p(ei) = 0, puis e∗i (p(ei)) = 0. Ainsi, Tr(p) =
a∑

i=1

1 = a = dim(F ).

11◦) Reprenons les notations de la question 6. On a vu que g = (gi,j) 1≤i≤n
1≤j≤p

est une

base de L(E,F ) et que pour tout u ∈ L(E,F ), u =
∑

1≤k≤n
1≤j≤p

f ∗
j (u(ek))gk,j, donc si l’on

note (g∗i,j) 1≤i≤n
1≤j≤p

la base duale de g, on voit que, pour tout u ∈ L(E,F ) et k, j ∈ Nn×Np,

g∗k,j(u) = f ∗
j (u(ek)).

Ainsi, Tr(Ψ) =
∑

1≤k≤n
1≤j≤p

g∗k,j(Ψ(gk,j)) =
∑

1≤k≤n
1≤j≤p

g∗k,j(vgk,ju) =
∑

1≤k≤n
1≤j≤p

f ∗
j [vgk,ju(ek)], puis

Tr(Ψ) =
∑

1≤k≤n
1≤j≤p

f ∗
j [v(e

∗
k(u(ek))fj)] =

∑
1≤k≤n
1≤j≤p

e∗k(u(ek))× f ∗
j [v(fj)]. Ainsi,

Tr(Ψ) =
( n∑

k=1

e∗k(u(ek))
)
×

( n∑
j=1

f ∗
j (v(fj))

)
= Tr(u)× Tr(v).
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Partie III : Formule de Burnside

12◦) ⋄ Supposons que (E, ρ) est une représentation linéaire de Γ.
Soit x, y ∈ E, γ, γ′ ∈ Γ et λ ∈ K.
ρ(γ) est linéaire, donc γ.(x + y) = ρ(γ)(x + y) = ρ(γ)(x) + ρ(γ)(y) = γ.x + γ.y, et
γ.(λx) = ρ(γ)(λx) = λρ(γ)(x) = λ(γ.x).
De plus, ρ est un morphisme de groupes, donc ρ(1Γ) = IdE et ρ(γγ′) = ρ(γ)ρ(γ′).
On en déduit que 1Γ.x = ρ(1Γ)(x) = IdE(x) = x
et γ.(γ′.x) = ρ(γ)[ρ(γ′)(x)] = ρ(γγ′)(x) = (γγ′).x.
⋄ Réciproquement, supposons que pour tout x, y ∈ E, γ, γ′ ∈ Γ et λ ∈ K,
γ.(x+ y) = γ.x+ γ.y, γ.(λx) = λ(γ.x), 1Γ(x) = x et γ.(γ′.x) = (γγ′).x.
Les deux premières propriétés assurent que, pour tout γ ∈ Γ, ρ(γ) ∈ L(E).
D’après les deux dernières propriétés, pour tout γ ∈ Γ, pour tout x ∈ E,
γ−1.(γ.x) = x = γ.(γ−1.x), donc ρ(γ) et ρ(γ−1) sont deux bijections réciproques l’une
de l’autre. Ainsi, ρ est une application de Γ dans GL(E). Enfin, la dernière propriété
garantit que ρ est un morphisme de groupes.

13◦) ⋄ Soit γ′ ∈ Γ, on a

ρ(γ′) ◦ π =
1

|Γ|
∑
γ∈Γ

ρ(γ′) ◦ ρ(γ) = 1

|Γ|
∑
γ∈Γ

ρ(γ′γ) =
1

|Γ|
∑
γ”∈Γ

ρ(γ”) = π car γ 7→ γ′γ est

une bijection de Γ sur lui-même, dont la bijection réciproque est γ 7−→ γ′−1γ.

⋄ On en déduit que π◦π =
1

|Γ|
∑
γ′∈Γ

ρ(γ′)◦π =
1

|Γ|
∑
γ∈Γ

π = π, donc π est un projecteur.

Si x ∈ EΓ, pour tout γ ∈ Γ, γ.x = x, donc π(x) = x. Ceci prouve que EΓ ⊂ Imπ.
Réciproquement : si x ∈ Imπ alors d’après la question 2, π(x) = x donc, pour tout
γ′ ∈ Γ, en utilisant que ρ(γ′)π = π, on obtient γ′.x = ρ(γ′)(x) = ρ(γ′)◦π(x) = π(x) = x
et donc x ∈ EΓ. On a ainsi prouvé que EΓ = Imπ.
⋄ D’après la question 10, la trace d’un projecteur est égale à la dimension de son
image, donc Tr(π) = dim(EΓ).

14◦) Soient (E, ρ) et (E ′, ρ′) deux Γ-espaces tels que χ
E = χ

E′ = χ.
χ(1Γ) = χ

E(1Γ) = Tr(ρ(1Γ)) = Tr(IdE) = dim(E) et χ(1Γ) = χ
E′(1Γ) = dim(E ′),

donc dim(E) = dim(E ′) = dim(χ) = χ(1Γ).

15◦) L’application trace étant linéaire, on a

dim(EΓ) = Tr(π) =
1

|Γ|
∑
γ∈Γ

Tr(ρ(γ)) =
1

|Γ|
∑
γ∈Γ

χ
E(γ)..

16◦) Soit x, y, z ∈ X.
⋄ x = 1Γ.x, donc x R x. Ainsi, R est réflexive.
⋄ Supposons que x R y. Il existe γ ∈ Γ tel que y = γ.x.
Alors γ−1.y = γ−1.(γ.x) = (γ−1γ).x = 1Γ.x = x, donc y R x. Ainsi, R est symétrique.
⋄ Supposons que x R y et que y R z. Il existe γ, γ′ ∈ Γ tels que y = γ.x et z = γ′.y,
donc z = γ′.(γ.x) = (γ′γ).x. Ainsi, x R z, donc R est transitive.
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En conclusion, on a prouvé que R est une relation d’équivalence.

17◦) ⋄ Soit γ ∈ Γ. (ex)x∈X est une base de KX , donc d’après le cours, il existe un
unique endomorphisme ρ(γ) de KX tel que, pour tout x ∈ X, ρ(γ)(ex) = eγ.x.
Soit γ, γ′ ∈ Γ. Alors γ.(γ′.ex) = γ(eγ′.x) = eγ.(γ′.x) = e(γγ′).x = (γγ′).ex,
donc ρ(γ) ◦ ρ(γ′) = ρ(γγ′).
En particulier, ρ(γ)ρ(γ−1) = ρ(1Γ) = IdKX = ρ(γ−1)ρ(γ), donc ρ(γ) est un automor-
phisme de KX et on vient de montrer que ρ est bien un morphisme de Γ dans GL(KX).

⋄ Soit f ∈ KX . Il existe (λx)x∈X ∈ KX tel que f =
∑
x∈X

λxex. Alors pour tout x ∈ X,

f(x) = λx, donc : pour tout f ∈ KX et x ∈ X, e∗x(f) = f(x).

Soit f ∈ KX , γ ∈ Γ et x ∈ X. (γ.f)(x) = e∗x(γ.f), or γ.f = γ.
∑
y∈X

f(y)ey =
∑
y∈X

f(y)eγ.y,

mais γ.y = x ⇐⇒ y = γ−1.x, donc (γ.f)(x) = f(γ−1.x), ce qui correspond bien à
l’affirmation de l’énoncé.

18◦) Soit f ∈ KX . Alors f ∈ EΓ si et seulement si ∀γ ∈ Γ, γ.f = f , c’est-à-dire si et
seulement si ∀γ ∈ Γ, ∀x ∈ X, f(γ−1.x) = f(x).
Mais l’application γ 7−→ γ−1 est une bijection sur Γ, donc f ∈ EΓ si et seulement si
∀x ∈ X, ∀γ ∈ Γ, f(γ.x) = f(x).
Pour tout x ∈ X, notons x l’orbite de X : x = {γ.x/γ ∈ Γ}.
Alors f ∈ EΓ ⇐⇒ [∀x ∈ X, ∀y ∈ x, f(x) = f(y)].
Ceci montre que les éléments de EΓ sont exactement les applications de X dansK
possédant une valeur constante sur chaque orbite.

⋄ Pour tout x ∈ X, notons fx =
∑
y∈x

ey.

Montrons que (fz)z∈X/R est une base de EΓ.
Si f ∈ EΓ, en notant λz la valeur constante de f sur l’orbite z, on peut écrire

f =
∑

z∈X/R

λzfz. De plus, pour tout z ∈ X/R, fz ∈ EΓ, donc (fz)z∈X/R est une famille

génératrice de EΓ.

Supposons que
∑

z∈X/R

λzfz = 0. Pour tout x ∈ X, posons λx = λx.

Alors 0 =
∑

z∈X/R

λzfz =
∑
x∈X

λxex, or (ex) est libre, donc les λx sont tous nuls, puis

également les λz. Ainsi, (fz)z∈X/R est libre. C’est bien une base de EΓ.
⋄ Alors dim(EΓ) = |X/R|, ce qu’il fallait démontrer.

19◦) ⋄ Soit γ ∈ Γ. Pour tout x ∈ X, ρ(γ)(ex) = γ.ex = eγ.x, donc

Tr(ρ(γ)) =
∑
x∈X

e∗x(ρ(γ)(ex)) =
∑
x∈X

e∗x(eγ.x) =
∑
x∈X

δx,γ.x = rγ.

On a bien montré que χ
X(γ) = rγ.

⋄ D’après la question 18, puis la question 15, s = dim(EΓ) =
1

|Γ|
∑
γ∈Γ

χ
X(γ), donc
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d’après le point précédent,
1

|Γ|
∑
γ∈Γ

rγ = s, d’où le résultat demandé : la formule de

Burnside exprime donc le fait que le nombre d’orbites d’un ensemble X sous l’action
d’un groupe est égal à la valeur moyenne du nombre d’éléments de X invariants sous
l’action de γ, lorsque γ parcourt tout le groupe.

20◦) Γ agit transitivement, donc s = 1 et la formule de Burnside devient :
∑
γ∈Γ

rγ = |Γ|.

Or, lorsque γ = 1Γ, rγ = |X| ≥ 2.
Supposons que rγ ≥ 1 pour tout γ ∈ Γ alors

|Γ| =
∑
γ∈Γ

rγ = r1Γ +
∑
γ ̸=1Γ

rγ ≥ |X| + (|Γ| − 1) ≥ |Γ| + 1, ce qui est impossible donc il

existe γ0 dans Γ tel que rγ0 = 0. Alors, pour tout x ∈ X, γ0.x ̸= x.

Partie IV : Propriétés des caractères

21◦) Avec des notations qui parlent d’elles-mêmes,
pour tout γ ∈ Γ et u ∈ L(E,F ), γ.u = ρF (γ) ◦ u ◦ [ρE(γ)]−1.
On en déduit que, pour tout γ, γ′ ∈ Γ, pour tout u, v ∈ L(E,F ), pour tout λ ∈ K,

— γ.u ∈ L(E,F ) ;
— γ.(λu+v) = ρF (γ)(λu+v)[ρE(γ)]

−1 = λρF (γ)u[ρE(γ)]
−1+ρF (γ)v[ρE(γ)]

−1, car
ρF (γ) est linéaire, donc γ.(λu+ v) = λ(γ.u) + (γ.v) ;

— 1Γ.u = u ;
— γ.(γ′.u) = ρF (γ)ρF (γ

′) ◦ u ◦ [ρE(γ′)]−1 ◦ [ρE(γ)]−1 = ρF (γγ
′) ◦ u ◦ [ρE(γγ′)]−1,

donc γ.(γ′.u) = (γγ′).u.
Ceci prouve d’après la question 12 que (γ, u) 7−→ γ.u est une représentation linéaire
de Γ sur L(E,F ).

22◦) Soit γ ∈ Γ. χL(E,F )(γ) = Tr(ρL(E,F )(γ)) = Tr
(
u 7−→ ρF (γ) ◦ u ◦ [ρE(γ)]−1

)
, donc

d’après la question 11, χL(E,F )(γ) = Tr(ρF (γ))Tr(ρE(γ
−1)) = χ

E(γ
−1)χF (γ).

23◦) ⋄ γ 7→ γ−1 est une bijection de Γ donc par changement de variables,

⟨f, g⟩ = 1

|Γ|
∑
γ∈Γ

f(γ)g(γ−1) =
1

|Γ|
∑
γ∈Γ

f(γ−1)g(γ) = ⟨g, f⟩.

⋄ Soit f ∈ KΓ telle que ⟨f, g⟩ = 0 pour tout g ∈ KΓ. Montrons que f = 0. Soit γ′ ∈ Γ.

Notons g l’application de Γ dans K définie par g(γ) =

{
|Γ| si γ = γ′−1

0 si γ ̸= γ′−1 .

Alors 0 = ⟨f, g⟩ = f(γ′). C’est vrai pour tout γ′ ∈ Γ, donc f = 0.

24◦) D’après la question précédente,

⟨χE, χF ⟩ = ⟨χF , χE⟩ =
1

|Γ|
∑
γ∈Γ

χ
E(γ

−1)χF (γ), donc d’après la question 22,
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⟨χE, χF ⟩ =
1

|Γ|
∑
γ∈Γ

χL(E,F )(γ), puis d’après la question 15, ⟨χE, χF ⟩ = dim
(
L(E,F )Γ

)
où L(E,F )Γ = {u ∈ L(E,F ) / ∀γ ∈ Γ, γ.u = u}.
Or, lorsque φ ∈ L(E,F ),

φ ∈ L(E,F )Γ ⇐⇒ (∀γ ∈ Γ, ∀x ∈ E, γ.φ(γ−1x) = φ(x))
⇐⇒ (∀γ ∈ Γ, ∀x ∈ E, φ(γ−1x) = γ−1.φ(x))
⇐⇒ (φ ∈ hom Γ(E,F ))

donc hom Γ(E,F ) est un sous-espace vectoriel de L(E,F ),
et ⟨χE, χF ⟩ = dim(hom Γ(E,F )).
⋄ On suppose que E ̸= {0}. Alors IdE ̸= 0, or IdE ∈ L(E)Γ car pour tout γ ∈ Γ,
γ.IdE = ρE(γ)IdEρE(γ

−1) = ρE(γγ
−1) = IdE, donc L(E)Γ ̸= {0}. On en déduit que

⟨χE, χE⟩ = dim(L(E)Γ) ∈ N∗.

25◦) ⋄ D’après la question 12, on munit K d’une structure de Γ-espace en définissant
γ.x = x pour tout γ ∈ Γ et tout x ∈ K, c’est-à-dire ρ(γ) = IdK pour tout γ ∈ Γ. Alors,
pour tout γ ∈ Γ, χK(γ) = Tr(IdK) = 1 = χ

unit(γ), donc χ
unit est bien un caractère.

⋄ Par définition de ⟨., .⟩, ⟨χE, χunit⟩ =
1

|G|
∑
γ∈Γ

χ
E(γ), donc d’après la question 15,

⟨χE, χunit⟩ = dim(EΓ)

26◦) Il existe des Γ-espaces E et F tels que χ = χ
E et χ′ = χ

F .
Pour tout (x, y) ∈ E × F et γ ∈ Γ, posons γ.(x, y) = (γ.x, γ.y).
On vérifie aisément que, pour tout (x, y), (x′, y′) ∈ E × F , λ ∈ K, γ, γ′ ∈ Γ,
γ.[(x, y) + (x′, y′)] = γ.(x, y) + γ.(x′, y′), γ.[λ(x, y)] = λ[γ.(x, y)],
1Γ.(x, y) = (x, y) et (γγ′).(x, y) = γ.[γ′.(x, y)].
On a ainsi défini une représentation linéaire de Γ sur E × F .
Notons e = (e1, . . . , en) et f = (f1, . . . , fp) des bases de E et de F respectivement.
Pour tout (x, y) ∈ E × F ,

(x, y) =
( n∑

i=1

e∗i (x)ei,

p∑
j=1

f ∗
j (y)fj

)
=

n∑
i=1

e∗i (x)(ei, 0) +

p∑
j=1

f ∗
j (y)(0, fj),

donc b = ((e1, 0), . . . , (en, 0), (0, f1), . . . , (0, fp)) est une famille génératrice de E × F ,
de cardinal n+ p = dim(E × F ). C’est donc une base de E × F et l’égalité précédente
montre que, pour tout i ∈ Nn et j ∈ Np, pour tout (x, y) ∈ E × F , b∗i (x, y) = e∗i (x) et
b∗n+j(x, y) = f ∗

j (y).

Soit γ ∈ Γ. χE×F (γ) = Tr(ρE×F (γ)) =

n+p∑
k=1

b∗k(γ.bk) =
n∑

i=1

e∗i (γ.ei) +

p∑
j=1

f ∗
j (γ.fj), donc

χ
E×F (γ) = Tr(ρE(γ)) + Tr(ρF (γ)). Ainsi, χE×F = χE + χF , ce qui prouve que χ + χ′

est bien un caractère.

27◦) Il existe un Γ-espace E tel que χ = χ
E.

On reprend la structure de Γ-espace définie sur K en question 25.
On a χ

E∗ = χ
L(E,K) = χ∗

E.χK, d’après la question 22. Ainsi, χE∗ = χ∗
E.χunit = χ∗

E.
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On a donc montré que χ∗
E = χ

E∗ , ce qui prouve que χ∗ est un caractère.

28◦) Il existe des Γ-espaces E et F tels que χ = χ
E et χ′ = χ

F .
Alors comme (χ∗)∗ = χ, on a χχ′ = (χ∗)∗χ′ = χ∗

E∗χF = χ
L(E∗,F ),

donc χχ′ est un caractère.

Ce problème est une adaptation d’un sujet donné à l’ENS Lyon en 1997. Les parties I
et II mettent en place des notions qui feront plus tard partie de votre cours d’algèbre
linéaire. Les parties III et IV correspondent aux parties I et II du sujet d’ENS. Ce
dernier possède encore 2 parties qui développent la théorie des représentations linéaires
de groupes. Le sujet ainsi qu’un corrigé sont facilement accessibles sur internet.
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