
Résumé de cours :

Semaine 16, du 12 au 16 janvier.

Espaces vectoriels normés

1 Distance (fin)

Propriété. Soit E un espace vectoriel normé dont la distance associée est notée d.
Alors ∀(x, y, z) ∈ E3 d(x+ z, y + z) = d(x, y).
Cette propriété ne se généralise pas aux espaces métriques.

Propriété. Corollaire de l’inégalité triangulaire.
Soit E un espace vectoriel normé dont la distance associée est notée d.
Alors ∀(x, y, z) ∈ E3 |d(x, y)− d(y, z)| ≤ d(x, z).

Définition. Soient E un espace vectoriel normé et (a, r) ∈ E × R∗
+.

La boule ouverte centrée en a de rayon r est l’ensemble Bo(a, r) = {x ∈ E/d(a, x) < r}.
La boule fermée de centre a et de rayon r est l’ensemble Bf (a, r) = {x ∈ E/d(a, x) ≤ r}.
La sphère de centre a et de rayon r est l’ensemble S(a, r) = {x ∈ E/d(a, x) = r}.

Définition. Dans un espace métrique, la boule unité est la boule fermée de centre 0 et de rayon 1.

Propriété. (non généralisable aux espaces métriques)
Les boules d’un espace vectoriel normé sont des convexes.
Il faut savoir le démontrer.

Définition. Soient E un espace métrique, A et B deux parties non vides de E et a ∈ E.
On note d(a,A) = inf

x∈A
d(a, x). C’est la distance de a à A.

On note d(A,B) = inf
(x,y)∈A×B

d(x, y). C’est la distance de A à B.

On appelle diamètre de A la quantité δ(A) = sup
(x,y)∈A2

d(x, y) ∈ R+ ∪ {+∞}.

Propriété. Dans un espace métrique, δ(Bf (a, r)) ≤ 2r.

Propriété. (non généralisable aux espaces métriques)
Soient E un espace vectoriel normé non nul et (a, r) ∈ E × R∗

+. Alors δ(Bf (a, r)) = 2r.
Il faut savoir le démontrer.

Propriété. Dans un espace métrique, si ∅ ≠ A ⊂ B, alors δ(A) ≤ δ(B).

Définition et propriété. Soient E un espace vectoriel normé et A une partie de E. Les propriétés
suivantes sont équivalentes.

i) {∥x∥/x ∈ A} est borné.
ii)Pour tout x0 ∈ E, {∥x− x0∥/x ∈ A} est borné.
iii) Pour tout x0 ∈ E, il existe R ∈ R+ tel que A ⊂ Bf (x0, R).
iv) Il existe (x0, R) ∈ E × R+ tel que A ⊂ Bf (x0, R).
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Dans ce cas, on dit que A est bornée.

Définition. Soient A un ensemble, E un espace vectoriel normé et f : A −→ E une application.
On dit que f est bornée si et seulement si f(A) est une partie bornée de E.

Propriété. Soient A un ensemble non vide et E un espace vectoriel normé .
On note B(A,E) l’ensemble des applications bornées de A dans E.
Pour f ∈ B(A,E), on note ∥f∥∞ = sup

a∈A
∥f(a)∥.

Alors (B(A,E), ∥.∥∞) est un espace vectoriel normé .
Il faut savoir le démontrer.

Propriété. Soit E un espace vectoriel normé . On note l∞(E) l’ensemble des suites bornées à valeurs
dans E. Si (xn)n∈N ∈ l∞(E), on note ∥(xn)∥∞ = sup

n∈N
∥xn∥.

Alors (l∞(E), ∥.∥∞) est un espace vectoriel normé .

2 Applications k-Lipschitziennes

Définition. Soient E et F deux espaces métriques, k ∈ R+ et f : E −→ F une fonction dont le
domaine de définition sera noté Df .
f est k-lipschitzienne si et seulement si ∀(x, y) ∈ D2

f d(f(x), f(y)) ≤ kd(x, y).
Lorsque k < 1, on dit que f est k-contractante.
On dit que f est lipschitzienne si et seulement si il existe k ∈ R+ tel que f est k-lipschitzienne.

Propriété. Une composée d’applications lipschitziennes est lipschitzienne.

Propriété. Soit E un espace vectoriel normé . L’application ∥.∥ est 1-lipschitzienne.

Propriété. Soient E un espace vectoriel normé et A une partie non vide de E.

L’application
E −→ R+

x 7−→ d(x,A)
est 1-lipschitzienne.

Il faut savoir le démontrer.

Propriété. Soient E1, . . ., Ep p espaces vectoriels normés dont les normes sont notées N1, . . ., Np.
On note E = E1 × · · · × Ep.

Soit i ∈ Np. L’application ième projection
pi : E −→ Ei

x = (x1, . . . , xp) 7−→ xi
est 1-lipschitzienne lorsque

E est muni de l’une de ses trois normes classiques, ∥.∥1, ∥.∥2 ou ∥.∥∞.

Remarque. Sur E = C([0, 1],R), f 7−→ f(0) n’est pas lipschitzienne pour N1.
Il faut savoir le démontrer.

3 Normes équivalentes

Définition. Dans un espace vectoriel normé E, deux normes ∥.∥1 et ∥.∥2 sont équivalentes si et
seulement s’il existe (α, β) ∈ (R∗

+)
2 tel que ∀x ∈ E ∥x∥1 ≤ α∥x∥2 et ∥x∥2 ≤ β∥x∥1.

Propriété. Avec les notations précédentes, ∥.∥1 et ∥.∥2 sont équivalentes si et seulement si IdE :
(E, ∥.∥1) −→ (E, ∥.∥2) et IdE : (E, ∥.∥2) −→ (E, ∥.∥1) sont lipschitziennes.

Exemple. Soient E1, . . ., Ep p espaces vectoriels normés dont les normes sont notées N1, . . ., Np.
Sur E = E1 × · · · × Ep, les trois normes classiques, ∥.∥1, ∥.∥2 et ∥.∥∞ sont deux à deux équivalentes.
Il faut savoir le démontrer.

Propriété. Soit E un espace vectoriel normé. Sur l’ensemble des normes de E, la relation “être
équivalente à” est une relation d’équivalence.
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Propriété. Soient E un K-espace vectoriel et ∥.∥1 et ∥.∥2 deux normes équivalentes sur E.
Une partie A de E est bornée pour ∥.∥1 si et seulement si elle est bornée pour ∥.∥2.

Propriété. Soient E et F deux K-espaces vectoriels. On suppose que E (resp : F ) est muni de deux
normes équivalentes, notées ∥.∥E1 et ∥.∥E2 (resp : ∥.∥F1 et ∥.∥F2 ). Alors f : E −→ F est lipschitzienne
pour ∥.∥E1 et ∥.∥F1 si et seulement si elle est lipschitzienne pour ∥.∥E2 et ∥.∥F2 .
Il faut savoir le démontrer.

4 limite d’une suite dans un espace métrique

Notation. On fixe un espace métrique noté (E, d).

Définition. Soient (xn) ∈ EN une suite de vecteurs de E et l ∈ E. La suite (xn) converge vers l si
et seulement si (1) : ∀ε ∈ R∗

+ ∃N ∈ N ∀n ∈ N (n ≥ N =⇒ d(xn, l) ≤ ε).

Remarque. Dans (1), les deux dernières inégalités peuvent être choisies strictes ou larges.

Remarque. Pour tout n0 ∈ N, la propriété “xn −→
n→+∞

ℓ” ne dépend pas du choix de x0, . . . , xn0 .

Propriété. Unicité de la limite.
Si (xn) converge vers l et vers l′, alors l = l′. On note l = lim

n→+∞
xn ou xn −→

n→+∞
l.

Il faut savoir le démontrer.

Définition. Une suite de vecteurs de E est convergente si et seulement s’il existe l ∈ E tel que
xn −→

n→+∞
l. Sinon, on dit que la suite est divergente.

Propriété. Soient (xn) une suite de vecteurs de E et l ∈ E.
Si xn −→

n→+∞
l, alors ∥xn∥ −→

n→+∞
∥l∥, mais la réciproque est fausse.

xn −→
n→+∞

0 si et seulement si ∥xn∥ −→
n→+∞

0.

xn −→
n→+∞

l si et seulement si d(xn, l) −→
n→+∞

0.

Principe des gendarmes : Soit (xn) ∈ EN et ℓ ∈ E.
S’il existe une suite de réels (gn) telle que ∀n ∈ N, d(xn, l) ≤ gn et gn −→

n→+∞
0, alors xn −→

n→+∞
ℓ.

Propriété. Soit N une seconde norme sur E, équivalente à ∥.∥.
Alors, pour toute suite (xn) de E et pour tout l ∈ E, xn

N−→
n→+∞

l ⇐⇒ xn
∥.∥−→

n→+∞
l.

Il faut savoir le démontrer.

Remarque. Sur E = C([0, 1],R), les ∥.∥1, ∥.∥2 et ∥.∥∞ sont deux à deux non équivalentes entre
elles, où ces normes désignent respectivement la norme de la convergence en moyenne, celle de la
convergence en moyenne quadratique et la norme de la convergence uniforme.
Il faut savoir le démontrer.

Propriété. Toute suite convergente est bornée.

5 Somme et produit de limites

Notation. On suppose que E est un espace vectoriel normé.
Les propriétés de ce paragraphe ne se généralisent pas aux espaces métriques.

Propriété. Soient (xn) et (yn) deux suites de E convergeant vers l et l′.
Alors la suite (xn + yn) converge vers l + l′.

Propriété. Si (xn + yn) converge, alors (xn) et (yn) ont la même nature.
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Propriété. Soient (αn) ∈ KN et (xn) ∈ EN.
Si l’une des suites est bornée et si l’autre tend vers 0, alors αnxn −→

n→+∞
0.

Propriété. Soient (ln) une suite de E qui converge vers l ∈ E et (αn) une suite de scalaires qui
converge vers α. Alors la suite (αn.ln) converge vers α.l.
Il faut savoir le démontrer.

Propriété. L’ensemble des suites convergentes de E noté EN
cv est un sous-espace vectoriel de l∞(E)

et l’application
EN

cv −→ E
(xn) 7−→ lim

n→+∞
xn

est une application linéaire.

Propriété. Suites à valeurs dans un produit.
Soient p ∈ N∗ et E1, . . ., Ep p espaces vectoriels normés, leurs normes étant notées N1, . . ., Np. On
note E = E1 × · · · × Ep que l’on munit de l’une des trois normes classiques.
Soient (xn)n∈N = ((x1,n, . . . , xp,n))n∈N une suite d’éléments de E et l = (l1, . . . , lp) ∈ E.
Alors (xn) converge vers l si et seulement si, pour tout i ∈ Np, (xi,n) converge vers li.
Il faut savoir le démontrer.

Propriété. Suites à valeurs dans un espace de dimension finie.
On suppose que E est un K-espace vectoriel de dimension finie dont e = (e1, . . . , eq) est une base.

Soit (xn) une suite de vecteurs de E. Pour tout n ∈ N, on note xn =

q∑
i=1

xi,nei.

Alors, la suite (xn) converge dans E si et seulement si, pour tout i ∈ Nq, la suite (xi,n) converge dans

K, et, dans ce cas, lim
n→+∞

xn =

q∑
i=1

( lim
n→+∞

xi,n)ei.

6 Suites de complexes

6.1 Premières propriétés

Propriété. Soit (xn) ∈ C∗N telle que xn −→
n→+∞

ℓ ∈ C \ {0}. Alors
1

xn
−→

n→+∞

1

ℓ
.

Il faut savoir le démontrer.

Propriété. Soit (zn) une suite de complexes et ℓ ∈ C.
Alors zn −→

n→+∞
ℓ si et seulement si Re(zn) −→

n→+∞
Re(ℓ) et Im(zn) −→

n→+∞
Im(ℓ).

Dans ce cas, on a donc lim
n→+∞

zn = lim
n→+∞

Re(zn) + i lim
n→+∞

Im(zn).

6.2 Suites arithmético-géométriques

Propriété. Soit a, b ∈ C avec a ̸= 1. Si pour tout n ∈ N, un+1 = aun + b, on calcule c ∈ C tel que
c = ac+ b. Alors un − c est géométrique.
Il faut savoir le démontrer.

6.3 Suites récurrentes linéaires d’ordre 2

Propriété. Soient (a, b) ∈ K2 \ {(0, 0)} et (un) ∈ KN telle que un+2 = aun+1 + bun.
χ(X) = X2 − aX − b est le polynôme caractéristique de (un). On note ∆ = a2 + 4b.

— Si ∆ ̸= 0, en notant λ1 et λ2 les deux racines de χ, ∃(C1, C2) ∈ C2 ∀n ∈ N, un = C1λ
n
1 +C2λ

n
2 .

— Si de plus K = R et ∆ < 0, en posant λ1 = ρeiθ,
∃(D1, D2) ∈ R2 ∀n ∈ N, un = ρn(D1 cos(nθ) +D2 sin(nθ)).

— Si ∆ = 0, en notant λ la racine double, ∃(C1, C2) ∈ K2 ∀n ∈ N, un = λn(C1 + nC2).
Il faut savoir le démontrer.
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7 Suites de complexes (fin)

7.1 Suites homographiques (hors programme)

Propriété. Soit a, b, c, d ∈ C avec c ̸= 0.

Si pour tout n ∈ N, un+1 =
aun + b

cun + d
, on résout l’équation ℓ =

aℓ+ b

cℓ+ d
.

Si cette équation possède deux solutions α et β distinctes, alors vn =
un − β

un − α
est géométrique.

Sinon, cette équation possède une unique solution α et vn =
1

un − α
est arithmétique.
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