
DM 30
Un théorème fondamental de géométrie projective

Il s’agit d’un sujet supplémentaire pour votre travail personnel.
Il n’est pas à rendre.
Un corrigé sera fourni le jeudi 22 janvier.

Partie I : Isomorphismes de corps

1◦) Montrer que l’application c, définie par c(z) = z est un automorphisme du corps C
(on pourra admettre toute propriété usuelle portant sur la conjugaison d’un complexe).

2◦) Existe-t-il un isomorphisme du corps Q dans le corps R ?

3◦) Montrer que IdQ est le seul automorphisme du corps Q.

4◦) Montrer que IdR est le seul automorphisme du corps R.
5◦) On pose K = {a+

√
2b / a, b ∈ Q}. On admet que

√
2 est irrationnel.

Montrer que K est un corps et déterminer ses automorphismes.

Partie II : Applications semi-linéaires

Dans toute la suite du problème :
— K et L désignent deux corps ;
— E est un K-espace vectoriel et F est un L-espace vectoriel ;

Lorsque σ est un isomorphisme du corps K sur le corps L et que f est une application
de E dans F , on dit que f est σ-linéaire si et seulement si

— pour tout x, y ∈ E, f(x+ y) = f(x) + f(y) ;
— pour tout x ∈ E et λ ∈ K, f(λx) = σ(λ)f(x).

6◦) Avec les notations de la question 1, montrer que l’application

(
x
y

)
7−→

(
x+ y
x− y

)
est c-linéaire de C2 dans lui-même.

7◦) Soit n ∈ N∗. Déterminer l’ensemble des applications c-linéaires de Cn dans C.
Pour la fin de cette partie, on suppose que σ est un isomorphisme du corps K sur le
corps L et que f est une application σ-linéaire de E dans F .
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8◦) Montrer que l’image directe par f de tout sous-espace vectoriel de E est un sous-
espace vectoriel de F et que l’image réciproque par f de tout sous-espace vectoriel de
F est un sous-espace vectoriel de E.

9◦) Si f est bijective et si E est de dimension finie, montrer que F est aussi de
dimension finie et que dim(F ) = dim(E).

Partie III : Projectivités

Pour toute la suite de ce problème, on note E l’ensemble des sous-espaces vectoriels de
E et F l’ensemble des sous-espaces vectoriels de F .
On appelle projectivité de E dans F toute application f de E dans F bijective et telle
que f et f−1 sont croissantes pour l’inclusion.

10◦) On suppose que σ est un isomorphisme du corps K sur le corps L et que f est une
application bijective et σ-linéaire de E dans F . Montrer que l’application A 7−→ f(A)
de E dans F est une projectivité.

11◦) Soit (A,≤A) et (B,≤B) deux ensembles ordonnées et f une application bijective
de A dans B telle que f et f−1 sont croissantes. Soit X une partie de A.
On suppose que X et f(X) possèdent chacun une borne supérieure.
Montrer que f(sup(X)) = sup(f(X)).

Pour toute la suite de ce problème, f désigne une projectivité de E dans F .
En particulier, lorsque A est un sous-espace vectoriel de E, f(A) est défini et c’est un
sous-espace vectoriel de F . Cependant, il est important de noter que lorsque x ∈ E, la
quantité f(x) n’est pas définie en général, même si c’était le cas en question 10.

12◦) Soit I un ensemble non vide quelconque et (Ai)i∈I une famille de sous-espaces

vectoriels de E. Montrer que f
(⋂

i∈I

Ai

)
=

⋂
i∈I

f(Ai).

13◦) Soit n ∈ N∗ et (Ai)1≤i≤n une famille de n sous-espaces vectoriels de E.

Montrer que f
( n∑

i=1

Ai

)
=

n∑
i=1

f(Ai).

Partie IV : les projectivités conservent la dimension

14◦) Montrer que f({0}) = {0}.

15◦) Soit A ∈ E tel que A ̸= {0}. Montrer que A est une droite si et seulement si

∀B ∈ E , [(B ̸= {0}) ∧ (B ⊂ A) =⇒ B = A].

En déduire que l’image par f d’une droite de E est une droite de F .

16◦) Soit n ∈ N avec n ≥ 2 et soit A1, . . . , An+1 n+ 1 sous-espaces vectoriels de E.
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Montrer que la somme
n+1∑
i=1

Ai est directe si et seulement si la somme
n∑

i=1

Ai est directe

et si An+1

⋂( n∑
i=1

Ai

)
= {0}.

En déduire que si la somme
n∑

i=1

Ai est directe, alors la somme
n∑

i=1

f(Ai) est également

directe et que l’on peut écrire f
( n⊕

i=1

Ai

)
=

n⊕
i=1

f(Ai).

17◦) Soit A un sous-espace vectoriel de E de dimension finie égale à n.

Si (e1, . . . , en) est une base de A, montrer que A =
n⊕

i=1

Kei, où pour tout i ∈ Nn, Kei

désigne la droite engendrée par ei : Kei = {λei / λ ∈ K}.
En déduire que f(A) est un sous-espace vectoriel de F de dimension finie et que
dim(f(A)) = dim(A).

18◦) Soit p ∈ N∗, soit (x1, . . . , xp) ∈ Ep et (y1, . . . , yp) ∈ F p tels que pour tout i ∈ Np,
f(Kxi) = Lyi. Montrer que (x1, . . . , xp) est libre si et seulement si (y1, . . . , yp) est libre.

Partie V : Réciproque de la question 10

Pour toute la suite du problème, on suppose que E est un K-espace vectoriel de di-
mension n, où n ≥ 3.

19◦) Soit x et y deux vecteurs de E tels que la famille (x, y) est libre.
Montrer qu’il existe deux vecteurs x′ et t dans F \ {0} tels que

f(Kx) = Lx′ et f(K(x− y)) = Lt.

Construire à l’aide de x′ et t un vecteur y′ ∈ F tel que

f(Ky) = Ly′ et f(K(x− y)) = L(x′ − y′).

20◦) Pour tout x, y ∈ E et x′ ∈ F tels que (x, y) est libre et f(Kx) = Lx′, montrer
qu’il existe un unique y′ ∈ F tel que f(Ky) = Ly′ et f(K(x− y)) = L(x′ − y′).

Pour la suite de ce problème, lorsque x, y ∈ E et x′ ∈ F avec (x, y) libre et f(Kx) = Lx′,
on note h(x, x′, y) l’unique vecteur y′ de F défini en question 19.

21◦) Soit x, y ∈ E tels que (x, y) est libre et soit x′, y′ ∈ F tels que f(Kx) = Lx′ et
f(Ky) = Ly′. Montrer que h(x, x′, y) = y′ ⇐⇒ h(y, y′, x) = x′.

22◦) Soit (x, y, z) une famille libre de 3 vecteurs de E. En utilisant notamment la
notion de dimension, montrer que
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— K(y − z) = (Ky +Kz) ∩ (K(x− y) +K(x− z)) ;
— K(x− y − z) = (K(x− y) +Kz) ∩ (K(x− z) +Ky) ;
— K(y + z) = (Ky +Kz) ∩ (K(x− y − z) +Kx).

23◦) Soit (x, y, z) une famille libre de 3 vecteurs de E. Soit x′ ∈ F tel que f(Kx) = Lx′.
Montrer que si y′ = h(x, x′, y) et z′ = h(x, x′, z), alors z′ = h(y, y′, z).

24◦) Soit (x, y, z) une famille libre de 3 vecteurs de E. Soit x′ ∈ F tel que f(Kx) = Lx′.
Montrer que h(x, x′, y + z) = h(x, x′, y) + h(x, x′, z).

On admet que l’application h permet de construire une application g de E dans F
vérifiant :

— Pour tout x ∈ E avec x ̸= 0, f(Kx) = Lg(x) ;
— pour tout x, y ∈ E, g(x+ y) = g(x) + g(y) ;
— g est bijective.

25◦) Montrer qu’il existe un isomorphisme σ du corps K sur le corps L tel que g est
σ-linéaire. Montrer que pour tout A ∈ E , f(A) = g(A).
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