
DM 30 : Un corrigé

Partie I : Isomorphismes de corps

1◦) On sait d’après le cours que, c(1) = 1, et que pour tout z, z′ ∈ C,
c(z + z′) = c(z) + c(z′) et c(zz′) = c(z)c(z′), donc c est un morphisme de corps de C
dans C. De plus, c ◦ c = IdC, donc c est bijectif. Il s’agit donc d’un automorphisme du
corps C.

2◦) Non car Q est dénombrable et R n’est pas dénombrable, donc il n’existe aucune
bijection entre Q et R et a fortiori aucun isomorphisme de corps.

3◦) Soit f un automorphisme de Q.
f est en particulier un morphisme de groupes additifs, donc d’après le cours, pour tout
n ∈ Z et x ∈ Q, f(nx) = nf(x). On le démontre par récurrence sur n à x fixé lorsque
n ∈ N, puis on le prouve pour n ∈ Z, en utilisant que f(−x) = −f(x) pour tout x ∈ Q.
Soit x = p

q
∈ Q. Alors qf(p

q
) = f(q p

q
) = f(p) = pf(1) = p, car f(1) = 1, donc f(p

q
) = p

q
.

Ainsi, f = IdQ.
Réciproquement, il est connu que IdQ est un automorphisme de corps.

4◦) Soit f un automorphisme de R.
La preuve de la question 3 restant valable, on montre que pour tout x ∈ Q, f(x) = x.
De plus f est croissante, car si x, y ∈ R avec x ≤ y, alors 0 ≤ y − x, donc
f(y − x) = f(

√
y − x

2
) = f(

√
y − x)2 ≥ 0, puis f(y) ≥ f(x).

Soit maintenant x ∈ R. Soit n ∈ N∗. Par densité de Q dans R, il existe a, b ∈ Q tels
que x− 1

n
≤ a ≤ x ≤ b ≤ x+ 1

n
. Alors par croissance de f , a = f(a) ≤ f(x) ≤ f(b) = b,

donc |f(x)− x| ≤ 1
n
, pour tout n ∈ N∗. On en déduit que f(x) = x. Ainsi, f = IdR et

la réciproque est claire.

5◦) ⋄ Montrons que K est un sous-corps de R. En effet, 1 ∈ K et si a, b, c, d ∈ Q,
(a+ b

√
2)− (c+

√
2d) = (a− c) +

√
2(b− d) ∈ K

et (a+ b
√
2)(c+

√
2d) = (ac+ 2bd) +

√
2(bc+ ad) ∈ K.

Supposons de plus que a + b
√
2 ̸= 0, alors b ̸= 0 (sinon

√
2 = −a

b
serait rationnel),

donc a− b
√
2 ̸= 0 (sinon,

√
2 = a

b
serait rationnel). Ainsi, on peut écrire que

1

a+ b
√
2
=

a− b
√
2

(a+ b
√
2)(a− b

√
2)

=
a− b

√
2

a2 − 2b2
∈ K.

Ainsi, K est bien un corps.
⋄ Soit f un automorphisme du corps K.
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Alors f(
√
2)2 = f(

√
2
2
) = f(2) = f(1 + 1) = 2f(1) = 2, donc il existet ε ∈ {−1, 1} tel

que f(
√
2) = ε

√
2. De plus, en adaptant la preuve de la question 3, on a encore que

f(x) = x pour tout x ∈ Q. Alors, pour tout
a, b ∈ Q, f(a+

√
2b) = f(a) + f(

√
2)f(b) = a+ ε

√
2b.

Réciproquement, lorsque f = (a + b
√
2) 7−→ (a + ε

√
2b), avec ε ∈ {−1, 1}, on vérifie

que f est bien un automorphisme de corps. En effet, lorsque ε = 1, c’est l’application
identité. Supposons maintenant que ε = −1. On vérifie alors que pour tout a, b, c, d ∈ Q,
f((a + b

√
2) + (c +

√
2d)) = (a + c) −

√
2(b + d) = f(a + b

√
2) + f(c +

√
2d) et

f((a+ b
√
2)(c+

√
2d)) = (ac+ 2bd)−

√
2(bc+ ad) = f(a+ b

√
2)× f(c+

√
2d).

De plus f(1) = 1 et f est involutive, donc c’est bien un automorphisme.

Partie II : Applications semi-linéaires

6◦) La question a bien un sens car c est un isomorphisme du corps C dans lui-même

et que C2 est un C-espace vectoriel. Soit

(
x
y

)
∈ C2 et

(
x′

y′

)
∈ C2.

Alors f
[(

x
y

)
+

(
x′

y′

)]
= f

(
x+ x′

y + y′

)
=

(
x+ x′ + y + y′

x+ x′ − y − y′

)
.

Donc f

(
x
y

)
+ f

(
x′

y′

)
=

(
x+ y
x− y

)
+

(
x′ + y′

x′ − y′

)
= f

[(
x
y

)
+

(
x′

y′

)]
.

Soit de plus λ ∈ C. f
[
λ

(
x
y

)]
= f

(
λx
λy

)
=

(
λx+ λy
λx− λy

)
= c(λ)f

(
x
y

)
, ce qu’il

fallait démontrer.

7◦) Analyse : Supposons que f est une application c-linéaire de Cn dans C.

Notons d = (d1, . . . , dn) la base canonique de Cn. Pour tout x =

 x1
...
xn

 ∈ Cn,

f(x) = f(
n∑

i=1

xidi) =
n∑

i=1

xif(di), d’après la c-linéarité de f . Ainsi, f est de la forme x1
...
xn

 7−→
n∑

i=1

xiαi, où α1, . . . , αn ∈ C.

Synthèse : Soit α1, . . . , αn ∈ C. On note f l’application

 x1
...
xn

 7−→
n∑

i=1

xiαi. On vérifie

aisément, en adaptant la question précédente, que f est une application c-linéaire de
Cn dans C.

8◦) ⋄ Soit A un sous-espace vectoriel de E. A est non vide, donc f(A) est non vide.
Soit x, y ∈ f(A) et λ ∈ L. Il existe a, b ∈ A et α ∈ K tels que x = f(a), y = f(b)
et λ = σ(α), donc λx + y = σ(α)f(a) + f(b) = f(αa + b) ∈ f(A), car A étant un
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sous-espace vectoriel de E, αa + b ∈ A. Ainsi, f(A) est bien un sous-espace vectoriel
de F .
⋄ Soit B un sous-espace vectoriel de F . Soit a, b ∈ f−1(B) et α ∈ K.
Alors f(αa + b) = σ(α)f(a) + f(b) ∈ B, car f(a), f(b) ∈ B, σ(α) ∈ L et B est un
sous-espace vectoriel de F . Ainsi, αa+ b ∈ f−1(B).
De plus f(0) = 0, car f est un morphisme de groupes additifs, donc f(0) ∈ B, puis
0 ∈ f−1(B), ce qui prouve que f−1(B) est non vide. On a alors montré que f−1(B) est
un sous-espace vectoriel de E.

9◦) Notons n la dimension de E. Il existe une base de E, que l’on note e = (e1, . . . , en).
Montrons que f(e) = (f(e1), . . . , f(en)) est une base de F , ce qui prouvera bien que F
est aussi de dimension finie et que dim(F ) = dim(E).

Soit y ∈ F . Il existe α1, . . . , αn ∈ K tels que f−1(y) =
n∑

i=1

αiei,

donc y = f(f−1(y)) =
n∑

i=1

σ(αi)f(ei). Ceci montre que f(e) est génératrice de F .

Soit λ1, . . . , λn ∈ Ln tels que
n∑

i=1

λif(ei) = 0. Pour tout i ∈ Nn, il existe αi ∈ K tel

que λi = σ(αi). Alors f(0) = 0 =
n∑

i=1

λif(ei) = f
( n∑

i=1

αiei

)
, mais f est injective, donc

n∑
i=1

αiei = 0. or e est une base, donc pour tout i ∈ Nn, αi = 0, puis λi = σ(αi) = 0.

Ainsi, f(e) est également libre, ce qui conclut.

Partie III : Projectivités

10◦) Notons g l’application A 7−→ f(A) de E dans F . D’après la question 8, si A est
un sous-espace vectoriel de E, alors f(A) est un sous-espace vectoriel de F , donc g est
bien définie en tant qu’application de E dans F .
L’application B 7−→ f−1(B) de F dans E est bien définie d’après la question 8, et
on sait que lorsque f est bijective, pour tout A ⊂ E et B ⊂ F , f(f−1(B)) = B et
f−1(f(A)) = A, donc g est une bijection dont l’application réciproque estB 7−→ f−1(B)
de F dans E .
Si A,B ∈ E , avec A ⊂ B, il est connu que f(A) ⊂ f(B) (pour une application f
quelconque de E dans F ), donc g est croissante pour l’inclusion. On montre de même
que sa bijection réciproque est croissante, donc g est une projectivité.

11◦) Pour tout x ∈ X, x ≤ sup(X), or f est croissante, donc f(x) ≤ f(sup(X)).
Ainsi, f(sup(X)) majore f(X), donc par définition de la borne supérieure,
sup(f(X)) ≤ f(sup(X)). Appliquons maintenant ce résultat à l’application f−1, qui
vérifie les mêmes hypothèses que f , en remplaçant X par f(X). On obtient que
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sup(f−1(f(X))) ≤ f−1(sup(f(X))), donc en composant par f , qui est croissante, on
obtient que f(sup(X)) ≤ sup(f(X)), ce qui fournit l’inégalité réciproque.

12◦) Posons A = {Ai / i ∈ I}. Dans l’ensemble ordonné (E ,⊂), on sait que
⋂
i∈I

Ai est

la borne inférieure de A. En effet, cette intersection est bien un minorant de A et si
B est un minorant de A, il est inclus dans tous les Ai, donc il est plus petit que cette

intersection. On sait également que
⋂
i∈I

f(Ai) est la borne inférieure de

f(A) = {f(Ai) / i ∈ I}, or la question précédente est encore valable avec des bornes
inférieures, ou bien en adaptant la démonstration, ou bien en appliquant la question
précédente aux ensembles ordonnés (A,≥A) et (B,≥B),

donc f
(⋂

i∈I

Ai

)
= f(inf(A)) = inf(f(A)) =

⋂
i∈I

f(Ai).

13◦)
n∑

i=1

Ai est la borne supérieure dans (E ,⊂) de A = {Ai / i ∈ I}. En effet, c’est

bien un majorant de A, car
n∑

i=1

Ai contient tous les Ai. De plus, si B est un élément

de E qui contient tous les Ai, c’est un sous-espace vectoriel qui contient
n⋃

i=1

Ai, donc

qui contient Vect
( n⋃

i=1

Ai

)
=

n∑
i=1

Ai. On conclut alors comme en question 12 grâce à la

question 11.

Partie IV : les projectivités conservent la dimension

14◦) f étant bijective, notons A = f−1({0F}). A est un sous-espace vectoriel de E,
donc {0E} ⊂ A. Or f est croissante, donc f({0E}) ⊂ f(A) = {0F}. L’autre inclu-
sion étant évidente car f({0E}) est un sous-espace vectoriel de F , on a montré que
f({0E}) = {0F}.

15◦) ⋄ Supposons que A est une droite, c’est-à-dire un sous-espace vectoriel de E de
dimension 1. Soit B ∈ E tel que B ̸= {0} et B ⊂ A. Alors B est aussi un sous-espace
vectoriel de dimension finie et on a 0 < dim(B) ≤ dim(A) = 1,
donc dim(B) = 1 = dim(A) et B ⊂ A, donc A = B.
Réciproquement, supposons que ∀B ∈ E , [(B ̸= {0}) ∧ (B ⊂ A) =⇒ B = A].
Par hypothèse, A ̸= {0E}, or A est un sous-espace vectoriel, donc {0} ⊂ A, donc
il existe x ∈ A tel que x ̸= 0. Posons B = Kx. Alors B ̸= {0} et B ⊂ A, donc
d’après notre hypothèse, A = B = Kx avec x ̸= 0, ce qui prouve que A est une droite
vectorielle.
⋄ Supposons que A est une droite de E. Soit B′ ∈ F tel que B′ ̸= {0F} et B′ ⊂ f(A).
Posons B = f−1(B′). D’après la question 14, B ̸= {0} (sinon on aurait
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B′ = f({0}) = {0}) et par croissance de f−1, B ⊂ f−1(f(A)) = A. Donc d’après le sens
direct de la sous-question précédente, B = A. On en déduit que B′ = f(B) = f(A).
On a donc montré que ∀B′ ∈ F , [(B′ ̸= {0}) ∧ (B′ ⊂ f(A)) =⇒ B′ = f(A)]. On peut
maintenant utiliser le sens indirect de la sous-question précédente, qui est également
valable pour F . Comme f(A) ̸= {0} d’après la question 14, on en déduit que f(A) est
une droite de F .

16◦) ⋄ Supposons que la somme
n∑

i=1

Ai est directe et que An+1

⋂( n∑
i=1

Ai

)
= {0}.

Soit (x1, . . . , xn+1) ∈ A1 × · · · × An+1 tel que
n+1∑
i=1

xi = 0.

Alors xn+1 = −
n∑

i=1

xi ∈ An+1

⋂( n∑
i=1

Ai

)
= {0}, donc xn+1 = 0. Alors

n∑
i=1

xi = 0, or

la somme
n∑

i=1

Ai est directe, donc pour tout i ∈ Nn, xi = 0. Ceci démontre bien que la

somme
n+1∑
i=1

Ai est directe.

⋄ Réciproquement, supposons que la somme
n+1∑
i=1

Ai est directe.

Si (x1, . . . , xn) ∈ A1 × · · · × An vérifie
n∑

i=1

xi = 0, alors, en posant xn+1 = 0 ∈ An+1,

on a
n+1∑
i=1

xi = 0. Or la somme
n+1∑
i=1

Ai est directe, donc pour tout i ∈ Nn, xi = 0, ce qui

prouve que la somme
n∑

i=1

Ai est directe.

Soit maintenant xn+1 ∈ An+1

⋂( n∑
i=1

Ai

)
. Il existe (x1, . . . , xn) ∈ A1 × · · · × An

tel que xn+1 =
n∑

i=1

(−xi), donc
n+1∑
i=1

xi = 0. Alors xn+1 = 0, donc on a montré que

An+1

⋂( n∑
i=1

Ai

)
= {0}.

⋄ Soit n ∈ N avec n ≥ 2. Notons R(n) l’assertion suivante : si A1, . . . , An sont n
sous-espaces vectoriels de E en somme directe, alors f(A1), . . . , f(An) sont aussi en

somme directe et f
( n⊕

i=1

Ai

)
=

n⊕
i=1

f(Ai).

Raisonnons par récurrence. Pour n = 2, soit A,B ∈ E tels que A+B est directe. Alors
A ∩B = {0}. D’après les questions 12 et 14,
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f(A)∩ f(B) = f(A∩B) = f({0}) = {0}, donc f(A)+ f(B) est directe. Alors, d’après
la question 13, on peut écrire que f(A⊕B) = f(A+B) = f(A)+f(B) = f(A)⊕f(B).
On suppose que n ≥ 2 et que R(n) est vraie. Soit A1, . . . , An+1 n + 1 sous-espaces
vectoriels de E que l’on suppose en somme directe. Alors A1, . . . , An sont en somme

directe et An+1

⋂( n∑
i=1

Ai

)
= {0}. On en déduit en utilisant d’une part l’hypothèse

de récurrence, et d’autre part les questions 12, 13 et 14 que f(A1), . . . , f(An) sont en

somme directe et f(An+1)
⋂( n∑

i=1

f(Ai)
)
= {0}, donc que f(A1), . . . , f(An+1) sont en

somme directe. On peut alors écrire f
( n+1⊕

i=1

Ai

)
= f

( n+1∑
i=1

Ai

)
=

n+1∑
i=1

f(Ai) =
n+1⊕
i=1

f(Ai).

17◦) ⋄ Soit x ∈ A. Il existe (λi)1≤i≤n ∈ Kn tel que x =
n∑

i=1

λiei, donc x ∈
n∑

i=1

Kei.

Ainsi, A ⊂
n∑

i=1

Kei. L’inclusion réciproque est claire car {e1, . . . , en} ⊂ A et A est un

sous-espace vectoriel. Il reste à montrer que cette somme est directe.

Soit (x1, . . . , xn) ∈ Ke1 × · · · ×Ken tel que
n∑

i=1

xi = 0.

Pour tout i ∈ Nn, il existe λi ∈ K tel que xi = λiei. Alors
n∑

i=1

λiei = 0, or (e1, . . . , en)

est libre, donc pour tout i ∈ Nn, λi = 0, puis xi = 0, ce qu’il fallait démontrer.

Ainsi, on a prouvé que A =
n⊕

i=1

Kei.

⋄ D’après la question précédente, on en déduit que f(A) =
n⊕

i=1

f(Kei).

Pour tout i ∈ Nn, d’après la question 15, f(Kei) est une droite vectorielle, donc
dim(f(Kei)) = 1, puis d’après le cours, dim(f(A)) = n = dim(A).

18◦) Supposons que (x1, . . . , xp) est libre. Alors, en posant A = Vect(x1, . . . , xp),

d’après la question précédente, A =
n⊕

i=1

Kxi et f(A) =
n⊕

i=1

f(Kxi) =
n⊕

i=1

Lyi. Alors, si

n∑
i=1

βiyi = 0, la somme
n⊕

i=1

Lyi étant directe, on obtient que βiyi = 0 pour tout i ∈ Nn,

or yi ̸= 0 car Lyi = f(Kxi) est une droite vectorielle, donc βi = 0 pour tout i ∈ Nn.
Ainsi (y1, . . . , yp) est libre.
De plus on remarque que, pour tout i ∈ Np, f

−1(Lyi) = Kxi, donc en remplaçant f
par f−1 dans ce qui précède, on démontre la réciproque.
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Partie V : Réciproque de la question 10

19◦) ⋄ (x, y) est libre donc x est non nul. Ainsi Kx est une droite, donc d’après
la question 15, f(Kx) est aussi une droite. Il existe donc x′ ∈ F tel que x′ ̸= 0 et
f(Kx) = Lx′.
De même, (x, y) étant libre, x− y est un vecteur non nul, donc il existe t ∈ F tel que
t ̸= 0 et f(K(x− y)) = Lt.
⋄ K(x − y) ⊂ Kx + Ky, donc Lt = f(K(x − y)) ⊂ f(Kx + Ky) = f(Kx) + f(Ky).
Ainsi, t ∈ f(Kx) + f(Ky) = Lx′ + f(Ky). Il existe donc g ∈ L et z ∈ f(Ky) tel que
t = gx′ + z.
Si g = 0, alors t = z, donc f(K(x − y)) = Lt = Lz ⊂ f(Ky). En composant par f−1,
donc obtient que K(x− y) ⊂ Ky, donc la famille (x− y, y) est liée, puis par opération
élémentaire on en déduit que (x, y) est liée ce qui est faux. Ainsi, g ̸= 0, or L est un
corps, donc on peut poser y′ = −g−1z = x′ − g−1t.
Si z = 0, alors t = gx′ avec g ̸= 0, donc Lt = Lx′, c’est-à-dire f(K(x − y)) = f(Kx).
Alors K(x − y) = Kx et on en déduirait encore que (x, y) est lié, donc z ̸= 0. Or
z ∈ f(Ky) et f(Ky) est une droite, donc f(Ky) = Lz.
Ainsi, Ly′ = Lz = f(Ky) et L(x′ − y′) = L(g−1t) = Lt = K(x − y), ce qu’il fallait
démontrer.

20◦) La question 19 montre l’existence. Montrons l’unicité.
Soit y′, y′′ ∈ F tel que f(Ky) = Ly′ = Ly′′ et f(K(x− y)) = L(x′ − y′) = L(x′ − y′′).
Alors il existe α, β ∈ L tels que y′′ = αy′ et x′ − y′′ = β(x′ − y′). On en déduit que
x′ − αy′ = βx′ − βy′, puis que (1− β)x′ + (β − α)y′ = 0. Or (x′, y′) est libre d’après la
question 18, car f(Kx) = Lx′ et f(Ky) = Ly′. Ainsi, 1− β = β − α = 0. On en déduit
que α = 1, donc y′′ = αy′ = y′, ce qu’il fallait démontrer.

21◦) (x, y) est libre, donc également (y, x), donc les deux quantités h(x, x′, y) et
h(y, y′, x) sont bien définies. Alors d’après l’unicité énoncée en question 20,
y′ = h(x, x′, y) ⇐⇒ [f(Ky) = Ly′] ∧ [f(K(x− y)) = L(x′ − y′)]

⇐⇒ [f(Kx) = Lx′] ∧ [f(K(y − x)) = L(y′ − x′)],
,

car les propositions f(Ky) = Ly′ et f(Kx) = Lx′ sont supposées vraies.
Ainsi, h(x, x′, y) = y′ ⇐⇒ h(y, y′, x) = x′.

22◦) ⋄ y − z ∈ Ky +Kz et y − z = −(x− y) + (x− z) ∈ K(x− y) +K(x− z), donc
y − z ∈ (Ky +Kz) ∩ (K(x− y) +K(x− z)), ce qui prouve que
K(y − z) ⊂ (Ky + Kz) ∩ (K(x − y) + K(x − z)). Les mêmes arguments permettent
également de montrer que K(x − y − z) ⊂ (K(x − y) + Kz) ∩ (K(x − z) + Ky) et
K(y + z) ⊂ (Ky +Kz) ∩ (K(x− y − z) +Kx).
⋄ Notons D = (Ky+Kz)∩ (K(x−y)+K(x−z)). Alors D ⊂ Ky+Kz. Supposons que
D = Ky +Kz. Alors Ky +Kz ⊂ K(x− y) +K(x− z), donc il existe α, β ∈ K tel que
y = α(x−y)+β(x−z). Alors (−α−β)x+(1+α)y+βz = 0, or (x, y, z) est libre, donc
0 = −α − β = 1 + α = β, donc 1 = 0, ce qui est faux. Ainsi, D est strictement inclus
dans Ky +Kz. On en déduit que dim(D) < dim(Ky +Kz) = dim(Vect(y, z)) = 2, car
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(y, z) est libre. De plus D ⊃ K(y−z) et y−z ̸= 0, donc dim(D) ≥ 1. On en déduit que
dim(D) = 1 = dim(K(y − z)), or D ⊃ K(y − z), donc d’après le cours, D = K(y − z).
Des arguments similaires permettent de démontrer les deux autres égalités.

23◦) D’après les hypothèses, on a f(Kx) = Lx′, f(Ky) = Ly′, f(K(x−y)) = L(x′−y′),
f(Kz) = Lz′ et f(K(x− z)) = L(x′ − z′).
Pour conclure, il suffit de montrer que f(K(y− z)) = L(y′ − z′), or d’après la première
propriété de la question précédente et d’après les questions 12 et 13,
f(K(y − z)) = f [(Ky +Kz) ∩ (K(x− y) +K(x− z))]

= (f(Ky) + f(Kz)) ∩ (f(K(x− y)) + f(K(x− z)))
= (Ly′ + Lz′) ∩ (L(x′ − y′) + L(x′ − z′))
= L(y′ − z′),

en appliquant à nouveau la première propriété de la question précédente, dans F au
lieu de E, ce qui est possible car d’après la question 18, (x′, y′, z′) est libre.

24◦) La famille (x, y + z) est libre, donc h(x, x′, y + z) est bien définie, ainsi que
h(x, x′, y) et h(x, x′, z).
Posons y′ = h(x, x′, y) et z′ = h(x, x′, z). On dispose donc des égalités suivantes :
f(Kx) = Lx′, f(Ky) = Ly′, f(K(x− y)) = L(x′ − y′), f(Kz) = Lz′,
et f(K(x− z)) = L(x′ − z′).
On souhaite montrer que y′+z′ = h(x, x′, y+z), c’est-à-dire que f(K(y+z)) = K(y′+z′)
et f(K(x− y − z)) = L(x′ − y′ − z′).
On démontre d’abord la seconde relation en utilisant la seconde propriété de la question
22 selon la même méthode que celle de la question précédente. Alors on peut démontrer
la première relation en utilisant la dernière propriété de la question 22.

Ce qu’admet l’énoncé est certes technique à démontrer, mais tout à fait élémentaire.
Le lecteur intéressé trouvera les détails dans le livre de Reinhold Baer suivant : Linear
Algebra and Projection Geometry, Academic Press Inc., New York, 1952.

25◦) • Soit λ ∈ K avec λ ̸= 0.
⋄ Soit x ∈ E avec x ̸= 0.
Lg(λx) = f(K(λx)) = f(Kx) = Lg(x) ̸= {0}, donc il existe α ∈ L \ {0} tel que
g(λx) = αg(x). De plus g(x) ̸= 0, donc α est unique. On peut noter α = σ(λ, x).
Ainsi, pour tout x ∈ E \ {0}, σ(λ, x) est un scalaire de L tel que g(λx) = σ(λ, x)g(x).
⋄ Soit x, y ∈ E tels que (x, y) est libre.
g(λ(x+ y)) = g((λx) + (λy)) = g(λx) + g(λy),
donc σ(λ, x + y)g(x + y) = σ(λ, x)g(x) + σ(λ, y)g(y), or g(x + y) = g(x) + g(y), donc
(σ(λ, x+ y)− σ(λ, x))g(x) + (σ(λ, x+ y)− σ(λ, y))g(y) = 0, or d’après la question 18,
(g(x), g(y)) est libre, donc σ(λ, x) = σ(λ, x+ y) = σ(λ, y).
⋄ Soit x, y ∈ E \ {0} tels que (x, y) est lié.
L’énoncé suppose que dim(E) ≥ 3, donc on peut compléter la famille (x), constituée
du seul vecteur x, en une base (x, z, e3, . . . , en) de E. Alors (x, z) et (y, z) sont libres,
donc d’après le point précédent, σ(λ, x) = σ(λ, z) = σ(λ, y).
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⋄ Ainsi, la quantité σ(λ, x) ne dépend pas de x lorsque x ∈ E \ {0}. On peut donc
la noter σ(λ). Ainsi, pour tout x ∈ E, g(λx) = σ(λ)g(x), cette égalité étant évidente
lorsque x = 0.
De plus, en posant σ(0) = 0, cette égalité est vraie pour tout λ ∈ K et x ∈ E.
• Montrons que σ est un morphisme de corps de K dans L. Pour cela, fixons un
vecteur x non nul de E. On sait alors que g(x) est aussi non nul.
⋄ σ(1)g(x) = g(1.x) = g(x), donc σ(1) = 1.
⋄ Soit λ, µ ∈ K. σ(λ+ µ)g(x) = g((λ+ µ)x) = g((λx) + (µx)) = g(λx) + g(µx),
donc σ(λ+ µ)g(x) = σ(λ)g(x) + σ(µ)g(x), ce qui prouve que σ(λ+ µ) = σ(λ) + σ(µ).
De même, σ(λµ)g(x) = g((λµ)x) = g(λ(µx)) = σ(λ)g(µx) = σ(λ)σ(µ)g(x), donc
σ(λµ) = σ(λ)σ(µ).
• En tant que morphisme de corps, d’après le cours, σ est injectif. En effet, si λ ̸= 0,
λ est inversible, donc σ(λ) est aussi inversible, donc σ(λ) ̸= 0.
Montrons que σ est surjectif. Soit µ ∈ L.
Si µ = 0, alors µ = σ(0). Supposons maintenant que µ ̸= 0.
g étant bijective, il existe y ∈ E \ {0} tel que g(y) = µg(x).
On a L(µg(x)) = Lg(y) = f(Ky) et L(µg(x)) = Lg(x) = f(Kx), or f est bijective,
donc Ky = Kx. Ainsi, il existe λ ∈ K tel que y = λx.
Alors µg(x) = g(y) = g(λx) = σ(λ)g(x), donc µ = σ(λ).
• Ainsi, σ est un isomorphisme du corps K sur le corps L et g est σ-linéaire car g est
additive et pour tout (λ, x) ∈ K× E, g(λx) = σ(λ)g(x).
Soit maintenant A ∈ E . A est de dimension finie p avec p ≤ n.

Il existe une base de A, notée (e1, . . . , ep). Alors A =

p∑
i=1

Kei,

donc f(A) =

p∑
i=1

f(Kei) =

p∑
i=1

Lg(ei), or

g(A) = g
({ p∑

i=1

λiei / ∀i ∈ Np, λi ∈ K
})

=
{ p∑

i=1

σ(λi)g(ei) / ∀i ∈ Np, λi ∈ K
}

=
{ p∑

i=1

µig(ei) / ∀i ∈ Np, µi ∈ L
}
,

car σ est surjectif, donc g(A) =

p∑
i=1

Lg(ei) = f(A).

En conclusion, on a montré, en admettant un passage un peu technique, que les seules
projectivités entre E et F sont celles de la question 10, qui sont construites à l’aide
d’une bijection σ-linéaire de E dans F , où σ est un isomorphisme de corps entre K et
L, à supposer qu’un tel σ existe.
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