DM 30 : Un corrigé

Partie I : Isomorphismes de corps

1°) On sait d’apres le cours que, ¢(1) = 1, et que pour tout z, 2" € C,

c(z+2") =c(z) + c(2)) et ¢(22') = ¢(2)e(Z), done ¢ est un morphisme de corps de C
dans C. De plus, coc = Idc, donc ¢ est bijectif. Il s’agit donc d’un automorphisme du
corps C.

2°) Non car Q est dénombrable et R n’est pas dénombrable, donc il n’existe aucune
bijection entre Q et R et a fortiori aucun isomorphisme de corps.

3°) Soit f un automorphisme de Q.

f est en particulier un morphisme de groupes additifs, donc d’apres le cours, pour tout
neZetxeQ, f(nx) =nf(z). On le démontre par récurrence sur n a  fixé lorsque
n € N, puis on le prouve pour n € Z, en utilisant que f(—z) = — f(z) pour tout z € Q.
Soit ' = 2 € Q. Alors ¢f(2) = f(g2) = f(p) = pf(1) = p, car (1) = 1, donc f(2) = 2
AiHSi, f = [d@

Réciproquement, il est connu que I/dg est un automorphisme de corps.

4°) Soit f un automorphisme de R.

La preuve de la question 3 restant valable, on montre que pour tout z € Q, f(z) = z.
De plus f est croissante, car si z,y € R avec x <y, alors 0 < y — z, donc

fly—=2) = fF(Vy—a") = f(Vy—1x)* > 0, puis f(y) > f(x).

Soit maintenant x € R. Soit n € N*. Par densité de Q dans R, il existe a,b € Q tels
quez— 1 <a <z <b<z+2<. Alors par croissance de f, a = f(a) < f(z) < f(b) =1,
donc |f(z) — x| < %, pour tout n € N*. On en déduit que f(z) = x. Ainsi, f = Idg et
la réciproque est claire.

5°) o Montrons que K est un sous-corps de R. En effet, 1 € K et si a,b,¢,d € Q,
(a+bv2) — (c++v2d) = (a—c) +V2(b—d) €K
et (a4 bv2)(c+ v2d) = (ac+ 2bd) + V2(bc + ad) € K.

Supposons de plus que a + by/2 # 0, alors b # 0 (sinon V2 = —¢ serait rationnel),

donc a —bv/2 # 0 (sinon, V2 = % serait rationnel). Ainsi, on peut écrire que

1 a—bv2 a—b\/§e

a+b\/§: (a+bv2)(a—bv2) a? —2b

Ainsi, K est bien un corps.
o Soit f un automorphisme du corps K.

K.



Alors f(v2)? = f(V2') = f(2) = f(1+1) = 2f(1) = 2, donc il existet ¢ € {—1,1} tel
que f (\/5) = £v/2. De plus, en adaptant la preuve de la question 3, on a encore que
f(z) = x pour tout = € Q. Alors, pour tout

a,b e Q, fla+V2b) = fla)+ f(V2)f(b) = a+ V2.

Réciproquement, lorsque f = (a + byv/2) — (a + v/2b), avec ¢ € {—1, 1}, on vérifie
que f est bien un automorphisme de corps. En effet, lorsque € = 1, c¢’est 'application
identité. Supposons maintenant que e = —1. On vérifie alors que pour tout a, b, ¢, d € Q,
fll@a+bov2) + (c+V2d) = (a+¢) —V2(b+d) = fla+bV2) + f(c+ V2d) et
f((a+bv2)(c+ V2d)) = (ac + 2bd) — V2(bc + ad) = fla + bv/2) x f(c+ /2d).

De plus f(1) =1 et f est involutive, donc c’est bien un automorphisme.

Partie II : Applications semi-linéaires

6°) La question a bien un sens car ¢ est un isomorphisme du corps C dans lui-méme

/

et que C? est un C-espace vectoriel. Soit Zj € C? et ;, c C2.

x x B r+2\ [T+ +Y+Y
Alorsf{(y)+(y’)]_f(yﬂ/)__(fjf—@—? |

x 2\  [(TH+7Y 4y x x’
e ()1 () = (2 55) (2 27) 1)+ (7))
: x _ Az ([ Ar+ Ay x ,
Soit de plus A € C. f[)x(y)] = f<)\y) = </\x—/\y) = c(A)f(y), ce qu’il
fallait démontrer.

7°) Analyse : Supposons que f est une application c-linéaire de C" dans C.
I
Notons d = (dy, . .., d,) la base canonique de C". Pour tout z = | : e C,

Tn

f(z) = f(z x;d;) = Zx_if(di), d’apres la c-linéarité de f. Ainsi, f est de la forme
i=1 i=1

x n
— Z:B_iai, ou ay,...,q, € C.
T, i=1
I n
Synthese : Soit aq, ..., a, € C. On note f I'application | — Zx_iai. On vérifie
T, i=1

aisément, en adaptant la question précédente, que f est une application c-linéaire de
C" dans C.

8°) ¢ Soit A un sous-espace vectoriel de E. A est non vide, donc f(A) est non vide.
Soit x,y € f(A) et A € L. Il existe a,b € A et a € K tels que z = f(a), y = f(b)
et A = o(a), donc Az +y = o(a)f(a) + f(b) = f(aa +b) € f(A), car A étant un



sous-espace vectoriel de E, aa + b € A. Ainsi, f(A) est bien un sous-espace vectoriel
de F'.

o Soit B un sous-espace vectoriel de F. Soit a,b € f~1(B) et a € K.

Alors f(aa 4+ b) = o(a)f(a) + f(b) € B, car f(a), f(b) € B, o(a) € L et B est un
sous-espace vectoriel de F. Ainsi, aa +b € f~1(B).

De plus f(0) = 0, car f est un morphisme de groupes additifs, donc f(0) € B, puis
0 € f~1(B), ce qui prouve que f~!(B) est non vide. On a alors montré que f~!(B) est
un sous-espace vectoriel de F.

9°) Notons n la dimension de E. Il existe une base de E, que 'on note e = (eq, ..., e,).
Montrons que f(e) = (f(e1),-.., f(en)) est une base de F', ce qui prouvera bien que F’
est aussi de dimension finie et que dim(F') = dim(F£).

Soit y € F. 1l existe ay, ..., a, € K tels que f~!(y) = Zaiei,
i=1

doncy = f(f(y)) = Z o(a;)f(e;). Ceci montre que f(e) est génératrice de F'.

=1

Soit Ap,..., A\, € L™ tels que Z)\if(ei) = 0. Pour tout i € N,,, il existe a; € K tel
i=1

que \; = o(«;). Alors f(0) =0 = Z Nif(e;) = f(Zaiei), mais f est injective, donc
i=1

=1
n

Zaiei = 0. or e est une base, donc pour tout i € N,,, oy; = 0, puis \; = o(a;) = 0.
i=1
Ainsi, f(e) est également libre, ce qui conclut.

Partie III : Projectivités

10°) Notons g 'application A — f(A) de £ dans F. D’apres la question 8, si A est
un sous-espace vectoriel de E, alors f(A) est un sous-espace vectoriel de F', donc g est
bien définie en tant qu’application de £ dans F.

L’application B — f~1(B) de F dans £ est bien définie d’apres la question 8, et
on sait que lorsque f est bijective, pour tout A C E et B C F, f(f~(B)) = B et
f7Yf(A)) = A, donc g est une bijection dont I’application réciproque est B — f~1(B)
de F dans &.

Si A,B € &, avec A C B, il est connu que f(A) C f(B) (pour une application f
quelconque de E dans F'), donc g est croissante pour l'inclusion. On montre de méme
que sa bijection réciproque est croissante, donc g est une projectivité.

11°) Pour tout z € X, z < sup(X), or f est croissante, donc f(z) < f(sup(X)).
Ainsi, f(sup(X)) majore f(X), donc par définition de la borne supérieure,

sup(f(X)) < f(sup(X)). Appliquons maintenant ce résultat a lapplication f~! qui
vérifie les mémes hypotheses que f, en remplagant X par f(X). On obtient que



sup(fH(f(X))) < f~Y(sup(f(X))), donc en composant par f, qui est croissante, on
obtient que f(sup(X)) < sup(f(X)), ce qui fournit I'inégalité réciproque.

12°) Posons A = {A; /i € I}. Dans I'ensemble ordonné (£, C), on sait que ﬂ A; est
iel

la borne inférieure de A. En effet, cette intersection est bien un minorant de A et si
B est un minorant de A, il est inclus dans tous les A;, donc il est plus petit que cette
intersection. On sait également que ﬂ f(A;) est la borne inférieure de

1€l
f(A) = {f(A;) /i € I}, or la question précédente est encore valable avec des bornes
inférieures, ou bien en adaptant la démonstration, ou bien en appliquant la question
précédente aux ensembles ordonnés (A, >4) et (B, >p),
done f(ﬂA,-) = f(inf(A)) = inf(£(A)) = [ F(A).

el i€l

13°) ZAi est la borne supérieure dans (£,C) de A = {A4; /i € I}. En effet, c’est

i=1

n
bien un majorant de A, car Z A; contient tous les A;. De plus, si B est un élément

=1
n

de &£ qui contient tous les A;, c’est un sous-espace vectoriel qui contient U A;, donc
i=1

qui contient Vect ( U Al-) = Z A;. On conclut alors comme en question 12 grace a la
i=1 i=1
question 11.

Partie IV : les projectivités conservent la dimension

14°) f étant bijective, notons A = f~'({0r}). A est un sous-espace vectoriel de E,
donc {0} C A. Or f est croissante, donc f({O0g}) C f(A) = {0p}. L'autre inclu-
sion étant évidente car f({0g}) est un sous-espace vectoriel de F', on a montré que

f({0g}) = {0F}.

15°) © Supposons que A est une droite, c¢’est-a~dire un sous-espace vectoriel de F de
dimension 1. Soit B € & tel que B # {0} et B C A. Alors B est aussi un sous-espace
vectoriel de dimension finie et on a 0 < dim(B) < dim(A4) =1,

donc dim(B) =1 =dim(A) et B C A, donc A = B.

Réciproquement, supposons que VB € £, [(B # {0}) A (B C A) = B = A.

Par hypothese, A # {0g}, or A est un sous-espace vectoriel, donc {0} C A, donc
il existe x € A tel que © # 0. Posons B = Kz. Alors B # {0} et B C A, donc
d’apres notre hypothese, A = B = Kz avec x # 0, ce qui prouve que A est une droite
vectorielle.

o Supposons que A est une droite de E. Soit B’ € F tel que B’ # {0p} et B' C f(A).
Posons B = f~!(B’). D’apreés la question 14, B # {0} (sinon on aurait



= f({0}) = {0}) et par croissance de f~!, B C f~!(f(A)) = A. Donc d’aprés le sens
direct de la sous-question précédente, B = A. On en déduit que B’ = f(B) = f(A).
On a donc montré que VB’ € F, [(B'# {0}) A (B’ C f(A)) = B’ = f(A)]. On peut
maintenant utiliser le sens indirect de la sous-question précédente, qui est également
valable pour F. Comme f(A) # {0} d’apres la question 14, on en déduit que f(A) est
une droite de F'.

16°) < Supposons que la somme Z A; est directe et que A, 14 ﬂ (Z Ai> = {0}.
i=1 =1
n+1

SOlt (I‘l,.. .,l‘n+1) c Al X X ATL+1 tel que Z,’L‘,L = O

i=1

Alors 2,41 = — Zx, S <ZAZ> = {0}, donc z,,41 = 0. Alors Zx, =0, or
i=1 i=1

la somme Z A; est directe, donc pour tout i € N,,, z; = 0. Ceci démontre bien que la

i=1
n+1

somme Z A; est directe.

i=1
n+1

¢ Réciproquement, supposons que la somme Z A; est directe.
i=1
n
Si (z1,...,2,) € Ay X -+- X A, vérifie le = 0, alors, en posant x,,1 =0 € A, 1,

=1
n+1 n+1

on a Z x; = 0. Or la somme Z A; est directe, donc pour tout i € N,,, z; = 0, ce qui
i=1 i=1

prouve que la somme Z A; est directe.
i=1
n
Soit maintenant x,,; € An+1ﬂ (ZAZ> I existe (z1,...,2,) € A1 X -+ X A,
n+1

tel que =, = Z —x;), donc sz 0. Alors z,.1 = 0, donc on a montré que
=1

Apir (i AZ-> = {0}.

o Soit n € N avec n > 2. Notons R(n) l'assertion suivante : si Aj,..., A, sont n
sous-espaces vectoriels de E en somme directe, alors f(Ay),..., f(A,) sont aussi en

somme directe et f<@ A; ) EB f(A

Raisonnons par recurrence Pour n = 2, s0it A, B € £ tels que A+ B est directe. Alors
AN B = {0}. D’apres les questions 12 et 14,



fANf(B)= f(ANB) = f({0}) = {0}, donc f(A)+ f(B) est directe. Alors, d’apres
la question 13, on peut écrire que f(A® B) = f(A+B) = f(A)+ f(B) = f(A)® f(B).
On suppose que n > 2 et que R(n) est vraie. Soit Aj,..., A,y1 n + 1 sous-espaces
vectoriels de E que I'on suppose en somme directe. Alors Ay, ..., A, sont en somme

directe et A, 11 (ZAO = {0}. On en déduit en utilisant d’une part I’hypothese
i=1

de récurrence, et d’autre part les questions 12, 13 et 14 que f(A4;),..., f(A,) sont en

somme directe et f(A,41 ﬂ (Z f(A > = {0}, donc que f(A;),..., f(An41) sont en

n+1

n+1 n+1
somme directe. On peut alors écrire f(EB Ai> = f(Z AZ-) = Z f(4;) = EB f(A
i=1 i=1 i=1 i=1

17°) o Soit x € A. 1l existe (\;)1<i<n € K" tel que x = Z)‘ie"’ donc x € ZK‘%-

i=1 i=1
Ainsi, A C ZK&% L’inclusion réciproque est claire car {ej,...,e,} C A et A est un

i=1
sous-espace vectoriel. Il reste a montrer que cette somme est directe.
n

Soit (z1,...,x,) € Key x -+ x Ke, tel que sz =0.
i=1
Pour tout 7 € N,,, il existe \; € K tel que z; = A\;e;. Alors Z Aie; =0, or (e1,...,ep,)
est libre, donc pour tout ¢ € I>Tn, A; =0, puis x; =0, ce qu’%lz%allait démontrer.
Ainsi, on a prouvé que A = @ Ke;.
i=1

o D’apres la question précédente, on en déduit que f(A @ f(Ke;).

Pour tout i € N, d’apres la question 15, f(Ke;) est une dr01te vectorielle, donc
dim(f(Ke;)) = 1, puis d’apres le cours, dim(f(A)) = n = dim(A).

18°) Supposons que (xy,...,T,) est libre. Alors, en posant A = Vect(zy,...,x,),
d’apres la question précédente, A = @ Kz; et f(A @ f(Kx;) = @Lyi. Alors, si

i=1 i=1

n n
Z Giy; = 0, la somme @ Ly, étant directe, on obtient que 5;y; = 0 pour tout i € N,,,
i=1 i=1
or y; # 0 car Ly; = f(Kuz;) est une droite vectorielle, donc §; = 0 pour tout ¢ € N,,.
Ainsi (y1,...,y,) est libre.
De plus on remarque que, pour tout i € N, f~*(Ly;) = Kx;, donc en remplagant f
par f~! dans ce qui précede, on démontre la réciproque.



Partie V : Réciproque de la question 10

19°) ¢ (z,y) est libre donc x est non nul. Ainsi Kz est une droite, donc d’apres
la question 15, f(Kx) est aussi une droite. Il existe donc ' € F tel que =/ # 0 et
f(Kz) = La'.

De méme, (z,y) étant libre, x — y est un vecteur non nul, donc il existe t € F tel que
t#0et f(K(zx—y)) =Lt

o K(z —y) € Kz + Ky, donc Lt = f(K(z — y)) C f(Kz + Ky) = f(Kz) + f(Ky).
Ainsi, t € f(Kz) + f(Ky) = L2’ + f(Ky). Il existe donc g € L et z € f(Ky) tel que
t=gx +z.

Si g =0, alors t = 2z, donc f(K(x —y)) =Lt = Lz C f(Ky). En composant par f~*,
donc obtient que K(z — y) C Ky, donc la famille (x — y, y) est liée, puis par opération
élémentaire on en déduit que (x,y) est liée ce qui est faux. Ainsi, g # 0, or L est un
corps, donc on peut poser ¢y = —¢g 1z =2’ — g~ 't.

Si z =0, alors t = g2’ avec g # 0, donc Lt = L2/, c’est-a-dire f(K(z —y)) = f(Kz).
Alors K(z — y) = Kz et on en déduirait encore que (z,y) est lié, donc z # 0. Or
z € f(Ky) et f(Ky) est une droite, donc f(Ky) = Lz.

Ainsi, Ly’ = Lz = f(Ky) et L(z' —y/) = L(g7't) = Lt = K(z — y), ce qu’il fallait
démontrer.

20°) La question 19 montre I'existence. Montrons 'unicité.

Soit ¢, 3" € F tel que f(Ky) =Ly =Ly" et f(K(x —y)) =L(z' — ) = Lz’ — y").
Alors il existe a, f € L tels que ¢y = ay’ et 2’ —y” = f(a’ — /). On en déduit que
' — oy = P’ — By, puis que (1 — p)x’ + (8 — )y’ = 0. Or (2/,y') est libre d’apres la
question 18, car f(Kz) = La’ et f(Ky) = Ly'. Ainsi, 1 — = — a = 0. On en déduit
que o = 1, donc v = ay’ = ¢/, ce qu’il fallait démontrer.

21°) (x,y) est libre, donc également (y,z), donc les deux quantités h(z,2’,y) et
h(y,y',x) sont bien définies. Alors d’apres 'unicité énoncée en question 20,
'=Mhax,2y) = [f(Ky) =Ly] A [f(K(z —y)) =Lz -y
— [[(Kz) = La'| A [f(K(y — 2)) = L(y' —2')],”
car les propositions f(Ky) = Ly et f(Kz) = La’ sont supposées vraies.
Ainsi, h(z, 2", y) =y < h(y,y,z) = 2'.

22°) oy—zeKy+Keety—z=—(v—y)+ (z—2) € K(z —y) + K(z — 2), donc
y—z€ (Ky+Kz)N (K(z —y) + K(z — 2)), ce qui prouve que

Ky — 2) € (Ky +Kz) N (K(x — y) + K(z — 2)). Les mémes arguments permettent
également de montrer que K(zx —y — 2) C (K(z — y) + Kz) N (K(z — 2) + Ky) et
K(y+2) € (Ky+Kz)N (K(z —y — 2) + Kz).

o Notons D = (Ky+Kz)N(K(x —y) + K(z —2)). Alors D C Ky + Kz. Supposons que
D =Ky + Kz. Alors Ky + Kz € K(z — y) + K(z — 2), donc il existe «, 5 € K tel que
y=a(r—y)+B(x—2). Alors (—a—p)z+ (1+a)y+ Pz =0, or (z,y, z) est libre, donc
0=—-a—pF=14+a=p,donc1l=0, ce qui est faux. Ainsi, D est strictement inclus
dans Ky + Kz. On en déduit que dim(D) < dim(Ky + Kz) = dim(Vect(y, 2)) = 2, car



(y, z) est libre. De plus D D K(y —z) et y — z # 0, donc dim(D) > 1. On en déduit que
dim(D) =1 = dim(K(y — 2)), or D D K(y — 2), donc d’apres le cours, D = K(y — z).

Des arguments similaires permettent de démontrer les deux autres égalités.

23°) D’apres les hypotheses, on a f(Kz) = L2/, f(Ky) = Ly/, f(K(z—y)) = L(2'—v'),
fKz) =Lz et f(K(z —2)) = L(a" - 2).
Pour conclure, il suffit de montrer que f(K(y —z)) = L(y — 2’), or d’apres la premiere
propriété de la question précédente et d’apres les questions 12 et 13,
fEKy —2) = [flKy+Kz)N(Kz - y) + Kz — 2))]

= (f(Ky) + f(Kz)) N (f(K(z —y)) + f(K(z — 2)))

= (Ly' + L) N (L(z' —¢') + L(2’ — 2))

= L(y/ - Z/)a
en appliquant a nouveau la premiere propriété de la question précédente, dans F' au
lieu de E, ce qui est possible car d’apres la question 18, (2,1, 2’) est libre.

24°) La famille (z,y + z) est libre, donc h(z,2’,y + z) est bien définie, ainsi que
h(z,x',y) et h(z, 2, 2).

Posons ' = h(x,2’,y) et 2/ = h(z,2’,z). On dispose donc des égalités suivantes :
f(Kz) = La', f(Ky) =Ly, f(K(z —y)) =Lz —v), f(Kz) =Lz,

et f(K(z—2))=L(z"—-2).

On souhaite montrer que y'+2" = h(x,2’, y+2), ¢’est-a-dire que f(K(y+z)) = K(y'+2)
et f(K(z—y—2)) = L{a' —yf — 2.

On demontre d’abord la seconde relation en utilisant la seconde propriété de la question
22 selon la méme méthode que celle de la question précédente. Alors on peut démontrer
la premiere relation en utilisant la derniere propriété de la question 22.

Ce qu’admet 1’énoncé est certes technique a démontrer, mais tout a fait élémentaire.
Le lecteur intéressé trouvera les détails dans le livre de Reinhold Baer suivant : Linear
Algebra and Projection Geometry, Academic Press Inc., New York, 1952.

25°) e Soit A € K avec A # 0.

¢ Soit x € E avec x # 0.

Lg(Ax) = f(K(A\z)) = f(Kz) = Lg(x) # {0}, donc il existe a € L\ {0} tel que
g(Az) = ag(z). De plus g(z) # 0, donc « est unique. On peut noter a = o(\, z).
Ainsi, pour tout x € E'\ {0}, o(\, z) est un scalaire de LL tel que g(Az) = o(\, z)g(x).
o Soit x,y € FE tels que (x,y) est libre.

g\ + 1)) = 9((2) + () = g(A) + g\g),

donc o(A, z +y)g(x +y) = o(X,x)g(x) + (X, y)g(y), or g(z + ) 9(x) + g(y), donc
(cNx+y) —oa\z2)g(x)+ (c(Nx+y)—alNy))gly ) =0, or d’apres la question 18,
(9(x), g(y)) est libre, donc o(\,x) = a(\,z +y) = (N, y).

o Soit x,y € E'\ {0} tels que (z,y) est lié.

L’énoncé suppose que dim(F) > 3, donc on peut compléter la famille (x), constituée
du seul vecteur z, en une base (z, z,e3,...,¢,) de E. Alors (z, z) et (y,z) sont libres,
donc d’apres le point précédent, o(\, z) = o(A, z) = o (A, y).



o Ainsi, la quantité (A, z) ne dépend pas de x lorsque = € E \ {0}. On peut donc
la noter o(\). Ainsi, pour tout z € E, g(Ax) = d(\)g(x), cette égalité étant évidente
lorsque x = 0.
De plus, en posant o(0) = 0, cette égalité est vraie pour tout A € K et z € E.
e Montrons que o est un morphisme de corps de K dans L. Pour cela, fixons un
vecteur « non nul de E. On sait alors que g(z) est aussi non nul.
o o(1)g(x) = g(l.z) = g(x), donc (1) = 1.
o Soit A, € K. o(A+p)g(x) = g((A + p)z) = g((Ax) + (px)) = g(Ax) + g(pz),
donc o(A+2)g(x) = o(Nala) + o()g(x). ce qui prowve que (A + 1) = 7() + ().
De méme, o(M1)g(x) = g((An)z) = g(A(uz)) = o(Ngluz) = o(No()g(z), done
o(An) = a(A)o(p).
e FEn tant que morphisme de corps, d’apres le cours, o est injectif. En effet, si A # 0,
A est inversible, donc o(\) est aussi inversible, donc o(\) # 0.
Montrons que o est surjectif. Soit pu € L.
Si p =0, alors u = ¢(0). Supposons maintenant que p # 0.
g étant bijective, il existe y € E '\ {0} tel que g(y) = pg(z).
On a L(ug(z)) = Lg(y) = f(Ky) et L(ug(z)) = Lg(z) = f(Kz), or f est bijective,
donc Ky = Kz. Ainsi, il existe A € K tel que y = Ax.
Alors pg(z) = g(y) = g(Ax) = o(A)g(z), donc p = o(A).
e Ainsi, o est un isomorphisme du corps K sur le corps IL et g est o-linéaire car g est
additive et pour tout (A, z) € K x E, g(Ax) = a(\)g(z).
Soit maintenant A € £. A est de dimension finie p avec p < n.

p

Il existe une base de A, notée (ey,...,e,). Alors A = ZKB“
) i=1
donc f(A Zf (Ke;) ZLg(ei), or
i=1

g(A) = g({ Z)\iei /YieN,, \e K})

— {ZU(/\i)g(ei) [ Vie N, Aie K}

=1

= {zp:,uig(ei) /VieNy, € IL},
i=1

car o est surjectif, donc g(A) = ZLg(ei) = f(A)

En conclusion, on a montré, en admettant un passage un peu technique, que les seules
projectivités entre £ et F sont celles de la question 10, qui sont construites a 1’aide
d’une bijection o-linéaire de F dans F', ou ¢ est un isomorphisme de corps entre K et
L, a supposer qu'un tel o existe.



