Résumé de cours :
Semaine 17, du 19 au 23 janvier.

Suites de vecteurs (fin)

1 Suites de réels
1.1 Limites infinies

Définition. 2z, — “+oo<—=VM >0, INeN, Yvn> N, z, > M.

n—-+oo

T, — —oc0o<—=VM >0, ANeN, V/n> N, z, < —M.

n—-+o0o
Définition. Lorsqu’une suite de réels tend vers +o0o ou —oo, elle est toujours divergente : on dit
qu’elle diverge vers 400 ou —oo. On distingue ainsi trois catégories de suites réelles :

— Les suites convergentes. Ce sont celles qui convergent vers un réel.

— Les suites divergentes de premiere espece. Ce sont celles qui divergent vers +o0o0 ou —oo.

— Toutes les autres suites. On dit qu’elles sont divergentes de seconde espece.

Propriété. Si ¢ : N — N est strictement croissante,
pour tout n € N, ¢(n) > n, donc p(n) — —+oo.
n—-+00

Définition. Si (z,,) est dans un espace métrique , x, — 00 < d(xg,z,) —> —+00.
n—-+4oo n—-+oo

Propriété. Composition des limites : Si (z,) est dans un espace métrique et si x,, — £, avec ¢
n—-+oo

éventuellement infinie, pour tout ¢ : N — N telle que ¢(n) —+> +00, Ty (n) —+> L.
n—-+0oo n——+0oo

Il faut savoir le démontrer.

Propriété. Dans un espace métrique , x,, — [ si et seulement si x9,, —> let 29,11 —> .
n—-+oo n—-+oo n—-+oo

Il faut savoir le démontrer.

Propriété. Soit p € N*. Si, pour tout ¢ € {0,...,p— 1}, zppyi —> [, alorsz, — L[
n—-+o0o n—-+oo

Remarque. C’est encore vrai dans le cas de limites infinies.
Propriété. Avec des suites de réels, en prenant e,¢’ € {—1,1},
— Siz, — exety, — yeR alorsx, +y, —> eoo.
n—-+oo n—-+o0o

n—-+oo
— Siz, — exety, — eoo,alorsxz,+y, — €00, mais x,—y, est une forme indéterminée
n—4oo n—-4o0o n—4oo

du type oo — 0.
— Sixz, — eoo,alors —x, — —eoc0.
n—-+oo

n—-+oo
— Siz, — cooeta>0,alorsax, — ecc.
n—-+oo n—-+4+oo
— Siz, — exety, — LR, alorsx,y, —> eoo,sauflorsque ¢ = 0, qui est une forme
n—-+oo n—-+oo n—-+oo

indéterminée du type 0 x co.
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— Six, — eccety, — €00, alors z,y, — ec'oco.
n—+o00 —+o0 n—-+o0o

n

. 1
— Six, — eooalors — — 0.
n—-+4o0o Ty n——4o0o

. 1
— Siz, — 0" alors — — +oo.
n—+o00 Ty n—>+o0

b

Remarque. Lorsque u, est de la forme u, = a®, il est indispensable d’écrire u,, = eb» ™% pour

n

o o 1
étudier sa limite. Par exemple, u, = (1 + )" = enn(1+3) e car w — 1.

1.2 limites et relation d’ordre

Principe des gendarmes : Soit (py,), (gn), (g,,) trois suites de réels et £ € R
tels que, pour tout n € N, g, < p, < gl,, gn " let g, — L
n—-+00

n—-+oo
Alors p,, —+> {. Le principe des gendarmes s’adapte aux cas des limites infinies :
n—-—+0oo

Lemme du tunnel : Soit (u,) une suite de réels qui converge vers £ € R.
Soit a,b € R tels que a < £ < b. Alors il existe N € N tel que pour tout n > N, a < u,, <b.
Il faut savoir le démontrer.
Propriété. Dans R, si pour tout n € N, a,, < b,,, alors dans R, lim a, < lm b,.
n—-+o0o n—-+oo

Propriété. Soit X une partie non vide de R. Il existe une suite (z,) d’éléments de X telle que
xn, — sup(X) € RU{+o0} (resp : z, — inf(X)e RU{—o0}).

n—+o00o n—-+

oo
Il faut savoir le démontrer.

1.3 Suites monotones

Théoréme de la limite monotone : Soit (z,,) une suite croissante de réels.
Si (z,,) est majorée, alors cette suite est convergente. De plus lim x, = sup x,.
n—-+0oo neN

Si (z,,) n’est pas majorée, alors cette suite est divergente. De plus lirf T, = +00.
n—-+0oo

Ainsi, dans tous les cas, on peut écrire que x,, — supx, € RU{+oo}.
n—+oo neN
Il faut savoir le démontrer.

Théoreéme. Soit (z,) une suite décroissante de réels.

Si (z,,) est minorée, alors cette suite est convergente. De plus lim z, = inf z,.
n—+00 neN

Si (z,,) n’est pas minorée, alors cette suite est divergente. De plus hT T, = —00.
n—-+0oo

Ainsi, dans tous les cas, on peut écrire que x,, — inf z,, € RU{—0o0}.
n—+o00 neN
Propriété. Soit (z,) une suite géométrique de réels de raison a, tel que xo # 0.

— Si |a| < 1, alors 2,, —> 0.
n—-+oo

— Sia=1, z, est constante.

— Sia>1,z, — €00, ouc est le signe de xg
n—-+oo

— Sia < -1, (z,) diverge.

1.4 Suites adjacentes

Définition. Deux suites (z,) et (y,) de réels sont adjacentes si et seulement si 1'une est croissante,

lautre est décroissante et si x, —y, — O.
n—-+4oo

Théoreme. Si(x,) et (y,) sont adjacentes avec (x,,) est croissante, alors ces deux suites convergent
vers une limite commune ¢ € R. De plus, pour tout (p,q) € N?, 2, < ¢ < Yq-
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Il faut savoir le démontrer.

Théoréme des segments emboités : Soit (I,,)nen une suite de segments, décroissante au sens de

Iinclusion, dont les longueurs tendent vers 0. Alors ﬂ I,, est un singleton.

neN
Il faut savoir le démontrer.

2 Valeurs d’adhérences

On se place dans un espace métrique quelconque.

Définition. Les suites extraites de (x,,) sont les (2,(,)), ot ¢ : N — N est strictement croissante.
Propriété. Si une suite (z,,) converge vers £, toutes ses suites extraites convergent vers £.
Remarque. Cette propriété se généralise au cas des limites infinies.

Propriété. Une suite extraite d’une suite extraite de (x,) est une suite extraite de (x,).
11 faut savoir le démontrer.

Définition. Les valeurs d’adhérence de (z,,) sont les limites des suites extraites convergentes de ().

Remarque. La limite d’une suite convergente est son unique valeur d’adhérence.
Si une suite admet au moins deux valeurs d’adhérence distinctes, elle est divergente.

Propriété. (hors programme). Les propriétés suivantes sont équivalentes :
i) a est une valeur d’adhérence de (z,,).
ii) Ve e RY VN €N In > N d(z,,a) <e.
iii) Ve > 0 Card({n € N/x,, € B,(a,&)}) = +0.

Il faut savoir le démontrer.

Lemme des pics : De toute suite de réels on peut extraire une suite monotone.
Il faut savoir le démontrer.

Théoréme de Bolzano-Weierstrass :

Dans un K-espace vectoriel de dimension finie, toute suite bornée posséde au moins une valeur
d’adhérence.

Il faut savoir le démontrer pour les suites bornées de complexes.

3 Suites de Cauchy (hors programme)

On se place dans un espace métrique quelconque.
Définition. [(z,) est une suite de Cauchy]<=- [Ve € R} IN € N Vp > N Vg > N d(zp,z,) < €.

Propriété. Toute suite convergente est une suite de Cauchy.
Il faut savoir le démontrer.

Propriété. Toute suite de Cauchy de E est bornée.
Il faut savoir le démontrer.

Propriété. Si une suite de Cauchy possede une valeur d’adhérence alors elle est convergente.
Il faut savoir le démontrer.

Définition. FE est un espace métrique complet si et seulement si toute suite de Cauchy de E est
convergente.

Théoréme. Sitoute suite bornée de E possede au moins une valeur d’adhérence, alors E' est complet.

Théoréme. Tout K-espace vectoriel de dimension finie est complet.
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Séries de vecteurs

Notation. K désigne R ou C.
Définition. Un espace de Banach est un K-espace vectoriel normé complet.

Notation. On fixe dans ce chapitre un espace de Banach noté E.

4 Définition d’une série de vecteurs

Définition. Soit (a,)nen une suite de vecteurs. On appelle série de terme général a,, et on note
n

> an, la suite de terme général (a,, Z ax). Ainsi, 3" a,, est une suite d’éléments de E2.

k=0
Remarque. L’intérét de cette définition un peu formelle est de distinguer les séries de vecteurs des
suites de vecteurs.

Propriété. L’ensemble des séries de vecteurs, noté S(FE) est un K-espace vectoriel.
De plus, > an +ad b, = > (an + aby), lorsque > ay, et > b, sont dans S(F) et lorsque o € K.
n

Notation. Z ay, est appelée la somme partielle (des n 4 1 premiers termes) de Y ay,.

k=0
Propriété. Soit (A,) une suite de vecteurs. Il existe une unique série > a,, dont la suite des sommes
partielles est (A,,). Il s’agit de la série > (A, — A,—1), en convenant que A_; = 0. Cette série est
appelée la série télescopique associée a la suite (A,,).
Il faut savoir le démontrer.
Définition. Soient ng € N* et (an)n>n, une suite de vecteurs.
Z ay est la série > b, ot b, =0 si n < ng et b, = a, sin > ng.
n>ngo
On dit que Z a, est une série tronquée a 'ordre nyg.

n>ngo
5 Convergence d’une série de vecteurs

Définition. > a,, converge si et seulement si la suite des sommes partielles de > a,, converge.

+oo n
Dans ce cas, on note E a, = lim E ak.
n—-+oo
n=0 k=0
Propriété. Pour tout ny € N*, les séries Y a, et E a, sont de méme nature et en cas de
n>ngo
“+o00 no—1 “+00
convergence, E Ay = E ay, + E Ay, .
n=0 n=0 n=ng

Corollaire. On ne change pas la nature de la série Y a,, si 'on modifie un nombre fini d’éléments
de la suite (ay).

—+oo
Définition. Si Y a, converge, son n-itme reste de Cauchy est R, = Z ai. On a R, —+> 0.
n—r+0oo
k=n+1
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Propriété. Soit (u,) une suite de vecteurs. La série télescopique Y (up41 — up) converge si et

“+oo
seulement si la suite (u,) converge et dans ce cas, g (Upt1 — Up) = 1151’_1 Uy, — UQ-
n—+0o0
n=0

Il faut savoir le démontrer.

Propriété. Si Y a, et > b, convergent et si A € K, alors Y (a, + Ab,,) converge et
“+o0 “+oo “+oo

Z(an + A\by,) = Z an + A Z by,. Ainsi, ’ensemble des séries convergentes de vecteurs est un sous-

n=0 n=0 n=0

Sconv(E) — K
. . . 00 . .
espace vectoriel de S(E), noté S, FE) et Iapplication est linéaire.
p ( ) conv( ) pp Ean — Z an
n=0

Il faut savoir le démontrer.
Propriété. La somme d’une série convergente et d’une série divergente est une série divergente.

Remarque. On en déduit que, si la somme de deux séries est convergente, ces deux séries ont méme
nature. Cependant, il est possible qu’elles divergent toutes les deux. Par exemple, > a, + > (—ay,)
converge, méme lorsque Y a,, diverge.

Propriété. Si une série converge, son terme général tend vers 0. La réciproque est fausse.
Il faut savoir le démontrer.

Définition. Lorsque la suite a, ne tend pas vers 0, on dit que la série Y a,, diverge grossiérement.

—+o0
Propriété. La série géométrique > a™ converge ssi |a| < 1 et dans ce cas E a” = T .

n=0 —a
Propriété. Séries a valeurs dans un produit.
Soient p € N* et Iy, ..., E, p espaces vectoriels normés. On note £ = E; X --- x E, que 'on munit
de I'une des trois normes classiques.
Soient (n)nen = ((Z1,n;- - Zpn))nen une suite d’éléments de E.

Alors la série ) x,, converge si et seulement si, pour tout i € Ny, >~ z; ,, est convergente.
—+o0 +oo +oo

De plus, dans ce cas, E Ty = ( E Timy .o E mpyn).
n=0 n=0 n=0

Propriété. Séries a valeurs dans un espace de dimension finie.
On suppose que E est un K-espace vectoriel de dimension finie dont e = (e, ..., eq) est une base.

q
Soit (x,) une suite de vecteurs de E. Pour tout n € N, on note z,, = Z TjnCi-
=1

i
Alors, la série )z, converge dans E si et seulement si, pour tout ¢ € N, la série )z, , converge
q

—+o0 —+oo
dans K, et, dans ce cas, E T, = E ( E l’i,n>€¢-
n=0

i=1 n=0

Propriété. Soit > a, une serie de complexes. Elle converge si et seulement si les séries > Re(a,) et

—+oo —+oo +oo
>~ Im(ay) convergent, et dans ce cas Z ay, = Z Re(ay) +1 Z Im(ay).
n=0 n=0 n=0

6 Convergence absolue

Définition. ) a, € S(E) vérifie le critere de Cauchy si et seulement si

p
Vee€R, INENVR>N VpeN || angil <e.
k=1
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Propriété. > a, converge si et seulement si elle vérifie le critere de Cauchy.
Il faut savoir le démontrer.

Définition. > a, est absolument convergente si et seulement si la série Y ||a, || est convergente.

Propriété. Soit > a, € S(E) . Si > a, est absolument convergente, alors elle converge
—+oo —+oo
et || Z ap| < Z lan]| (Inégalité triangulaire). La réciproque est fausse.
n=0

n=0
Il faut savoir le démontrer.

Définition. }_ a, est semi-convergente ssi elle converge sans étre absolument convergente.

7 Séries a termes positifs
7.1 Théorémes généraux

Théoréme. Soit Y a, € S(Ry). Alors > a, converge si et seulement si la suite de ses sommes

n —+oo
partielles est majorée, et dans ce cas, en posant pour tout n € N, A4,, = Z ak, Z an, = sup A,.
k=0 n=0 neN

Il faut savoir le démontrer.
+oo
Remarque. Lorsque Y a, € S(R,) diverge, on peut écrire que Z apn = +00.
n=0
Propriété. Soient > an, > b, € S(R;) telles que Vn € N a,, < by,.
—+o0 “+oo
Si > b, converge, alors Y a,, converge et Z ay, < z by,.

n=0 n=0
Si > ay, est divergente, alors > b, diverge.
Il faut savoir le démontrer.

Remarque. Lorsque > a, une série de complexes absolument convergente, on peut montrer qu’elle
est convergente de maniere élémentaire, sans utiliser la notion hors programme de suite de Cauchy.
Il faut savoir le démontrer.

Propriété. On note [}(K) = {(un)nen € KN/ >~ Jup|converge } et pour tout u = (u,)nen € 2(K),
posons |jul|; = Z |tn|. Alors (11 (K), ||.|[1) est un K-espace vectoriel normé.
neN
Il faut savoir le démontrer.
Propriété. On note I2(K) = {(un)nen € K/ S Jup|*converge } et pour tout u = (uy,)nen € 1(K),

posons |julls = Z |un|2. Alors (I2(K), ||.||2) est un K-espace vectoriel normé.
neN
11 faut savoir le démontrer.

Définition. Soit (a,) et (b,) deux suites d’un K-espace vectoriel normé E.
— ap, =0(by) <= 3C R, INeN, ¥n >N, |a,| < C|bn]-
— ap =0(by) <=Ve >0, AN €N, Vn> N, |an| <elbn]-
— ap ~ by, <= a, — b, = 0(by).
Remarque. Lorsque E = C, si pour tout n € N, b,, # 0, alors
Qn .
— an, = O(b,) <= — est bornée;

br,
an
— anp = O(bn) < an—>—+>ooo et
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a
— Gy ~ by = 2 — 1.
bn n——+o0o

On montrera plus tard le théoreme suivant, dont I’énoncé peut étre utilisé deés maintenant.

On dit que la suite a,, est négligeable devant la suite b,, si et seulement si a,, = o(by,).

De méme, on dit que la fonction f(x) est négligeable devant g(x) lorsque x est au voisinage de a si et
seulement si f(z) = o(g(x)) au voisinage de a, c’est-a-dire, en supposant que 1'on peut diviser, si et

— 0.

Théoréme des croissances comparées : Soit «, 3,7 € R} et a > 1.

seulement si

1. Les suites In®(n), n?, a™ et n! tendent vers +oo et chacune est négligeable devant les suivantes.

2. Au voisinage de 400, les fonctions In® z, 2° et €7* tendent vers 400 et chacune est négligeable
devant les suivantes.

1
3. Au voisinage de 0%, |Inz|* = 0(73).
T
1
4. Au voisinage de —o0, €7 = 0(—).
|[?

Propriété. Soit Y a, une série de vecteurs et Y _ b,, une série de réels positifs.
On suppose que |la,| = O(by,).

Si la série Y b, converge, alors > a, est absolument convergente.

Si la série Y ||ay|| diverge, alors Y b, est divergente.

Remarque. En pratique, on utilise souvent ce théoréme lorsque a,, = o(by,).
Théoréme. Soient > an, y. b, € S(Ry) telles que a,, ~ by,. Alors les deux séries ont la méme nature.

Théoréme. Soit Y a,, Y b, € S(R). On suppose que b, est positif & partir d’un certain rang ou
bien que b,, est négatif & partir d’un certain rang. Si a,, ~ by, alors > a, et >_ b, ont la méme nature.

méthode : pour étudier la nature d’une série, on commence par rechercher un équivalent
de son terme général.

7.2 Séries de Riemann

Technique de comparaison entre séries et intégrales (TCSI) : Soit ng € N.

Soit f : [ng, +0o[— R une application décroissante et continue. La TCSI consiste en la présentation
des trois étapes suivantes :

Premieére étape : Soit k > ng. f étant décroissante, pour tout ¢t € [k — 1, k|, f(k) < f(t) < f(k—1).

k
Deuziéme étape : En intégrant, on obtient f(k) < fydt < f(k—1).
k—1
n n n—1
Troisiéme étape : Soit n > mg : en sommant, Z f(k) < / f)ydt < Z f(k).
k=no+1 70 n=ng

Il faut savoir présenter cette technique.

Théoréme de comparaison entre séries et intégrales : Sous les mémes notations et hypotheses,

la série > f(n) a méme nature que la suite (/ f(t)dt)
no

Il faut savoir le démontrer.

n>ngo

. . 1 . .
Propriété. La série de Riemann E — converge si et seulement si a > 1.
n
n>1
Il faut savoir le démontrer.

Critére de Riemann : Soient Y a, € S(R;).
S’il existe a > 1 tel que n%a,, —+> 0, alors > a,, converge.
n—-+oo

S’il existe a < 1 tel que n%a,, —> o0, alors Y a,, diverge.
n—-+oo
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