
Résumé de cours :

Semaine 17, du 19 au 23 janvier.

Suites de vecteurs (fin)

1 Suites de réels

1.1 Limites infinies

Définition. xn −→
n→+∞

+∞ ⇐⇒ ∀M ≥ 0, ∃N ∈ N, ∀n ≥ N, xn ≥ M .

xn −→
n→+∞

−∞ ⇐⇒ ∀M ≥ 0, ∃N ∈ N, ∀n ≥ N, xn ≤ −M .

Définition. Lorsqu’une suite de réels tend vers +∞ ou −∞, elle est toujours divergente : on dit
qu’elle diverge vers +∞ ou −∞. On distingue ainsi trois catégories de suites réelles :

— Les suites convergentes. Ce sont celles qui convergent vers un réel.
— Les suites divergentes de première espèce. Ce sont celles qui divergent vers +∞ ou −∞.
— Toutes les autres suites. On dit qu’elles sont divergentes de seconde espèce.

Propriété. Si φ : N −→ N est strictement croissante,
pour tout n ∈ N, φ(n) ≥ n, donc φ(n) −→

n→+∞
+∞.

Définition. Si (xn) est dans un espace métrique , xn −→
n→+∞

∞ ⇐⇒ d(x0, xn) −→
n→+∞

+∞.

Propriété. Composition des limites : Si (xn) est dans un espace métrique et si xn −→
n→+∞

ℓ, avec ℓ

éventuellement infinie, pour tout φ : N −→ N telle que φ(n) −→
n→+∞

+∞, xφ(n) −→
n→+∞

ℓ.

Il faut savoir le démontrer.

Propriété. Dans un espace métrique , xn −→
n→+∞

l si et seulement si x2n −→
n→+∞

l et x2n+1 −→
n→+∞

l.

Il faut savoir le démontrer.

Propriété. Soit p ∈ N∗. Si, pour tout i ∈ {0, . . . , p− 1}, xpn+i −→
n→+∞

l, alors xn −→
n→+∞

l.

Remarque. C’est encore vrai dans le cas de limites infinies.

Propriété. Avec des suites de réels, en prenant ε, ε′ ∈ {−1, 1},
— Si xn −→

n→+∞
ε∞ et yn −→

n→+∞
y ∈ R, alors xn + yn −→

n→+∞
ε∞.

— Si xn −→
n→+∞

ε∞ et yn −→
n→+∞

ε∞, alors xn+yn −→
n→+∞

ε∞, mais xn−yn est une forme indéterminée

du type ∞−∞.
— Si xn −→

n→+∞
ε∞, alors −xn −→

n→+∞
−ε∞.

— Si xn −→
n→+∞

ε∞ et α > 0, alors αxn −→
n→+∞

ε∞.

— Si xn −→
n→+∞

ε∞ et yn −→
n→+∞

ℓ ∈ R+, alors xnyn −→
n→+∞

ε∞, sauf lorsque ℓ = 0, qui est une forme

indéterminée du type 0×∞.
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Semaine 17 : Résumé de cours 1 Suites de réels

— Si xn −→
n→+∞

ε∞ et yn −→
n→+∞

ε′∞, alors xnyn −→
n→+∞

εε′∞.

— Si xn −→
n→+∞

ε∞ alors
1

xn
−→

n→+∞
0.

— Si xn −→
n→+∞

0+ alors
1

xn
−→

n→+∞
+∞.

Remarque. Lorsque un est de la forme un = abnn , il est indispensable d’écrire un = ebn ln an pour

étudier sa limite. Par exemple, un = (1 + 1
n )

n = en ln(1+ 1
n ) −→

n→+∞
e car ln(1+x)

x −→
x→0

1.

1.2 limites et relation d’ordre

Principe des gendarmes : Soit (pn), (gn), (g
′
n) trois suites de réels et ℓ ∈ R

tels que, pour tout n ∈ N, gn ≤ pn ≤ g′n, gn −→
n→+∞

ℓ et g′n −→
n→+∞

ℓ.

Alors pn −→
n→+∞

ℓ. Le principe des gendarmes s’adapte aux cas des limites infinies :

Lemme du tunnel : Soit (un) une suite de réels qui converge vers ℓ ∈ R.
Soit a, b ∈ R tels que a < ℓ < b. Alors il existe N ∈ N tel que pour tout n ≥ N , a < un < b.
Il faut savoir le démontrer.

Propriété. Dans R, si pour tout n ∈ N, an ≤ bn, alors dans R, lim
n→+∞

an ≤ lim
n→+∞

bn.

Propriété. Soit X une partie non vide de R. Il existe une suite (xn) d’éléments de X telle que
xn −→

n→+∞
sup(X) ∈ R ∪ {+∞} (resp : xn −→

n→+∞
inf(X) ∈ R ∪ {−∞}).

Il faut savoir le démontrer.

1.3 Suites monotones

Théorème de la limite monotone : Soit (xn) une suite croissante de réels.
Si (xn) est majorée, alors cette suite est convergente. De plus lim

n→+∞
xn = sup

n∈N
xn.

Si (xn) n’est pas majorée, alors cette suite est divergente. De plus lim
n→+∞

xn = +∞.

Ainsi, dans tous les cas, on peut écrire que xn −→
n→+∞

sup
n∈N

xn ∈ R ∪ {+∞}.

Il faut savoir le démontrer.

Théorème. Soit (xn) une suite décroissante de réels.
Si (xn) est minorée, alors cette suite est convergente. De plus lim

n→+∞
xn = inf

n∈N
xn.

Si (xn) n’est pas minorée, alors cette suite est divergente. De plus lim
n→+∞

xn = −∞.

Ainsi, dans tous les cas, on peut écrire que xn −→
n→+∞

inf
n∈N

xn ∈ R ∪ {−∞}.

Propriété. Soit (xn) une suite géométrique de réels de raison a, tel que x0 ̸= 0.
— Si |a| < 1, alors xn −→

n→+∞
0.

— Si a = 1, xn est constante.
— Si a > 1, xn −→

n→+∞
ε∞, où ε est le signe de x0

— Si a ≤ −1, (xn) diverge.

1.4 Suites adjacentes

Définition. Deux suites (xn) et (yn) de réels sont adjacentes si et seulement si l’une est croissante,
l’autre est décroissante et si xn − yn −→

n→+∞
0.

Théorème. Si (xn) et (yn) sont adjacentes avec (xn) est croissante, alors ces deux suites convergent
vers une limite commune ℓ ∈ R. De plus, pour tout (p, q) ∈ N2, xp ≤ ℓ ≤ yq.

©Éric Merle 2 MPSI2, LLG
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Il faut savoir le démontrer.

Théorème des segments embôıtés : Soit (In)n∈N une suite de segments, décroissante au sens de

l’inclusion, dont les longueurs tendent vers 0. Alors
⋂
n∈N

In est un singleton.

Il faut savoir le démontrer.

2 Valeurs d’adhérences

On se place dans un espace métrique quelconque.

Définition. Les suites extraites de (xn) sont les (xφ(n)), où φ : N −→ N est strictement croissante.

Propriété. Si une suite (xn) converge vers ℓ, toutes ses suites extraites convergent vers ℓ.

Remarque. Cette propriété se généralise au cas des limites infinies.

Propriété. Une suite extraite d’une suite extraite de (xn) est une suite extraite de (xn).
Il faut savoir le démontrer.

Définition. Les valeurs d’adhérence de (xn) sont les limites des suites extraites convergentes de (xn).

Remarque. La limite d’une suite convergente est son unique valeur d’adhérence.
Si une suite admet au moins deux valeurs d’adhérence distinctes, elle est divergente.

Propriété. (hors programme). Les propriétés suivantes sont équivalentes :
i) a est une valeur d’adhérence de (xn).
ii) ∀ε ∈ R∗

+ ∀N ∈ N ∃n ≥ N d(xn, a) < ε.
iii) ∀ε > 0 Card({n ∈ N/xn ∈ Bo(a, ε)}) = +∞.

Il faut savoir le démontrer.

Lemme des pics : De toute suite de réels on peut extraire une suite monotone.
Il faut savoir le démontrer.

Théorème de Bolzano-Weierstrass :
Dans un K-espace vectoriel de dimension finie, toute suite bornée possède au moins une valeur
d’adhérence.
Il faut savoir le démontrer pour les suites bornées de complexes.

3 Suites de Cauchy (hors programme)

On se place dans un espace métrique quelconque.

Définition. [(xn) est une suite de Cauchy]⇐⇒ [∀ε ∈ R∗
+ ∃N ∈ N ∀p ≥ N ∀q ≥ N d(xp, xq) ≤ ε].

Propriété. Toute suite convergente est une suite de Cauchy.
Il faut savoir le démontrer.

Propriété. Toute suite de Cauchy de E est bornée.
Il faut savoir le démontrer.

Propriété. Si une suite de Cauchy possède une valeur d’adhérence alors elle est convergente.
Il faut savoir le démontrer.

Définition. E est un espace métrique complet si et seulement si toute suite de Cauchy de E est
convergente.

Théorème. Si toute suite bornée de E possède au moins une valeur d’adhérence, alors E est complet.

Théorème. Tout K-espace vectoriel de dimension finie est complet.
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Séries de vecteurs

Notation. K désigne R ou C.

Définition. Un espace de Banach est un K-espace vectoriel normé complet.

Notation. On fixe dans ce chapitre un espace de Banach noté E.

4 Définition d’une série de vecteurs

Définition. Soit (an)n∈N une suite de vecteurs. On appelle série de terme général an, et on note∑
an, la suite de terme général (an,

n∑
k=0

ak). Ainsi,
∑

an est une suite d’éléments de E2.

Remarque. L’intérêt de cette définition un peu formelle est de distinguer les séries de vecteurs des
suites de vecteurs.

Propriété. L’ensemble des séries de vecteurs, noté S(E) est un K-espace vectoriel.
De plus,

∑
an + α

∑
bn =

∑
(an + αbn), lorsque

∑
an et

∑
bn sont dans S(E) et lorsque α ∈ K.

Notation.

n∑
k=0

ak est appelée la somme partielle (des n+ 1 premiers termes) de
∑

an.

Propriété. Soit (An) une suite de vecteurs. Il existe une unique série
∑

an dont la suite des sommes
partielles est (An). Il s’agit de la série

∑
(An − An−1), en convenant que A−1 = 0. Cette série est

appelée la série télescopique associée à la suite (An).
Il faut savoir le démontrer.

Définition. Soient n0 ∈ N∗ et (an)n≥n0
une suite de vecteurs.∑

n≥n0

an est la série
∑

bn où bn = 0 si n < n0 et bn = an si n ≥ n0.

On dit que
∑
n≥n0

an est une série tronquée à l’ordre n0.

5 Convergence d’une série de vecteurs

Définition.
∑

an converge si et seulement si la suite des sommes partielles de
∑

an converge.

Dans ce cas, on note

+∞∑
n=0

an = lim
n→+∞

n∑
k=0

ak.

Propriété. Pour tout n0 ∈ N∗, les séries
∑

an et
∑
n≥n0

an sont de même nature et en cas de

convergence,

+∞∑
n=0

an =

n0−1∑
n=0

an +

+∞∑
n=n0

an.

Corollaire. On ne change pas la nature de la série
∑

an si l’on modifie un nombre fini d’éléments
de la suite (an).

Définition. Si
∑

an converge, son n-ième reste de Cauchy est Rn =

+∞∑
k=n+1

ak. On a Rn −→
n→+∞

0.
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Propriété. Soit (un) une suite de vecteurs. La série télescopique
∑

(un+1 − un) converge si et

seulement si la suite (un) converge et dans ce cas,

+∞∑
n=0

(un+1 − un) = lim
n→+∞

un − u0.

Il faut savoir le démontrer.

Propriété. Si
∑

an et
∑

bn convergent et si λ ∈ K, alors
∑

(an + λbn) converge et
+∞∑
n=0

(an + λbn) =

+∞∑
n=0

an + λ

+∞∑
n=0

bn. Ainsi, l’ensemble des séries convergentes de vecteurs est un sous-

espace vectoriel de S(E), noté Sconv(E) et l’application

Sconv(E) −→ K∑
an 7−→

+∞∑
n=0

an
est linéaire.

Il faut savoir le démontrer.

Propriété. La somme d’une série convergente et d’une série divergente est une série divergente.

Remarque. On en déduit que, si la somme de deux séries est convergente, ces deux séries ont même
nature. Cependant, il est possible qu’elles divergent toutes les deux. Par exemple,

∑
an +

∑
(−an)

converge, même lorsque
∑

an diverge.

Propriété. Si une série converge, son terme général tend vers 0. La réciproque est fausse.
Il faut savoir le démontrer.

Définition. Lorsque la suite an ne tend pas vers 0, on dit que la série
∑

an diverge grossièrement.

Propriété. La série géométrique
∑

an converge ssi |a| < 1 et dans ce cas

+∞∑
n=0

an =
1

1− a
.

Propriété. Séries à valeurs dans un produit.
Soient p ∈ N∗ et E1, . . ., Ep p espaces vectoriels normés. On note E = E1 × · · · × Ep que l’on munit
de l’une des trois normes classiques.
Soient (xn)n∈N = ((x1,n, . . . , xp,n))n∈N une suite d’éléments de E.
Alors la série

∑
xn converge si et seulement si, pour tout i ∈ Np,

∑
xi,n est convergente.

De plus, dans ce cas,

+∞∑
n=0

xn =
( +∞∑

n=0

x1,n, . . . ,

+∞∑
n=0

xp,n

)
.

Propriété. Séries à valeurs dans un espace de dimension finie.
On suppose que E est un K-espace vectoriel de dimension finie dont e = (e1, . . . , eq) est une base.

Soit (xn) une suite de vecteurs de E. Pour tout n ∈ N, on note xn =

q∑
i=1

xi,nei.

Alors, la série
∑

xn converge dans E si et seulement si, pour tout i ∈ Nq, la série
∑

xi,n converge

dans K, et, dans ce cas,

+∞∑
n=0

xn =

q∑
i=1

( +∞∑
n=0

xi,n

)
ei.

Propriété. Soit
∑

an une serie de complexes. Elle converge si et seulement si les séries
∑

Re(an) et∑
Im(an) convergent, et dans ce cas

+∞∑
n=0

an =

+∞∑
n=0

Re(an) + i

+∞∑
n=0

Im(an).

6 Convergence absolue

Définition.
∑

an ∈ S(E) vérifie le critère de Cauchy si et seulement si

∀ε ∈ R∗
+ ∃N ∈ N ∀n ≥ N ∀p ∈ N ∥

p∑
k=1

an+k∥ ≤ ε.
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Propriété.
∑

an converge si et seulement si elle vérifie le critère de Cauchy.
Il faut savoir le démontrer.

Définition.
∑

an est absolument convergente si et seulement si la série
∑

∥an∥ est convergente.

Propriété. Soit
∑

an ∈ S(E) . Si
∑

an est absolument convergente, alors elle converge

et ∥
+∞∑
n=0

an∥ ≤
+∞∑
n=0

∥an∥ (Inégalité triangulaire). La réciproque est fausse.

Il faut savoir le démontrer.

Définition.
∑

an est semi-convergente ssi elle converge sans être absolument convergente.

7 Séries à termes positifs

7.1 Théorèmes généraux

Théorème. Soit
∑

an ∈ S(R+). Alors
∑

an converge si et seulement si la suite de ses sommes

partielles est majorée, et dans ce cas, en posant pour tout n ∈ N, An =

n∑
k=0

ak,

+∞∑
n=0

an = sup
n∈N

An.

Il faut savoir le démontrer.

Remarque. Lorsque
∑

an ∈ S(R+) diverge, on peut écrire que

+∞∑
n=0

an = +∞.

Propriété. Soient
∑

an,
∑

bn ∈ S(R+) telles que ∀n ∈ N an ≤ bn.

Si
∑

bn converge, alors
∑

an converge et

+∞∑
n=0

an ≤
+∞∑
n=0

bn.

Si
∑

an est divergente, alors
∑

bn diverge.
Il faut savoir le démontrer.

Remarque. Lorsque
∑

an une série de complexes absolument convergente, on peut montrer qu’elle
est convergente de manière élémentaire, sans utiliser la notion hors programme de suite de Cauchy.
Il faut savoir le démontrer.

Propriété. On note l1(K) = {(un)n∈N ∈ KN/
∑

|un|converge } et pour tout u = (un)n∈N ∈ l2(K),

posons ∥u∥1 =
∑
n∈N

|un|. Alors (l1(K), ∥.∥1) est un K-espace vectoriel normé.

Il faut savoir le démontrer.

Propriété. On note l2(K) = {(un)n∈N ∈ KN/
∑

|un|2converge } et pour tout u = (un)n∈N ∈ l2(K),

posons ∥u∥2 =

√∑
n∈N

|un|2. Alors (l2(K), ∥.∥2) est un K-espace vectoriel normé.

Il faut savoir le démontrer.

Définition. Soit (an) et (bn) deux suites d’un K-espace vectoriel normé E.
— an = O(bn) ⇐⇒ ∃C ∈ R+, ∃N ∈ N, ∀n ≥ N, ∥an∥ ≤ C∥bn∥.
— an = o(bn) ⇐⇒ ∀ε > 0, ∃N ∈ N, ∀n ≥ N, ∥an∥ ≤ ε∥bn∥.
— an ∼ bn ⇐⇒ an − bn = o(bn).

Remarque. Lorsque E = C, si pour tout n ∈ N, bn ̸= 0, alors

— an = O(bn) ⇐⇒ an
bn

est bornée ;

— an = o(bn) ⇐⇒ an
bn

−→
n→+∞

0 et
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— an ∼ bn ⇐⇒ an
bn

−→
n→+∞

1.

On montrera plus tard le théorème suivant, dont l’énoncé peut être utilisé dès maintenant.
On dit que la suite an est négligeable devant la suite bn si et seulement si an = o(bn).
De même, on dit que la fonction f(x) est négligeable devant g(x) lorsque x est au voisinage de a si et
seulement si f(x) = o(g(x)) au voisinage de a, c’est-à-dire, en supposant que l’on peut diviser, si et

seulement si
f(x)

g(x)
−→
x→a

0.

Théorème des croissances comparées : Soit α, β, γ ∈ R∗
+ et a > 1.

1. Les suites lnα(n), nβ , an et n! tendent vers +∞ et chacune est négligeable devant les suivantes.

2. Au voisinage de +∞, les fonctions lnα x, xβ et eγx tendent vers +∞ et chacune est négligeable
devant les suivantes.

3. Au voisinage de 0+, | lnx|α = o
( 1

xβ

)
.

4. Au voisinage de −∞, eγx = o
( 1

|x|β
)
.

Propriété. Soit
∑

an une série de vecteurs et
∑

bn une série de réels positifs.
On suppose que ∥an∥ = O(bn).
Si la série

∑
bn converge, alors

∑
an est absolument convergente.

Si la série
∑

∥an∥ diverge, alors
∑

bn est divergente.

Remarque. En pratique, on utilise souvent ce théorème lorsque an = o(bn).

Théorème. Soient
∑

an,
∑

bn ∈ S(R+) telles que an ∼ bn. Alors les deux séries ont la même nature.

Théorème. Soit
∑

an,
∑

bn ∈ S(R). On suppose que bn est positif à partir d’un certain rang ou
bien que bn est négatif à partir d’un certain rang. Si an ∼ bn, alors

∑
an et

∑
bn ont la même nature.

méthode : pour étudier la nature d’une série, on commence par rechercher un équivalent
de son terme général.

7.2 Séries de Riemann

Technique de comparaison entre séries et intégrales (TCSI) : Soit n0 ∈ N.
Soit f : [n0,+∞[−→ R une application décroissante et continue. La TCSI consiste en la présentation
des trois étapes suivantes :
Première étape : Soit k > n0. f étant décroissante, pour tout t ∈ [k − 1, k], f(k) ≤ f(t) ≤ f(k − 1).

Deuxième étape : En intégrant, on obtient f(k) ≤
∫ k

k−1

f(t)dt ≤ f(k − 1).

Troisième étape : Soit n > n0 : en sommant,

n∑
k=n0+1

f(k) ≤
∫ n

n0

f(t)dt ≤
n−1∑
n=n0

f(k).

Il faut savoir présenter cette technique.

Théorème de comparaison entre séries et intégrales : Sous les mêmes notations et hypothèses,

la série
∑

f(n) a même nature que la suite
(∫ n

n0

f(t)dt
)
n≥n0

.

Il faut savoir le démontrer.

Propriété. La série de Riemann
∑
n≥1

1

nα
converge si et seulement si α > 1.

Il faut savoir le démontrer.

Critère de Riemann : Soient
∑

an ∈ S(R+).
S’il existe α > 1 tel que nαan −→

n→+∞
0, alors

∑
an converge.

S’il existe α ≤ 1 tel que nαan −→
n→+∞

+∞, alors
∑

an diverge.
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