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Limites et continuité 1 Topologie dans un espace métrique

K désigne R ou C.

1 Topologie dans un espace métrique

Pour tout ce chapitre, on fixe un espace métrique (£, d) non vide.

1.1 Ouverts et fermés

Définition. Soient x € E et V une partie de E.
’V est un voisinage de z si et seulement s’il existe r > 0 tel que B,(z,7) C V.‘
V(z) désignera I'ensemble des voisinages de .

Remarque. Si F est un espace vectoriel normé, lorsqu’on remplace la norme sur F
par une norme équivalente, pour tout z € E, V(z) n’est pas modifié.

Propriété. La notion de voisinage satisfait les propriétés suivantes :

o Pour tout x € B, E € V().

o Pour tout x € E et tout V € V(x),si W DV, alors W € V(x).

o Siz € FEetsi(V,W)eV(x)? alors VNI € V(z).
Démonstration.
o Soit x € E. B,(x,1) C E, donc E € V(x).
o Soient z € E, Ve V(z)et WD V.
Il existe r > 0 tel que B,(z,7) C V C W, donc W € V(z).
o Soient z € E et (V,W) € V(). 1l existe (r,r’") € (R*)? tel que By(x,r) C V et
B,(z,r") C W. Posons r” = min(r,1"). By(z,7”) CVNW,donc VNW € V(x).O
Propriété. Si x € F, une intersection finie de voisinages de x est un voisinage de x.
Démonstration.

Par récurrence sur le nombre de voisinages. O

Définition. Soit U une partie de E.
]U est un ouvert si et seulement si U est un voisinage de chacun des ses points.\

Remarque. “Intuitivement”, U est un ouvert si et seulement si aucun point de la
frontiere de U n’est dans U. Notons Fr(U) la frontiere de U. Ainsi, U est un ouvert
si et seulement si Fr(U) N U = (). Plus tard, lorsque nous aurons mathématiquement
défini la frontiere de U, cette propriété se démontrera. Pour le moment, elle donne une
version intuitive de la notion d’ouvert, fondée sur la notion intuitive de frontiere d’une
partie.

Propriété. La notion d’ouvert satisfait les propriétés suivantes :
o (0 et E sont des ouverts de E.
¢ Une intersection finie d’ouverts est un ouvert.
o Si I est un ensemble quelconque (éventuellement de cardinal infini) et si (U;);es

est une famille d’ouverts de F, alors U U; est un ouvert de E.
iel

©Eric Merle 2 MPSI2, LLG



Limites et continuité 1 Topologie dans un espace métrique

Démonstration.
o Vzel® 0e€V(r),donc D est un ouvert de E.
o Pour tout x € E, F € V(x), donc E est un ouvert de E.

p
o Soient p € Net Uy, ..., U, p ouverts de E. Soit x € ﬂ U;.
i=1

p
Pour tout i € Ny, z € U;, donc U; € V(zx). Ainsi ﬂ U; € V(z).

=1
p

On a montré que ﬂ U; est un voisinage de chacun de ses points. C’est donc un ouvert.
i=1

o Soit I un ensemble quelconque et (U;);e; une famille d’ouverts de E. Soit = € U Ui;.
iel

Il existe j € I tel que z € U;. U; € V(x) et U; C UU“ donc UUi € V(z), ce qui

iel iel
prouve que U U, est voisinage de chacun de ses points, donc que c’est un ouvert. O
iel
Définition. L’ensemble des ouverts de E est appelé la topologie de E.

Propriété. Les ouverts sont exactement les réunions de boules ouvertes.

Démonstration.
e Soit (a,r) € E x R%. Montrons que B,(a,r) est un ouvert.
Soit « € B,(a,r). Posons a = r — d(a,x) > 0. Pour tout y € B,(z, a),
d(a,y) < d(a,z) + d(z,y) < d(a,z) + o =r, donc y € B,(a,r). Ainsi
B,(z,a) C B,(a,r), ce qui prouve que B,(a,r) € V(z). Ainsi B,(a,r) est voisinage de
chacun de ses points, donc c’est un ouvert.
Une réunion de boules ouvertes est donc un ouvert, en tant que réunion d’ouverts.
e Réciproquement, soit U un ouvert de E. Pour tout « € U, U est un voisinage de =,
donc il existe r, > 0 tel que B,(z,r,) C U.
Pour tout x € U, B,(x,r,) C U, donc U B,(z,r,) CU.
zelU

De plus, siy € U, y € B,(y,ry) C U B,(z,r,;), donc U C U B,(x,r,). Ainsi

zelU zelU
U= U B,(x,r;). O

zelU

Remarque. Dans la démonstration précédente, I'existence de la famille (r, ),y utilise
I’axiome du choix. On peut s’en passer car en adaptant la démonstration précédente,
on peut montrer que si U est un ouvert, alors U est la réunion de toutes les boules
ouvertes incluses dans U.

Remarque. Les intervalles ouverts de R sont des ouverts de R.

Démonstration.

e Soit I un intervalle ouvert de R. Si I =]a, b[ avec (a,b) € R? et a < b, I est la boule
a b—a

ouverte de centre et de rayon
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Limites et continuité 1 Topologie dans un espace métrique

o Sil=|a,+oo[,onaecR, = U]a,a + n[ est un ouvert.
neN
e Enfin,si ] =] —o0,af,oua R, I = U]a — n,al est aussi un ouvert. O
neN
Remarque. Une intersection infinie d’ouverts n’est pas toujours un ouvert.
Démonstration.
Pour tout n € N*, ]0,1+ 2] est un ouvert de R,

mais ﬂ 10,14+ —[=]0, 1] n’est pas un ouvert car ]0, 1] n’est pas un voisinage de 1. En
n
neN*
effet, pour tout r > 0, B,(1,r) =]1 —r, 1 +r[Z]0,1]. O
Définition.
Une partie ' de E est un fermé de E
si et seulement si son complémentaire est un ouvert.

Exemple. Z est un fermé de R car son complémentaire est ouvert : R\Z = U]n, n+1[.

nez
Remarque. “Intuitivement”, F' est un fermé si et seulement si tous les points de la
frontiere de F' sont dans F', ¢’est-a-dire si et seulement si F'r(F) C F. Plus tard, lorque
nous aurons mathématiquement défini la frontiere de I, cette propriété se démontrera.
Pour le moment, elle donne une version intuitive de la notion de fermé, fondée sur la
notion intuitive de frontiere d’une partie.

Propriété. La notion de fermé satisfait les propriétés suivantes :
¢ (et E sont des fermés de E.
¢ Une réunion finie de fermés est un fermé.
o Si I est un ensemble quelconque (éventuellement de cardinal infini) et si (F;);er
est une famille de fermés de E, alors ﬂ F; est un fermé de E.
iel
Démonstration.
o E\ 0 = F est un ouvert, donc ) est un fermé. De méme E est un fermé.
o Soient p € N* et I, ..., F, p fermés de E. E'\ U F, = m (E \ F;) est une
1<i<p 1<i<p
intersection finie d’ouverts, donc est un ouvert, donc U F; est un fermé de F.
1<i<p
o Soient I un ensemble quelconque et (F});cr, une famille de fermés de E.
E\ ﬂ F;, = U(E \ F}) est une réunion d’ouverts, donc est un ouvert, donc ﬂ F; est
el el el
un fermé de E. O
Remarque. Une partie de E peut étre a la fois ouverte et fermée.

Remarque. Les intervalles fermés de R sont des fermés. En effet, leur complémentaire
est une réunion d’intervalles ouverts.

Remarque. Une réunion d’un nombre infini de fermés n’est pas toujours un fermé.
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Limites et continuité 1 Topologie dans un espace métrique

Démonstration.

Pour tout n € N*, [-1 4 £ 1 — 1] est un fermé mais
1 1

U -1+ —,1——] =] —1,1] n’est pas un fermé car R\| — 1, 1[¢ V(1). O
n n

neN*

Remarque. Il existe des parties de E qui ne sont ni fermées ni ouvertes. Par exemple,
[0, 1] n’est ni un ouvert de R, ni un fermé de R.
Propriété. Les boules fermées (donc en particulier les singletons) sont des fermés.

Démonstration.

Soit (a,r) € E x Ry. Soit © € E'\ Bf(a,r). Posons o = d(a,x) — r > 0 et montrons
que B,(z,a) C [E\ By(a,r)].

En effet, si y € B,(z,«), d(a,y) > d(a,x) — d(x,y) > d(a,z) — a = r, donc

y € E\ Bf(a,r).

Ainsi E'\ By(a,r) est un voisinage de z, pour tout « € E'\ Bf(a,r). Donc E \ By(a,r)
est un ouvert et Bf(a,r) est un fermé de E. O

Corollaire. Toute partie de FE de cardinal fini est un fermé de F.

Démonstration.
C’est une réunion finie de singletons. O

1.2 Adhérence et intérieur

Définition. Soient a € E et A une partie de E. On dit que a est un point intérieur

de A si et seulement si A € V(a). On note A 'ensemble des points intérieurs de A.

Ainsi, pour tout a € E, la € A<= A€ V(a)|.

Remarque. Intuitivement, A = A\ Fr(A), propriété que nous démontrerons effecti-
vement plus loin.

Exemples. Dans R, l'intérieur de [a, b] est |a, b[, U'intérieur de [a, +o00[ est ]a, +oo[ et
I'intérieur de Q est ().

DansE,LOE':Eet(Dzﬂ.

Propriété. Soit A une partie de E. A est la réunion des ouverts contenus dans A.
C’est le plus grand ouvert inclus dans A.

Démonstration.
e Notons U 'ensemble des ouverts inclus dans 4 et B = U U.

Ueu
Si x € B, il existe U € U tel que z € U. U est un ouvert, donc il est voisinage de

chacun de ses points. En particulier, U € V(x), mais U C A, donc A € V(x) et x € A.

Ainsi B A,
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Limites et continuité 1 Topologie dans un espace métrique

e Siz e A il existe r > 0 tel que B,(x,r) C A. B,(z,r) € U, donc z € B. Ainsi

o

ACB.

[¢]
e En tant que réunion d’ouverts inclus dans A, A est un ouvert contenu dans A. De

plus, si C' est un ouvert contenu dans A, C' € U, donc C' C U U = A. Ainsi A est le

veu
plus grand ouvert inclus dans A. O

Propriété. Soient A et B deux parties de F.
o ACA,

(0]
o A= Asiet seulement si A est un ouvert,

o]
o

—_—— o
o ANB=ANAB.
Démonstration.

Les trois premieres proprletes sont simples a établir.

o Supposons que A C B. A est un ouvert contenu dans A donc dans B et B est le

plus grand ouvert contenu dans B, donc A - B .

(¢} o o

—N— o —N— o —N— o o
o ANB C Adonc ANB C A. De méme, ANB C B,donc ANBC ANB.

o] [¢] o o] (o] [} /—M
De plus, AC Aet BC B,donc ANBCANB,puis ANBC ANB.O

o} o /_M . .
Remarque. AU B C AU B mais la réciproque est fausse.

Démonstration. . . .
fe) /_/\ o /_/\ o fe) /_/\
ACAUB,donc AC AU B. De méme, BC AUB, donc AUB C AU B.

o /—/\ . /_/% . . .
Dans R, Q =0 et R\ Q = (), mais QU (R \ Q) = R, donc l'inclusion réciproque n’est
pas toujours vraie. O

Définition. Soient a € E et A une partie de E. On dit que a est un point adhérent
de A si et seulement si, pour tout V€ V(a), VN A # (.

On note A I'ensemble des points adhérents de A. A est appelée 'adhérence de A.
Ainsi, pour tout a € E, |a € A<= [VV € V(a) VN A#]|.
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Limites et continuité 1 Topologie dans un espace métrique

Remarque. Intuitivement, A = AU Fr(A), propriété que nous démontrerons effecti-
vement plus loin.

Exemples. Dans R, adhérence de ]a, ] est [a, ], 'adhérence de Ja, +o0[ est [a, +00]
et Padhérence de Q est R.
Dans E, E = E et () = 0.

Remarque. R désigne tantot Uadhérence de R et est alors égal a R, tantot la droite
numérique achevée R = R U {—00, +00}. Seul le contexte permet de déterminer dans
quel cas on est placé.

Remarque de la remarque : En fait, R U {—o0, +0o0} est bien I'adhérence de R,
et c’est d’ailleurs lexplication de cette notation R, mais dans un contexte d’espace
métrique qui n’est pas au programme :

notons temporairement A = R U {—o00, +0o0}.

Convenons que arctan(+o00) = 5 et que arctan(—oo) = -3

Pour tout x,y € A, posons d(x,y) = |arctan(x) — arctan(y)].

On vérifie facilement que d est une distance sur A.

Soit € > 0. Posons z = tan(§ — 5) € R. Alors d(4o00,2) = |5 — (5 — §)| = §, donc
x € B,(+00,¢). Ceci prouve que, pour tout € > 0, B,(+00,e) NR # ), donc +oo
appartient & 'adhérence de R, que I'on désigne ici par R. De méme, on montre que
—00 € R. Or R C R, donc A C R, mais bien sir, R C A, donc on peut écrire que
A=R.

o

— o~ o R
Propriété. Soit A une partiede E. E\A=FE\Aet E\ A=F\ A.

Démonstration. - -
Soitz € E.x € E\A<=x¢ A<= (IV € V(z) VN A=0), donc

e B\ A= (AV V() VCE\A) ez cE\A

En appliquant cette propriété au complémentaire de A, on en déduit que
,—/_ [e) o S
E\N\E\A=FE\(E\A)=A,donc E\A=FE\ A.0

Corollaire. Soit A une partie de E.
A est 'intersection des fermés contenant A. C’est le plus petit fermé contenant A.

Démonstration.

Notons F l’ensemble des fermés contenant A et U 'ensemble des ouverts inclus dans
— U u —

F ¢ F

F — E\F® U — E\U
I’autre, et donc ces applications sont bijectives. On peut donc effectuer le changement
de variable F' = FE \ U.

E\ A. Les applications sont réciproques l'une de

Z:E\(E\A):E\sz\ Uv=NE\v)=)F.

veu veu reF
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Limites et continuité 1 Topologie dans un espace métrique

En tant qu’intersection de fermés contenant A, A est un fermé contenant A. De plus,
si G est un fermé contenant A, G € F, donc A C G. Ainsi A est le plus petit fermé
contenant A. O

Propriété. Soient A et B deux parties de E.

o A O A,
o E = A si et seulement si A est un fermé,
o A=A,
o ACB AC B et
o AUB =AUB.
Démonstration.

Les trois premieres propriétés sont simples a établir.

o Supposons que A C B. B est un fermé contenant B donc A et A est le plus petit
fermé contenant A, donc A C B.

o AUB D Adonc AUB D A. De méme, AUB D B, donc AUB D AU B.

De plus, AD Aet B> B,donc AUB D> AUB, puis AUB D> AU B. O

Remarque. AN B D AN B mais la réciproque est fausse.

Démonstration.

ADANB,donc AD>ANB. Deméme, B> ANB,donc ANB D> ANB.

Dans R, Q =R et R\ Q = R, mais QN (R \ Q) = 0, donc I'inclusion réciproque n’est
pas toujours vraie. O

Propriété (hors programme) : Soit (z,,) une suite de points de E.
Pour tout N € N, notons Xy = {z,,/n > N}.
Alors 'ensemble des valeurs d’adhérence de (x,,) est ﬂ Xn.
NeN

En particulier, 'ensemble des valeurs d’adhérence de (x,) est un fermé.
Démonstration.
a est une valeur d’adhérence de (z,,) si et seulement si
(1) : Ye>0VNeN In> N d(z,,a) <e, or
(1) <= VNeNVe>0 XynDB,(a,e)#0D

<= VN eNVV eV XnnV #0

«—=VNeNaeXy
Ainsi, a est une valeur d’adhérence de (x,,) si et seulement si a € ﬂ Xy. O

NeN

Définition. Soit A une partie de E. Soit x € A.
On dit que z est isolé dans A si et seulement si il existe V' € V(x) tel que VN A = {z},
c’est-a-dire si et seulement si z ¢ A\ {z}.

Définition. Soit A une partie de E. Soit x € E.
On dit que x est un point d’accumulation de A si et seulement si, pour tout V' € V(z),
(VN A)\ {z} #0, c’est-a-dire si et seulement si z € A\ {z}.
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Propriété. Soient A une partie non vide de E et a € E. Alors d(a, A) = 0 <= a € A.
Ainsi les points adhérents de A sont les points de E' situés a une distance nulle de A.

Démonstration.

a€ A (VWWeV() VNA+D) < (Ve e RY B,(a,e)NA#D),

donc a € A<= (Ve e R} 3z € A d(a,z) < ¢) <= inf{d(z,a)/z € A} = 0.
Ainsi a € A < d(a,A) = 0.0

Remarque. On a vu lors de la présentation de l’ensemble des réels (Logique et
vocabulaire ensembliste, paragraphe 7.3.7) qu'une partie A de R est dense dans R si
et seulement si pour tout z,y € R avec < y, il existe a € A tel que r < a < y. On
souhaite adapter cette définition a une partie d’un espace métrique quelconque.

Propriété. Une partie A de R est dense dans R si et seulement si A rencontre toutes
les boules ouvertes de R.

Démonstration.

Notons Z = {|x,y[/x < y} : Z désigne donc I'ensemble des intervalles ouverts, non vides,
et bornés de R. D’apres la remarque précédente, A est dense dans R si et seulement si
A rencontre tous les éléments de 7.

Notons B = {B,(c,r)/c e R, r € R* } :

B désigne I'ensemble des boules ouvertes de R. B = {|lc —r,c +r[/c € R, r € R} },
donc B C Z. Mais réciproquement, pour tout z,y € R avec x < y, |z, y[= BO(%”, =),
donc Z C B. Ainsi Z = B et A est dense dans R si et seulement si A rencontre tous les

éléments de B, ce qu’il fallait démontrer O

Définition. Soit A une partie de E.
A est dense dans E si et seulement si A rencontre toutes les boules ouvertes de E.

Propriété. Une partic A de E est dense dans E si et seulement si A = F.

Démonstration.

Supposons que A = E et soit (a,7) € ExR*. a € E = A et B,(a,r) € V(a), donc
B,(a,r) N A # (. Ainsi, A rencontre toutes les boules ouvertes.

Réciproquement, supposons que A rencontre toutes les boules ouvertes de E. Soient
a € EetV € V(a). Il existe r > 0 tel que B,(a,r) C V, or AN B,(a,r) # 0, donc
VNA#0D. Ainsi, a € A pour tout a € E, donc A = E. O

Définition. Soit A une partie de E.
La frontitre de A est |Fr(A) = A\ A=ANE\A=AN(E\ A)|

Propriété. La frontiere d’une partie de E est toujours fermée.

Démonstration.
Fr(A) = AN E\ A est une intersection de deux fermés. O

Exemple. Dans R, Fr([a,b]) = {a,b}, Fr(R) =0 et Fr(Q) =R.

Propriété. Soit A une partie de E. [A\ Fr(A)] = AcAcA= [AU Fr(A)].

©Eric Merle 9 MPSI2, LLG



Limites et continuité 1 Topologie dans un espace métrique

Démonstration. . .
o Soit x € A\ Fr(A). Siz ¢ A, x € A\ A, donc x € Fr(A), ce qui est faux. Ainsi

o

x € ;1, ce qui prouve que A\ Fr(A) C A.

Réciproquement, supposons que © € A. Si z € Fr(A), x ¢ A, donc x € A\ Fr(A).

[¢]

Ainsi, [A\ Fr(A)] = A.

o Soitr €A Sizg A e Z\;l = Fr(A), donc, dans tous les cas, x € AU Fr(A).
Réciproquement, supposons que x € AU Fr(A). Siz € A alors x € A.

Size Fr(d)=A\ ;1, on a aussi ¢ € A, donc dans tous les cas, © € A, ce qui prouve
que A=[AUFr(A)].o

Propriété. Soit A une partie de E.

A est ouvert si et seulement si AN Fr(A) = 0.

A est fermé si et seulement si F'r(A) C A.

Démonstration.

o Si Aest ouvert, A=A, donc Fr(A)N A= (A\ A)NA=1.

Réciproquement, supposons que Fr(A)NA = 0. Alors A = A\ Fr(A) = A, donc A
est ouvert. B

o Si A est fermé, Fr(A) C Fr(A)UA=A=A.

Réciproquement si F'r(A) C A, A= AU Fr(A) = A, donc A est fermé. O
Remarque. Toutes ces notions sont définies uniquement & l'aide de la notion de

voisinages, donc lorsque F est un espace vectoriel normé, elles restent inchangées si on
change la norme de F par une norme équivalente.

1.3 Caractérisation par les suites

Propriété. Soient A une partie de F et a € E.
’a € A si et seulement s'il existe une suite d’éléments de A qui converge vers a.‘

Démonstration.

o Supposons que a € A. Pour tout n € N*, il existe x,, € AN By(a, %) Ainsi (z,,) est

une suite d’éléments de A et z, — a car d(x,,a) <+ — 0.

n—-+o0o " pn—too
o Réciproquement, supposons qu’il existe une suite (z,) d’éléments de A tels que
T, — a.
n—+00

Soit V' € V(a). Il existe ¢ > 0 tel que B,(a,e) C V. z, @ donc il existe N € N* tel
n—-+0oo
que pour tout n > N, d(x,,a) < &. En particulier, 2y € AN B,(a, &), donc VN A # 0,

ce qui prouve que a € A. O
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Limites et continuité 1 Topologie dans un espace métrique

Corollaire. A est dense dans E si et seulement si pour tout [ € F, il existe (z,) € AN

telle que =z, — L.
n—-+o0o

Exercice. Soiglt _A et B deux parties non vides de F.
Montrer que d(A, B) = d(A, B).

Résolution.
e {d(a,b)/(a, b)eAxB}C{d( B)/(a, B) € A x B}, donc
d(A, B) = inf({d(a,b)/(a,b) € A x B})

> inf({d(a, 5)/(a, ) € A B}) = d(4,
e Soit (a, 3) € A x B. 1l existe (a,,) € AN et (b,

telles que a,, — aetb, — f.
n—-+0o0o n—-+o0o

Pour tout n € N, (a,,b,) € A x B, donc d(a,,b,) > d(A, B),
or d(an, by,) - d(a, B). En effet,
|d(a7 B) - d<an7 bn)| < |d(a> ﬁ) - d(aa bn)| + |d(01, bn) - d(aTH bn)|
< d(ﬁa bn) + d(Oé7 an) —+> 0.
n—-+0oo

(remarque : lorsque d est associée a une norme |||, seul cas au programme,

il est plus simple d’écrire que

|d(e, B) =d(an, bn)| = [l =Bl = llan =nll| — [lla= B[l =[la =gl =0, dapres
n—+o0o

les théoremes usuels sur les suites de vecteurs.)
Ainsi, d(a, ) > d(A, B), pour tout (a, 3) € A x B, ce qui prouve que
d(A,B)= inf d(a,B)>d(A,B).
(a,)€AXB
Propriété.
A est fermé si et seulement si toute suite convergente d’éléments de A
a pour limite un élément de A.

Démonstration.

e Supposons que A est fermé et soit (a,) une suite convergente d’éléments de A.
Notons a sa limite. a € A et A = A, donc a € A.

e Réciproquement, on suppose que toute suite convergente d’éléments de A a pour

limite un élément de A. Soit a € A. Il existe une suite (a,) de A telle que a, - @
n—-+0o0

D’apres ’hypothese, a € A, donc A C A, ce qui montre que A est fermé. O

Exemple. Montrons que toute droite de C est fermée :

Soit D une droite de C. Il existe ay € C et € R tels que D = ag + Re. Ainsi, pour
tout 2 € C, 2 € D <= e (2 — ag) € R <= Im(e (2 — ag)) = 0.

Soit (z,) € DN une suite d’éléments de D telle que 2, — 2z € C.

n—-+00
Pour tout n € N, Im(e~%(2, — ag)) = 0, or d’apres le cours,
Im(e (2, — ap)) - Im(e (2 — ag)), donc Im(e?(z — ag)) = 0 ce qui montre que
—4-00

z € D. D’apres la caractérisation des fermés, D est bien un fermé.

Exemple. En adaptant le raisonnement,
montrer que {(z,y,2) € R® / 2% —sin(zy) > y3} est un fermé de R3.
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Limites et continuité 1 Topologie dans un espace métrique

Propriété. Soit G un K-espace vectoriel normé de dimension finie ou infinie.
Tout sous-espace vectoriel de G de dimension finie est fermé.

Démonstration.

Soit F' un sous-espace vectoriel de G de dimension finie.

Soit (x,) une suite d’éléments de F' qui converge vers [ € G.

En tant que suite convergente de G, (z,) est une suite de Cauchy de G, donc c’est
une suite de Cauchy de F', mais F' est de dimension finie, donc F' est complet, ce qui
prouve que la suite (z,) converge dans F', donc [ € F. Ainsi F' est fermé. o

1.4 Topologie induite sur une partie

Soit A une partie de E. On a déja vu qu’alors (A, d|2) est un espace métrique.

On a également vu que la topologie d'un espace métrique est I'ensemble de ses ou-
verts. Par extension, la topologie d'un espace métrique désigne tout ce qui concerne ses
ouverts, fermés, adhérences, intérieurs etc.

Dans ce contexte, on parle de la topologie “induite” sur A par la topologie “globale”
de E, ou encore de la topologie relative a A. On dispose ainsi des voisinages, ouverts,
fermés, intérieurs, adhérences, frontieres et ensembles denses pour la topologie induite
(on parle de voisinages relatifs a A, ouverts relatifs etc.).

Propriété. Les boules, ouverts, fermés et voisinages pour la topologie induite sur
A sont les traces sur A des boules centrées dans A, des ouverts, des fermés et des
voisinages pour la topologie de E.

Démonstration.

e Soit (a,7) € A x R%. La boule ouverte de centre a et de rayon r pour la topologie
induite est B (a,r) = {x € A/d(a,z) < r} = BE(a,r) N A.

La démonstration est identique pour les boules fermées.

e Soit Uy un ouvert pour la topologie induite sur A. C’est une réunion de boules
ouvertes de la forme B2 (a,r) ol (a,7) € A x R}. Donc Uy est de la forme

UBoA(ai,ri) =AnN UBf(ai,ri)> = ANU ou U est un ouvert de F.
i€l i€l
fiéciproquement, soit [e] un ouvert pour la topologie globale de E. Soit a € U N A. 1l
existe r > 0 tel que B,(a,7) C U, donc B (a,r) C U N A. Ainsi, pour la topologie
induite sur A, U N A est voisinage de chacun de ses points, donc est un ouvert.

e Soit F4 une partie de A. F4 est un fermé pour la topologie induite si et seulement
si A\ F4 est un ouvert pour la topologie induite, donc si et seulement s’il existe un
ouvert U pour la topologie globale tel que A\ F4 = ANU. Ainsi F4 est un fermé pour
la topologie induite si et seulement s’il existe un ouvert U pour la topologie globale tel
que Fy = A\ (ANU) = (E\U)N A. Donc les fermés pour la topologie induite sont
les traces sur A des fermés pour la topologie globale.

e Soient V une partie de A et a € A.

Supposons que V € VA(a). Posons W =V U (E \ A). Ainsi V =W N A.
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Limites et continuité 1 Topologie dans un espace métrique

Il existe r > 0 tel que BE(a,7)NA = BA(a,r) C V. Ainsi B¥(a,r) C W et W € VE(a).
Donc V =W N A est la trace sur A d'un voisinage de a pour la topologie globale.
Réciproquement, supposons que V' est la trace sur A d’un voisinage de a pour la
topologie globale. Ainsi V = WNAou W € V¥(a). Il existe r > 0 tel que BE(a,r) C W.
Alors BX(a,r) = B¥(a,r)NACWNA=V, ce qui prouve que V € V4(a). O

Propriété. Si B est une partie de A, 'adhérence de B pour la topologie induite sur
A est la trace sur A de I'adhérence de B pour la topologie globale sur E.
Démonstration.

Soit a e A.

a€B < (YW eVAa) VNB#0) = (YW eVE(a) WNANB+£0),

or BC A,donc ANB = B. Ainsia € B'e=ac EE, ce qui montre que B = AnB".
|

Remarque. L’intérieur et la frontiere pour la topologie induite sur A ne correspondent
pas aux traces sur A des intérieur et frontiere pour la topologie globale de F.

Démonstration. M
Prenons B = A = [a,b]. B =]a—1,b+ 1|NA est un ouvert de A, donc B = A = [a, b],
o E

mais ANB  =|a,bl.
Avec le méme exemple, Fr?(B) = () mais AN Frf(B) = {a,b}. O

Propriété. Soit B une partie de A. ’B est dense dans A si et seulement si A C B -
Démonstration. . 3
B est dense dans A si et seulement si B N A = B = A, donc si et seulement si

ACEE.D

1.5 Les compacts

Définition. Soit A une partie de E.

A est compacte si et seulement si
toute suite d’éléments de A admet au moins une valeur d’adhérence dans A.

Remarque. Lorsque F est un K-espace vectoriel, si NV et N’ sont deux normes
équivalentes sur F, alors une partie de E est compacte pour N si et seulement si
elle est compacte pour N'.

Propriété. Tout compact de E est fermé et borné.

Démonstration.

e Soit A un compact de E. Soit (z,) une suite d’éléments de A qui converge vers
x € E. A étant compact, (x,) admet au moins une valeur d’adhérence dans A, or z est
I'unique valeur d’adhérence de (x,,), donc x € A. Ainsi A est fermé.

e Il existe e € E. Supposons que A n’est pas borné. Ainsi pour tout n € N, il existe
x, € Atel que d(e,z,) >mn.Si¢ : N — N est une application strictement croissante,
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Limites et continuité 1 Topologie dans un espace métrique

de,zpm)) = ©(n) > n = +00, ainsi la suite (z,(,)) n'est pas bornée donc ne
n—-+0oo

converge pas. Ainsi la suite (x,) n’admet aucune valeur d’adhérence, ce qui est faux.
On en déduit que A est borné. O

Théoreme. La réciproque est vraie en dimension finie : si E est un K-espace vectoriel
de dimension finie, les compacts de F sont exactement ses fermés bornés.

Démonstration.

Soit F un K-espace vectoriel de dimension finie et soit A une partie fermée bornée de
E. Soit (z,) € AN

A est bornée, donc (z,,) est une suite bornée de E donc, d’apres le théoreme de Bolzano-
Weierstrass, elle possede une valeur d’adhérence a € E. Il existe une extraction (z,(,))
de (x,) qui converge vers a, mais (Zy(,)) € A" et A est fermé, donc a € A. O

Remarque. Pour le moment, ce théoreme ainsi que le théoreme de Bolzano-Weierstrass
sont demontres uniquement lorsque sur E, on utilise la norme N définie par : si

y—ZylezeE alors N (y Z|yz| ol e = (eq,...,e,) est une base de FE.

=1
Nous démontrerons page 40 que sur un espace vectoriel de dimension finie, toutes les

normes sont équivalentes, donc ces théoremes sont vrais pour toute norme de FE.
Cependant, pour démontrer que toutes les normes sont équivalentes sur un espace E
de dimension finie, nous utiliserons que dans E' les fermés bornés sont compacts, mais
seulement pour la norme N : il n’y aura donc pas de cercle vicieux.

Propriété. Soit A un compact de F.
]Lorsque B C A, B est compact si et seulement s’il est fermé.\

Démonstration.

Supposons que B est compact. Alors il est fermé d’apres la propriété précédente.
Réciproquement, supposons que B est fermé. Soit (z,,) une suite d’éléments de B. C’est
aussi une suite d’éléments de A qui est compact, donc il existe une application

¢ N — N, strictement croissante telle que (2,(,)) converge dans A.

Mais (zy(n)) € BY et B est un fermé, donc (z,(,)) converge dans B. Ainsi la suite (z,)
admet une valeur d’adhérence dans B, ce qui prouve que B est compact. O

Théoreme. Une suite d’éléments d’une partie compacte converge si et seulement si
elle admet une unique valeur d’adhérence.

Démonstration.

On sait déja que lorsqu’une suite converge, sa limite est son unique valeur d’adhérence.
Réciproquement considérons une suite (x,,) d’une partie compacte K de E. On suppose
que (z,) possede une unique valeur d’adhérence a mais que x, ne converge pas vers a
lorsque n tend vers +o0.

Il existe ¢ > 0 tel que, pour tout N € N, il existe n > N tel que d(x,,a) > ¢.
Ainsi, I'ensemble M = {n € N / d(z,,a) > €} n’est pas majoré, donc c’est une partie
infinie de N. D’apres le cours, il existe une unique bijection strictement croissante de
N dans M, que I'on notera . Alors, pour tout n € N, d(zy,(,),a) > €. Or la suite
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Limites et continuité 1 Topologie dans un espace métrique

extraite (x,(n)) est a valeurs dans K qui est compact, donc il existe b € K et une

application W strictement croissante de N dans N telle que xywn)) —+> b. Alors b est
n——+0o0

une valeur d’adhérence de (z,) donc d’apres I'unicité, b = a. Or, pour tout n € N,
d(Tp(w(n)),a) > €, donc en faisant tendre n vers +o0o (cf 'exercice en début de la page
11), on obtient d(b,a) > &, ce qui est faux car a = b. Ceci prouve par l'absurde que

r, — a.0
n——+o0o

Théoreéme. On suppose que E et F' sont deux K-espaces vectoriels normés.
]Si A et B sont des compacts de E et de F, alors A x B est un compact de E x F‘

Démonstration.
Soit ((Zn, Yn))nen € (A x B)N. A est compact, donc il existe une application
¢ N — N, strictement croissante et x € A tels que z,4,,) — .

n—-+o00
(Yp(n)) € BY et B est compact, donc il existe une application ¥ : N — N, strictement
croissante et y € B tels que y,wn) — y. De plus, par composition des limites,

n—-+o0o
Tp(w(n)) n_>—+>oo:1:. Ainsi (Zpow(n)s Ypou(n)) n_>—+>oo(x,y) € A x B, ce qui prouve que A x B
est un compact de £ X F. O
Corollaire. Soient p € N*, Fy, ..., E, p K-espaces vectoriels norméset A;, ..., A,
p compacts respectivement dans Ej, ..., E,. Alors A; x --- x A, est un compact de
Ey x - X B,
Démonstration.

Se démontre par récurrence sur p. O

Théoréme (hors programme) : Caractérisation de la compacité par la pro-
priété de Borel Lebesgue.

Soit A une partie de E. Les assertions suivantes sont équivalentes.

i) A est compact.

ii) Pour tout ensemble I et pour toute famille d’ouverts (U;);er telle que A C U U, il
iel
existe une partie J finie de [ telle que A C U U;.
ieJ
C’est la propriété de Borel Lebesgue, qui sigeniﬁe que, de tout recouvrement de A par
des ouverts, on peut en extraire un recouvrement fini.
iii) Pour tout ensemble I et pour toute famille de fermés (F;);c; telle que AN ﬂ F; =0,
icl
il existe une partie J finie de I telle que AN ﬂ F; = 0.
ieJ
Démonstration.
Par passage au complémentaire, ii) <= iii).
e Supposons iii) et montrons ).
Soit (z,,) une suite de points de A. Supposons qu’elle n’admet aucune valeur d’adhérence
dans A. Ainsi, avec les notations de la propriété précédente,
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AN ﬂ Xy =0, donc d’apres iii), il existe p € N tel que AN ﬂ Xy = 0. Mais la suite
NeN 0<N<p
(Xn) est décroissante au sens de l'inclusion, donc m Xy = Yp. Ainsi, AN X, =10,
0<N<p
ce qui est faux.
e i) = ii) : On suppose que A est compact. Si A est vide, la propriété ii) est vraie
(en prenant J = ()), donc on peut supposer que A est non vide pour la suite.
¢ Lemme de précompacité : Montrons d’abord que pour tout € > 0, A est recouvert
par un nombre fini de boules ouvertes de rayon e, c¢’est-a-dire qu’il existe n € N* et
T1,..., 0, € A tels que A C U B,(x;,¢€).
1<i<n
Pour cela, on raisonne par I’absurde, en supposant qu il existe € > 0 tel que, pour tout
n € N* et pour tout x1,...,2, € A, A ¢ U o(Ti, €
1<i<n
A étant non vide, il existe g € A. Or A ¢ B,(xo,¢), donc il existe 1 € A\ B,(xo,¢).
Ainsi, d(zg,x1) > €.
Soit p € N*. Supposons construits zo,...,z, € A tels que, pour 4,5 € {0,...,p}
avec i # j, d(z;,x;) > €. D’apres I'hypothese, A ¢ U o(z;,€), donc il existe
0<i<p
Tpi1 € A\ U o(2:,€). Alors, pour tout ¢,j € {0,...,p+1} aveci # j, d(x;, x;) > €.
0<i<p
Par récurrence, on a ainsi construit une suite (x,),en de vecteurs de A telle que, pour
tout 4,5 € N avec @ # j, d(x;,x;) > €.
A étant supposé compact, il existe a € A et ¢ : N — N strictement croissante telle

que ZTymy — a. Alors, pour tout n € N, d(2y(n), Tom+1)) > €, donc en faisant tendre
n——+0oo

n vers 400, on obtient d(a,a) > e, ce qui est faux.

Ceci démontre le lemme de précompacité.

o Soit maintenant un ensemble I et une famille d’ouverts (U;);c; telle que A C U U;.
icl

On souhaite déja montrer qu’il existe € > 0 tel que, pour tout z € A, il existe z: el

tel que B,(x,e) C U;,. Pour cela, on raisonne a nouveau par l’absurde en supposant

que pour tout € > 0, il existe x. € A tel que, pour tout i € I, B,(x.,e) ¢ U;.

Alors, pour tout n € N*, en prenant ¢ = %, il existe x,, € A tel que, pour tout ¢ € I,

Bo(xn, =) ¢ U;. A btant compact, il existe a € A et ¢ : N — N strictement croissante

telle que x,(,) — a. Par récurrence, on sait montrer que, pour tout n € N, o(n) >n.
n—+o0

a€ AC UUi’ donc il existe ig € I tel que a € U;,.
iel
Uj, est un ouvert, donc il existe a > 0 tel que B (a a) C UZO

Il existe N € N tel que d(z,(n),a) < § avec N > 2. Alors N)

Pour tout y € By(2y(n), ﬁ) d(y,a) < d(y,xw(N)) —i—d(xg,(N), a)
Bo(zy(nys w(N)) C B,(a,a) C Uy, ce qui est faux.
¢ On peut maintenant terminer la démonstration : on vient de montrer qu’il existe

< &
2°

1
Sy <
<

(N )—|—5<0z,d0nc
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e > 0 tel que, pour tout = € A, il existe i, € I tel que B,(x,¢) C U;,. D’apres le lemme
de précompacité, il existe n € N* et zq,...,x, € A tels que A C U By,(zj,¢).
1<j<n
Pour tout j € N,,, B,(xj,¢) C Uix],, donc A C U Uimj7 ce qui conclut. O
1<j<n

Propriété. Soit (x,) € EN une suite convergente. Notons [ sa limite.
Alors |I'ensemble {z,,/n € N} U {l} est un compact‘ de E.

Démonstration.
Soit (U;);er un recouvrement de A = {z,,/n € N} U{l} par des ouverts. Il existe j € [
tel que [ € U;.

U; est un ouvert, donc il existe ¢ > 0 tel que B,(l,e) C U;. Mais xz, - [, donc il
n—-+0oo

existe NV € N tel que, pour tout n > N, x, € B,(l,¢).
Pour tout n € {0,..., N — 1}, il existe i, € I tel que z,, € U;,, donc la famille finie

d’ouverts (Uj, Usy, ..., Uiy _,) est un recouvrement de A.

Ceci prouve que A est compact. O

Remarque. Dans cette démonstration, on a utilisé la caractérisation de Borel Le-
besgue, mais seulement dans le sens i1) = i), assez facile a établir.

2 Continuité ponctuelle

On fixe deux espaces métriques E et F', ainsi qu’une fonction f : EF — F, dont le
domaine de définition sera noté Dy.

2.1 Limite en un point

Notation. On fixe une partie A de Dy. On fixe également a et

on suppose qu'’il existe au moins une suite (a,) € AY telle que a, — a.
n—-+00

Ainsi, lorsque a € E, ceci signifie que a € A.
On envisagera cependant également le cas des limites infinies :
— Si a = 0o, on suppose que A n’est pas borné, c¢’est-a-dire qu’il existe une suite
(a,) € AN telle que a,, — oo0.

n—-+0o
— Si a = 400, on suppose que E = R et que A n’est pas majorée, c’est-a-dire qu’il

existe une suite (a,) € A" telle que a, — +oo.

n—4o00
— Sia = —o0, on suppose que E = R et que A n’est pas minorée, c¢’est-a-dire qu’il
existe une suite (a,) € A" telle que a, — —oo.
n—-+o0o
On fixe aussi [ dans F'U {oo}. Lorsque F' = R, on pourra avoir [ = +00 ou | = —00.
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2.1.1 Caractérisation séquentielle

Définition. f(z) tend vers [ lorsque z tend vers a en appartenant & A si et seulement

. N
si V(Zp)neny € A (xn n_>—+>oo a= f(x,) njoo l).

Dans ce cas, on note f(r) —>1.
T€EA

Remarque. Il s’agit d’'une définition “séquentielle” car elle utilise un critere reposant
sur des suites.

Propriété. Lorsque E et F' sont des espaces vectoriels normés, si I’'on remplace 1'une
des normes sur £/ ou F par une norme équivalente, la condition f(x) —> [ est inchangée.
xT a

z€EA
Exemples :
— En utilisant que |sinz| < |z| pour tout x € R, on montre que sinz — 0.
T—
1
— = — 0
€¢r T—*too

— |z] — +oo, carsi (z,) € RY vérifie , — +o00, en utilisant que

|x,] > x, — 1, le principe des gendarmes prouve que |z, | —+> ~+00.
n—-+00

— sinz n’admet pas de limite lorsque x tend vers 4+oo. Sinon, en notant ¢ cette
limite, on aurait sin(nm) — ¢, donc £ = 0 et sin(2nm +%) — ¢, donc £ = 1.
n——+0o0o n—-+o0o
Propriété. Unicité de la limite. Si F' =R, on impose que [,I' € RU {400, —00}.
Si f(x) —>let f(x) —1' alors I =1'.
z€A z€EA
Dans ce cas, on dit que [ est la limite de f(x) lorsque = tend vers a en appartenant a

A et on note | = lim f(z).
T€A
Démonstration.
Soit (1,1') € F* tel que f(x) —>let f(z)—1.
€A z€A
Il existe au moins une suite (z,,) € AY qui tend vers a. Alors f(x,) — let f(z,) — [,

n—-+00 n——+0oo
donc [ =1’ en vertu de 'unicité de la limite d’une suite. O

Remarque. L’existence dune suite (z,) € AN qui tend vers a est une hypothese

nécessaire car sinon, la condition “V(x,)neny € AN <$n — o= f(z,) — l)” est
n—-+o00 n—-+4o0o

vraie pour tout /.

Remarque. lorsque f(r)— 400, il convient de dire que f(z) diverge vers +oo. On
€A
ne parlera de convergence que dans le cas ou [ € F'.

Propriété. On suppose que F' = C et que [ € C.
Alors f(x) —> € si et seulement si (Re(f)(x) —> Re(£)) A (Im(f)(x) — Im(Z)).

T—a
T€A z€A z€A
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Démonstration.
Supposons que f(x) —¢. Soit (x,) € AN telle que m, - e Alors f(zy,) - l,
z—=a n——+o0o

n—-+00
z€A

donc Re(f)(z,) = Re(f (mn))njoo Re(¢) d’apres le cours sur les suites de vecteurs.

C’est vrai pour toute suite (z,) € A" telle que z,, - ¢, donc Re(f)(x) — Re(¢). De
n—+o00 r—a

z€EA
méme on montre que Im(f)(z) — Im().
z€A
Réciproquement, supposons que (Re(f)(z) —> Re(£)) A (Im(f)(z)—Im(£)). Soit
z€EA z€A

n

(z,,) € AN telle que x, % Alors Re(f)(zn) = Re(f) et Im(f)(xy) - Im(?),

donc f(z,) = ¢ d’apres le cours sur les suites de vecteurs. C’est vrai pour toute suite
(z,) € AN telle que z,, - ¢, donc f(z)— (. O
oo oA
Propriété. Soient A et B deux parties de Dy telles que A C B.
Si f(x) —= 1, alors f(x) — 1.

xEB €A
Démonstration.
Supposons que f(x) — 1. Soit (x,) € AN telle que z,, e
r—a n—-+oo
zEB
A C B, donc (z,) € BY. Or f(z) —>1, donc f(x,) - [. Ainsi f(z) —1.D
e nrteo veA

2.1.2 Caractérisation par “c”

Propriété. On suppose que a € E et que l € F.

f() —=l=VeeR| JaeR, Vre A (d(z,a) < a=d(f(x),]) <e¢).
T€A

Démonstration.

e Supposons que Ve € R% Ja € RY V€ A (d(z,a) < o = d(f(z),]) <e).

Soit (z,,) € AN telle que z, — a. Soit &€ > 0. Il existe a > 0 tel que

n—-+o0o
Vee A (d(z,a) < a = d(f(z),l) <e).
Il existe N € N tel que pour tout n > N d(z,,a) < .
Ainsi, pour tout n > N d(f(x,),l) <e. Donc f(z,) — L.

n——+00
e Pour démontrer la réciproque, établissons sa contraposée. Supposons qu’il existe
e > 0 tel que pour tout a > 0, il existe z € A tel que d(x,a) < a et d(f(z),l) > e.

et

En particulier, pour tout n € N, il existe z, € A tel que d(z,,a) <

d(f(wn),1) = €.
x, — a car d(z,,a) —> 0. D’autre part, la suite (f(z,)) ne tend pas vers [ car

n—-+o00 n—-+00
(d(f(xy),1)) ne converge pas vers 0. O

n+1

Remarque. Dans (1), on peut prendre les deux dernieres inégalités indifféremment
strictes ou larges.
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Propriété. On peut adapter cette caractérisation (ainsi que sa démonstration) dans
le cas ol a et [ sont éventuellement infinis. On obtient par exemple :
_SileFet E=R,
flz) — l<=VeeR, IM R} Vx € A (z > M = d(f(z),]) <e).

T—+o00
TEA

— Siae€ Eet F=R,
f(@) — 40 += VM e R} JaeR} Vxe A (d(v,a) <a= f(x) > M).
z€A
— Sia=o00et !l € F, en choisissant ¢y € F,

f(x) —= <= Ve e R, IM e R} Vx € A (d(z,e0) > M = d(f(z),]) <e).

rEA
— Sia=o0et =00, en fixant eg € E et fo € F, f(x) —2 0o si et seulement si
€A

VM € Ry AN e R} Vo € A (d(z,e0) > N = d(f(x), fo) > M).

— K
— T,
définie sur N qui est une partie non majorée de R. La notion de limite d'une suite
dans un espace métrique devient donc un cas particulier de la notion de limite d’une
fonction en +oo.

Remarque. Une suite (x,) € EY peut étre vue comme la fonction

2.1.3 Caractérisation par voisinages

Définition. Dans R, on appelle voisinage de 400 toute partie contenant un intervalle
Je, +00[ o1 ¢ € R et voisinage de —oo toute partie contenant un intervalle | —oo, ¢[. Ainsi
V(+o00) ={V CR/Jc€R Je,4o0[C V} et V(—o0) ={V CR/Fc€R | —o0,c[C V}.

Définition. Si E est non borné, on appelle voisinage de oo toute partie contenant le
complémentaire d'une boule fermée centrée en 1’origine.

Ainsi V(oo) = {V C E /3R > 0 E\ Bf(e,R) C V}, o e € E : on peut montrer
(exercice) que cet ensemble ne dépend pas de e.

Propriété. Avec les définitions précédentes de voisinages, on a encore :
Une intersection de deux voisinages de a est un voisinage a.
Toute partie contenant un voisinage de a est un voisinage de a.

Remarque.
Avec ces nouvelles définitions, les hypotheses portant sur a et A énoncées au début du
présent paragraphe se résument ainsi : ]tout voisinage V' de a rencontre A‘ .

Définition. On dit que f|4 est bornée au voisinage de a si et seulement s'il existe un
voisinage V' de a tel que f|yna est bornée.

Plus généralement, on dit que f|4 vérifie une certaine propriété au voisinage de a si et
seulement s'il existe un voisinage V' de a tel que f|yna vérifie cette propriété.
Lorsqu’on énonce une propriété portant sur f au voisinage de a € E, on dit que c’est
une propriété locale (de f au voisinage de a).

Lorsqu’on énonce une propriété portant sur f au voisinage de oo ou de oo, on dit que
c’est une propriété asymptotique.
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Exemples :
— x — Inx est négative au voisinage de 0.

— sin est croissante au voisinage de 0.
sin x

— T est strictement positive au voisinage de 0.

fx) —3 1= VYV eV() 3U e V(a) fFUNA)CV]

Propriété.
z€A

Démonstration.

Placons-nous dans le casota € F et [ € F.
f()—l <= VeeR, JaeR, Ve € £ (z € By(a,a) NA= f(z) € B,(l,¢))

z€A
Ve e R, JaeRY f(Bo(a,a) NA) C B,(l,¢)
Ve e RY U € V(a) f(UNA)C By(l,¢)
VvV eV() U V() f(UNA) CV.
Cette démonstration s’adapte aux différents cas de limites infinies, avec les définitions
précédentes des voisinages de oo dans F et de o0 dans R. O

Propriété. Caracteére local (ou asymptotique) de la notion de limite.
Pour tout Uy € V(a), f(z) — 1= f(z) — L

€A zEANU
Ainsi la valeur de I’éventuelle limite de f(z) lorsque x tend vers a pour x appartenant a
A ne dépend pas du comportement global de f sur A mais seulement du comportement
de f|a au voisinage de a. En particulier, si 'on modifie les valeurs de f(x) lorsque

x ¢ Up, on ne modifie pas la valeur logique de la proposition f(z)—1I.
z€A

Démonstration.
“=—" découle d’'une remarque précédente, car A D AN U,.
Réciproquement, supposons que f(r) — .

z€ANUy

Soit V € V(I). Il existe U € V(a) tel que f(UN(ANUy)) C V. Ainsi UNUy € V(a) et
f((UNUy) N A) CV.On adonc montré que f(z) —1.0

z€EA

Définition. Soit a € E tel que a € Dy \ {a}. Ainsi, a est un point d’accumulation de
Dy. S'il existe | € F tel que f(z) — [, on écrit que f(z) — [ ou méme f(z) — 1.
r—a r—a r—a
ZE’Df\{a} T#a

On note aussi | = lim f(z), ou méme | = lim f(z). C’est la notion usuelle de limite
Z;‘s T—a

d’une fonction en un point.

Propriété. Soient A et B deux parties de Dy qui rencontrent tout voisinage de a.
Alors, (f(x)ﬁl et f(z) — ) = flz) — L

r—a
T€EA zEB z€AUB

Démonstration.
“«<—=" découle d'une remarque précédente car AUB D Aet AUB D B.
Réciproquement, supposons que (f(x) —> 1 et f(x) —>1).

T—a
T€A zEB

Soit V € V(I). Tl existe (U,U’) € V(a)? tel que f(UNA)C Vet f(UUNB)CV.
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Posons U” =UNU" € V(a). f(U'NA) C f(UNA)C Vet f(U'NB)C f(UNB)CV.
Ainsi f(U"N(AUB)) = f(U'NA)UU’NB))=fU"NAUfU" NB)CV.
On a montré que f(z) — [. O

z—a
z€AUB

Définition. Supposons que E = R et que a € R.
e Sia € DsN]a,+oof, et si f(xr) —> [, onnote f(r) —> let ! = lim f(z). Il

rT—a
zEDfﬁ]a,+oo[ z>a z>a
s’agit de la notion de limite a droite du réel a.

e De méme, si a € DyN| —oo,al, et si f(z) —> [, onnote f(r) —1
:CEDfﬂ]foo,a[ z<a
et [ = lim f (x). Il s’agit de la notion de limite a gauche du réel a.

z<a

Exemples :

— la limite a droite de |z] en n € Z est égale a n et la limite a gauche est égale a
n—1.

— T tend vers —oo en 17 et vers +oo en 17,

x R

x x

— u — let |—| — —1.
r xz—0t T xz—0—

Remarque. Comme les notions de limites a droite et a gauche ne sont que des cas
particuliers de la notion de limite, toutes les propriétés relatives aux limites s’appliquent
au cas des limites a droite et a gauche.

Propriété. On suppose que £ =R et a € DyN| — 00, a[ N DsN]a, +o0|.
Alors f(z) El si et seulement si f(x) —> let f(r) — 1.
r>a z<a
Démonstration.
Ds\ {a} = (DyN] — 00, a[) U (DsN]a,+o0[), donc, d’apres la propriété précédente,
f(z) — [sietseulementsi f(v) — let f(r) -— [.O
z€Dy\{a} 2€D pNa,+oo] @€D pN]—o00,a

Propriété. Si f(z) —letsi f(A) C B, alors € B.
z€A
Démonstration.
Il existe une suite (z,,) € AN telle que z, - e Alors f(z,) — (. Or pour tout
n——+0oo

n—+00
neN, f(x,) € f(A) C B,doncl € B.oO

Exemple. Supposons que F' = R et que Vo € A f(x) > 0. Alors, §'il existe [ € R
telle que f(z) —1,1>0.

z€A
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2.2 Continuité en un point

Remarque. Sia € Aetsi f(z) — 1, alors [ = f(a).

z€A
Démonstration.
Supposons que a € A et que f(z) — 1.

z€A
a € A, donc la suite constante égale a a est une suite d’éléments de A. Ainsi la suite

constante égale a f(a) converge vers [. D’apres 'unicité de la limite, f(a) =1. O

Définition. Soit a € Dy. f est continue en a si et seulement si f(z) — f(a).
a:E’Df

Exemple. x+—— |z] est continue en x si et seulement si x € R\ Z.

Exemple. La fonction caractéristique de Q, notée 1g, est discontinue en tout réel.
En effet, soit # € R. Q et R\ Q étant denses dans R, il existe (g,) € QY et

(r,) € R\ Q)N telle que ¢, —> z et r, — z. Ainsi, si 1g était continue en z, on
n—+oo n—+oo

aurait 1g(z) = lirf lo(gn) =1= lirJP lg(rn) = 0.
n—-+0oo n—-+0o0

Propriété. On suppose que F' = C. Soit a € Dy.
[ est continue en a si et seulement si Re(f) et Im(f) sont continues en a.

Propriété. Soit a € Dy. f est continue en a si et seulement si I'une des propriétés
suivantes est vérifiée :
i) Pour toute suite (z,,) de points de Dy telle que xz,, @ f(z,) — fla).

n—-+0o0o

ii) Ve >0 Ja >0 Vo € Dy (d(z,a) < a = d(f(x), f(a)) <e). S
iii) YV € V(f(a)) 3U € V(a) f(UNDs) C V.

Remarque. Notamment, lorsque f est continue en a, si z, — a, avec pour tout
n—-+00

n € N, x, € Dy, alors f(xn)njoof(a).

Propriété. Soit a € Dy.
Sia ¢ Dy \ {a} (on dit que a est un point isolé de Dy), f est continue en a.
Sia € Dy \ {a}, f est continue en a si et seulement si f(z) — f(a).
2€D\{a}
Démonstration.
e Supposons que a ¢ Dy \ {a}. Ainsi, il existe V € V(a) tel que
VN (Dys\ {a}) = 0. Or il existe ¢ > 0 tel que B,(a,e) C V. Donc pour tout = € Dy,
d(z,a) <e =z =a.
Soit (z,,) € D? telle que x,, — a. Il existe N € N telle que pour tout n > N,

n——+o0o
d(z,,a) < e. Ainsi la suite (x,,) est stationnaire a partir du rang N et égale & a. Donc

la suite (f(x,)) est stationnaire a partir du rang N et égale a f(a). En particulier,
f(zy) - f(a). On a prouvé que f est continue en a.
n——+0o0

e Supposons que a € Dy \ {a}. o
Posons A =Dy \ {a} et B = {a}. Ainsi a € AN B,
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donc d’apres une propriété précédente,

f(x) —  fla)sietseulementsi[f(z) —  f(a)]Alf(x) — f(a)],or d’apres
2€D=AUB 2€Dy\{a}=A v€B—={a}

la caractérisation séquentielle de la limite en un point, il est évident que ’on a toujours

f(z) —> f(a), donc f est continue en a si et seulement si f(z) — f(a). O
ze{a} ZGDf\{a}

Remarque. Soient a € Dy et Uy € V(a). f est continue en a si et seulement si f|p,;n,
est continue en a. Ainsi la notion de continuité (au point a) est une notion locale.

Définition. On dit que f est continue si et seulement si elle est continue en chaque
point de son domaine de définition.

Exemple. L’application z — % est continue sur C*.

Démonstration.
On a vu dans le chapitre “suites de vecteurs” que si (z,) est une suite de complexes
1
non nuls telle que z,, — ¢ € C*, alors — — -.0O
n—-+o0o T n—-+oo £

Propriété. Les applications lipschitziennes sont continues.

Démonstration.
Supposons que f est k-lipschitzienne et soit a € Dy.
Si (x,) € DY} converge vers a, comme d(f(zy),f(a)) < kd(zn,a) — 0, (f(zn))

n——+00
converge vers f(a). Ainsi f est continue en a. O

Propriété. Soient A une partie de Dy et a € A. Si f est continue en a, alors f|4 est
aussl continue en a.

Démonstration.
Si f(z) — f(a), comme Dy D A, f(z) — f(a). O
xEDf xE€EA

Corollaire. Soit A une partie incluse dans Dy. Si f est continue, alors f|4 est continue.

Remarque. Il est important de distinguer la propriété P : “f|4 est continue” et la
propriété @ : “f|p, est continue en tout point de A”.

En effet, ) = P, mais la réciproque est fausse. Par exemple, (1g)|g est continue, car
constante, mais 1g n’est continue en aucun point de Q.

Définition. On suppose que E = R. Soit a € D;. On dit que f est continue a droite
en a si et seulement si f|, oo ; est continue en a. On définit de méme la notion de
continuité a gauche.

Propriété. On suppose que E = R. Soit a € Dy.
f est continue en a si et seulement si f est continue a droite et a gauche en a.

Exemple. =+~ |z|, de R dans R, est continue a gauche et a droite en 0, donc elle
est continue sur R.

Exemple. Posons f(x) = |x] + (z — [z])?, pour tout = € R.
f est clairement continue sur R \ Z.
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Soit m € Z. lim f(x)=m—1+(m—(m—-1))> =m—-1+1=m
T—m=
et lim f(z)=m+ (m—m)
z—mt

2 = m, donc f est continue sur R.

Exemple. Posons f(z) = |—|z||, pour tout x € R.

f est clairement continue sur R \ Z.

Soit m € N*. lim f(z) = —m = 1im+f(:zc) et lim f(z)=-m—-1= lim f(x),
T—>—m

T—m= z—mt T—>—m~
donc f est discontinue en tout point de Z*.

En 0, Tim f(z) =—1= lim f(x), mais f(0) =0, donc f n’est pas continue en 0.
z—0 z—0~

Remarque. Considérons I'application f : R — R définie par les relations suivantes.
Pour tout z < 0, f(z) =0 et pour tout z > 0 f(x) = 1.
flr= et flr, sont continues (car elles sont constantes) mais f = f

continue (car f(—2) - 0et f() - 1).
n—-+0oo n—-+0oo

r* UR, D’est pas

Définition. On suppose que f est continue. Soit D D Dy. On dit que f se prolonge
par continuité sur D si et seulement s’il existe une application f : D — F' continue
et telle que f|p, = f.

Propriété. Soit a € D; \ D;. f admet un prolongement par continuité en a si et
seulement si f admet une limite finie en a. Dans ce cas, 'unique prolongement par
continuité f de f sur Dy U {a} est donné par f(a) = lim f(x).
r#a
Démonstration.
Posons D = Dy U {a}. .
e Supposons que f admet un prolongement par continuité sur D, noté f.
Alors f(x) —> f(a), or Dy C D et a € Dy, donc f(x) —» f(a). Donc f admet une
z€D LL‘E”Df
limite finie en a et f(a) est égal & cette limite.
Ainsi, sous I'hypothese de I'existence du prolongement, on a déja montré son unicité.

e Supposons que f admet une limite en a et posons f(a) = lim f(x).
r#a
a € D\ {a}, et f(a) = lim f(x), donc f est continue en a.
z#a
Soit z € Dy : il faut également montrer que f est continue en x. Posons € = d(z,a) > 0
@O(l‘,é‘) N (Df U {a}) = Bo(w7€) N Df7 donc f|Bo(x,s)ﬂ(DfU{a}) = f|~Bo(x,s)ﬂDJv Ainsi, f et
f coincident sur un voisinage de x, or f est continue en z, donc f est continue en z. O

sin

Exemple. L’application “sinus cardinal” est définie par sinc(x) = lorsque = # 0

et sinc(0) = 1. Elle est continue sur R.
Exemple. L’application f définie par f(z) = 2?sini si x # 0 et f(x) = 0 est une
application continue de R dans R.

Propriété. Soient A C E et f et g deux applications continues de A dans F'.
’Si f et g coincident sur une partie dense dans A, alors f = g.‘
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Démonstration. -
On suppose qu’il existe B C A telle que Vo € B f(x) = g(z) et B D A.

Soit z € A. Il existe (z,) € BY telle que z, T
n—-+00o

Pour tout n € N, f(z,) = g(z,). De plus, f et g étant continues, f(x,,) - f(z) et
n——+0o0

g(xy,) n:)mg(x), donc par unicité de la limite, f(z) = g(z).

Ainsi f et g coincident sur A, donc f = g¢. O
2.3 Théoremes de composition

Notation. Dans ce paragraphe, on fixe un troisieme espace métrique noté G et une
seconde fonction g : F' — G, définie sur D,.

Propriété. Soit B une partie de D, telle que |f(A) C B|.
Soit m tel que m € G U {oc} ou bien, lorsque G = R, tel que m = +00 ou m = —oc.

Pour que g(f(z)) —m,

z—a
T€EA

il suffit que f(x) —> 1 (auquel cas B rencontre tout voisinage de [) et que g(y) —m.
zEA 5;5’
Démonstration.
Supposons que f(z) — 1 et que g(y) —m.
z€EA SZB
Soit (x,) € AN telle que x,, e Alors f(x,) = let (f(x,)) € BY,
n—-+0oo n—-+0oo

donc g(f(xy)) o m Ainsi g(f(z)) —m. O

In(1 + ) . .
u —0> 1 (ce qui provient du fait que In est
T—r

dérivable en 1 avec In’(1) = 1) et que e’ —1 = 0 (ce qui provient de la continuité de exp

In(1+ (e! — 1))
et —1

Corollaire. On suppose que f(Dy) C D, et on fixe a € Dy.

Si f est continue en a et g en f(a), alors g o f est continue en a.

Exemple. Si 'on admet que

— 1.
et —1 t—0

en 0), par composition, on obtient que ﬁ 1, donc que
_>

Démonstration.
On applique la propriété précédente avec A =Dy, B="D, et b= f(a). O

Corollaire. On suppose que f(Dy) C D,.
Si f et g sont continues, alors g o f est continue (et définie sur Dy).

Exemple. Si f est une application continue de R dans R, alors |f| est aussi continue.

Corollaire. On suppose que f(A) C D,.
Si f(x) —> b et si g est continue en b, alors g(f(z)) —> g(b).

z—a
TEA z€EA
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Propriété. Limite en un point d’une application a valeurs dans un produit.
Supposons que F' = Fy x --- x F,, ou Fy, ..., I}, sont des espaces vectoriels normés et
f+ B — F .
.Soit [ = (Iy,...,1,) € F. Alors,
s J(@) = (fi0)... (@) (ool
f(x) —> [ si et seulement si pour tout i € Ny, fi(z) —> ;.
z€A z€EA

Démonstration.

En effet, on a déja vu lors du cours sur les suites de vecteurs que,

pour toute suite (z,,) € AN telle que x,, — a, f(z,) — <= VieN,, fi(z,) — L.
n——+00 n—-+o0o

n—-+00

notons

O

Propriété. Continuité en un point d’une application a valeurs dans un
produit.
Supposons que F' = Fy x --- x F,, ou Fy, ..., I}, sont des espaces vectoriels normés et
f: F — F

Cr o f@) = (A, f@) ,
f est continue en a si et seulement si pour tout ¢ € Ny, f; est continue en a.

| = 1,400 — M;3(R)

Exemple. L’application . ( 1+ 4z e

notons . Soit a € Dy. Alors,

T

. est continue.
sinz  In(l+x)

Propriété. Limite d’une application a valeurs dans un espace de dimension

finie. Supposons que F' est un K-espace vectoriel de dimension finie dont une base est
f: E — F

(€1,...,€4) et notons ¢ o— f(a) = Zfi(x)ei'
i=1

Soient A une partie de Dy, a € A et | = Zliei € F. Alors,
i=1
f(z) —> 1 si et seulement si pour tout i € Ny, fi(z) — ;.

TEA rEA
Démonstration.

Toutes les normes étant équivalentes en dimension finie, on peut choisir la norme sui-
1: F — R

q q
vante : .

dover — > luil

i=1 i=1

@ K? — F

a
_ q
Notons ) } :yiei- Pour tout y = (y1,...,y,) € K,

(Y155 Y
=1

o)l = |lylli. Ainsi ¢ et o~ sont continues.

D’apres le théoreme de composition des limites, f(z) — [ si et seulement si

1

z€EA
o (f(z)) mgp’l(l), donc si et seulement si pour tout i € Ny, fi(r) —1;. O
z€A T€EA
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Propriété. Continuité en un point d’une application a valeurs dans un

espace de dimension finie. Supposons que F' est un K-espace vectoriel de dimension
f: E — F

finie dont une base est (eq,...,e,) et notons . Z fi(z

Si a € Dy, f est continue en a si et seulement si pour tout ¢ € Ny, f; est continue en a.

2.4 Opérations algébriques sur les limites

2.4.1 Somme de deux applications a valeurs vectorielles

Notation.

Dans ce paragraphe, on fixe une seconde fonction g : £ — F', définie sur D,, ou F
est un K-espace vectoriel normé.

On suppose que A C Dy N Dy.

Propriété. Si f(z) —1et g(x) —1', alors (f + g)(x) — 1+ 1.

z€A IEA €A
Démonstration.
Supposons que f(x) — 1 et g(z) —1'. Soit (z,,) € AN telle que x,, - e
veA ved e

Alors f(z,) — let g(x,) — ', donc (f + g)(x,) — 1+,
n—-+o0o n—-+o0o n—-+o0o
ce qui prouve que (f 4 g)(z) —1+1'. 0O

z€A
Remarque. La démonstration (et donc I’énoncé) est valable dans le cadre des limites
infinies, & condition d’éviter la forme indéterminée oo — 0o, c’est-a-dire lorsque [ et [’
sont les deux éléments distincts de {+o0, —00}.

Propriété. Soit a € Dy ND,. Si f et g sont continues en a, f + g est continue en a.

Corollaire. La somme de deux applications continues est continue.

2.4.2 Produit d’une application scalaire par une application vectorielle

Notation. Dans ce paragraphe, on suppose que f est une application de E dans
K et que g est une application de E dans un K-espace vectoriel normé F'. Ainsi f
est une “application scalaire” et g est une “application vectorielle”. On suppose que
ACTD f N Dg.

Propriété. Si f(r) —1et g(x) —1', alors (fg)(x) — I

z€EA z€EA z€EA
Démonstration.
Supposons que f(x) —1 et g(z) —1". Soit (z,,) € AN telle que x,, e
r—a T—a n—-+0oo
rEA z€EA

/ /
Alors f(zn) —— let g(za) —— I, done (fg)(wn) — II'
ce qui prouve que (fg)(z) —l'. O

z€EA
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Remarque. La démonstration (et donc I’énoncé) est valable dans le cadre des limites
infinies, a condition d’éviter la forme indéterminée 0 x oco.

Propriété. Soit a € Dy ND,.
Si f et g sont continues en a, fg est aussi continue en a.

Corollaire. Le produit d’une application scalaire continue par une application vecto-
rielle continue est continue.

Propriété. Soit A une partie de E et F' un K-espace vectoriel normé.
L’ensemble C(A, F') des applications continues de A dans F' est un K-espace vectoriel.
C(A,K) est une K-algebre.

Propriété. On suppose que f est une application de £ dans K*.
1 1
Si f(xr) — 1€ Kalors ()(z) — -

TEA f i;: l

Remarque. Cette propriété est valable avec des limites infinies dans les cas suivants :
— Si | = oo, en convenant que é =0.
— SiK=Retl=0"(cest-a-dire que [ = 0 et que f est strictement positive au
voisinage de a), en convenant que 0L+ = +00.

— SiK=Retl=0", en convenant que -

OT:—OO.

3

Exemple. Lorsque x tend vers 400, la quantité

71 présente une forme indéterminée
x

du type 2 = 0 x 0co. On peut lever cette indétermination en écrivant que, au voisinage
24+1 28

~— = — —+00.
22

de 40
’ —1 2 T—4-00

In(sin x)

Exemple. Déterminons la limite de f(z) = lorsque x tend vers 0%.

: : Inx
In(sinz) = ln(a: X Smx) =Ilnz+ ln<smx>’ or 222 — 1
Tr T

sinx

donc Inz + ln< ) ~ In(z) puis f(z) — 1.
x> z—>

X

Exemple. Déterminons la limite de z* lorsque z tend vers 0F.

2% = e*™% or d’apres les croissances comparées, = In x —0> 0, donc ¥ — 1.
T—r

z—0

2.5 Cas des fonctions a valeurs dans R.

On suppose ici que F' = R.

Propriété : passage a la limite sur une inégalité large :

Sivee A f(r) <g(x), f(x) —>let g(x) —1', alors [ < I'.
z€A TEA

Démonstration.

(g — f)(A) C Ry, et d'apres les propriétés précédentes,

(9—f)x)—1' =1, doncl' =l eR =R,. O

TEA
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Principe du tunnel (pour des inégalités strictes) :
On suppose que f(r) — ¢ € R.

z€A

Soit «, 5 € R tels que a < ¢ < . Alors, au voisinage de a, a < f(z) < S.

Corollaire. Si f(x) — ¢ € R alors f|4 est bornée au voisinage de a.
T€A

Propriété. Principe des gendarmes.

3
Soient hy, hy et hs trois fonctions de F dans R telles que A C ﬂ Dy, .
i=1
SiVe € A hy(x) < ha(z) < ha(x), hi(x) —> 1 et ha(x) —> [, alors hy(x) —> 1.
zeA €A €A

Démonstration.

Soit (x,) € AN telle que x, — a. Alors hy(z,) — I,
n—-+4o0o n—-+o0o

hs(xn)njool et Vn € N hy(z,) < hao(x,) < hs(z,), donc d’apres le principe des

gendarmes établi pour les suites, ha(z,) - [. Ainsi hy(x) — 1. O
e veA
Remarque. Il suffit que 'encadrement hy(z) < ho(z) < hz(z) soit réalisé lorsque x

est au voisinage de a.
sin x 1 sin x

| < — — 0, donc | | — 0.
€T €T T—+00 €T T—+400

Exemple. |

Corollaire. Le produit d'une fonction bornée au voisinage de a et d’une fonction qui
tend vers 0 en a est une fonction qui tend vers 0 en a.

Remarque. On peut adapter le principe des gendarmes au cas ou [ = +oc.

Exemple. z+cosz>2x—1 — +o0.

T—+00
2.6 Exemples

f: ]-3 4] — R
Exemple 1 : L’application ( ) )3 est continue.

T — + e
r+3

Démonstration.
R —

s et les applications constantes sont continues car lipschitziennes. Le produit

de deux applications continues a valeurs réelles étant continue,

R — R ) o : R — ) .
est continue. Or I'application ** . est continue (admis),
r — 2 r — e
i R — R .
donc par composition, 5 €St continue.
T — e
La somme de deux applications continues a valeurs réelles étant continue, I’application
R — R | Ry — R . L
est continue. Or 1 est continue, donc par composition,
r — xT+3 T —s =
x
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|—3,400] — R
1 est continue. En composant a nouveau par ’application conti-

r —>
T+ 3 3 R
R® — R . o I=del —
nue , on obtient la continuité de 1
xr \/E xr —

x4+ 3
La somme de deux applications continues a valeurs réelles étant continue, I’application

|—3,40] — R

1 est continue. Enfin en composant par 'application
. Lo p P pp
Rx+3
. — . L,
continue 3, on obtient la continuité de f.
T — T

Sur une copie, on se contentera pour ce type d’applications numériques (construites a
partir des fonctions usuelles par composition, sommation et produit) d’écrire : “D’apres
les théoremes usuels, f est continue”. O

R} — R?

T
2 ? +si
Thyz +Sm(x2+y2+z2+1> est
In(z? + 1)
22 +3

Exemple 2. L’application N

z
continue d’apres les théoremes usuels.
f: R? — R

x3ea:+y )
Exemple 3. Notons (x,y) — m si(z,y) #0 .
0 si (z,y) =0

f est continue sur R?\ {0} d’aprés les théorémes usuels.
De plus, pour tout (x,y) € R*\ {0}, 0 < |f(z,y)| < |z]e*™ = g(z,y). L’application
g est continue sur R? d’apres les théorémes usuels, donc g(z,y) — ¢(0,0) = 0. On

z,y)—
déduit alors du théoreme des gendarmes que f(x,y) (—))0 0 = f(0,0), ce qui prouve
T,y)—
(=,y)#0
que f est continue en 0, donc sur R?.
f: R2\{0} — R
Exemple 4. Notons r2ettY
(z,y) — ———
e +y ]
p . 1y 11y_1,.2 :
our tout n € N*, (0, +) Onjooo et f(-,5)=3e T3 # 0,
or (0, %) —+> 0 et (%, %) —+> 0, donc f n’est pas prolongeable par continuité en 0.
n—-—+0o0 n——+0o0
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2.7 Cas des fonctions de R dans R.

Théoréme de la limite monotone : Soit (m, M) € R” avec m < M.
Notons I =|m, M| et soit f une application de I dans R.

Si f est croissante, alors f(x) — sup fy) eR et f(z) — inf f(y) € E‘

m
el Yy el ye]

Si f est décroissante, alors f(z) — inf f(y) € R et f(x) — sup f(y) € ]1_%.

M
z:;él ye] zel ye]

Démonstration.
Par exemple, avec f décroissante, lorsque = tend vers M, en supposant f minorée
(ainsi, ingf(y) € R).
ye
Soit £ > 0. Par définition de la borne inférieure, il existe a € I tel que f(a) < ing fy)+e.
ye
Ainsi, en notant [ = ingf(y), pour tout z € [a, M[, I < f(x) < f(a) <1+ ¢, donc
ye
|lf(z) =1 <e.D

Propriété. Reprenons les notations du théoreme précédent. Si f est monotone, alors,
pour tout a € I, f possede en a une limite & droite, notée f(a™), et une limite &
gauche, notée f(a~). De plus, si f est croissante, f(a™) < f(a) < f(a™), et si f est
décroissante, f(a™) > f(a) > f(a™).

[ est discontinue en a si et seulement si f(a™) # f(a™) et dans ce cas |[f(a™) — f(a™)|
s’appelle le saut de discontinuité de f en a.

Démonstration.
Supposons par exemple que f est croissante. Soit a € I. Appliquons le théoreme
précédent a la restriction de f sur lintervalle Ja, M[. On obtient que f(x) tend vers

i]nf [ f(t) lorsque x tend vers a par valeurs supérieures. Mais f|}, a7 est minorée par
t€la,M

f(a), donc %ngw[f(t) € R. Ceci prouve que f(a™) est bien définie,

t€la,
avec f(a®) = %ngw[f(t). En particulier, f(a®) > f(a).

t€la,

De méme, en considérant l'intervalle |m, a[, on montre que f(a~) est bien définie, avec
fla™) < fla).
Lorsque f est décroissante, —f est croissante, ce qui permet de montrer que f(a™) et
f(a™) sont bien définies, avec f(a™) < f(a) < f(a™). O

Remarque. On peut en déduire que I'ensemble des points de discontinuité dune
fonction monotone définie sur un intervalle est au plus dénombrable :

Exercice. Soit f : I — R une application croissante, ou I est un intervalle de
R. Montrer que le nombre de points de discontinuité de f est au plus dénombrable.

Solution : Notons D l’ensemble des points de discontinuité de f qui appar-
tiennent a l'intérieur de I. Il suffit de montrer que D est au plus dénombrable.

Soit a € D. Alors, avec les notations précédentes, f(a™) < f(a™), donc il existe
o € Q tel que f(a™) < qo < f(a™). On peut ainsi considérer I'application
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g: D — Q

a —> qa
(remarque : on peut éviter d’utiliser 'axiome du choix en construisant ¢, en
fonction de a, par exemple en prenant pour ¢, le développement décimal de
f(a™), tronqué au premier rang pour lequel f(a™) < q,).
Si 'on montre que g est injective, on en déduit que D est en bijection avec g(D)
qui est au plus dénombrable en tant que partie de Q, donc cela prouve que D est
au plus dénombrable.
Soit a,b € D tel que que a < b. 1l existe ¢ €]a, b[. Alors, f étant croissante,

00 < J(a*) = inf F(t) < f(e) < sup f(2) = () < gy, done g(a) # g(8). ce qui

conclut.

3 Continuité globale

3.1 Cas des fonctions de R dans R

Notation. : Dans ce paragraphe, on fixe un intervalle I d’intérieur non vide.

Théoréme des valeurs intermédiaires (TVI) :
Soit f : I — R une application continue a valeurs réelles. Soit a,b € I avec a < b.
Alors, pour tout réel k compris entre f(a) et f(b), il existe ¢ € [a, b] tel que f(c) = k.

Démonstration.
Au tableau. O

Exercice. Soit P une application polynomiale de R dans R de degré impair.
Montrer que P possede au moins une racine réelle.

Exercice. Soit f : [a,b] — [a,b] une application continue, ol a,b € R avec
a < b. Montrer que f possede au moins un point fixe.

Seconde formulation du TVI :
L’image d'un intervalle par une application continue a valeurs réelles est un intervalle.

Démonstration.

Reprenons les notations de la premiere formulation.

Pour tout a, 8 € f(I), pour tout k dans le segment [« 8], k € f(I), donc f(I) est une
partie convexe de R. O

Théoréme. Soit f : I — R une fonction continue. Alors f est injective si et
seulement si elle est strictement monotone.

Démonstration.

© Supposons que f est strictement monotone. Alors f est injective, méme lorsque f
n’est pas continue. En effet, lorsque a,b € I avec a < b, on a f(a) < f(b) ou bien
f(a) > f(b) selon que f est strictement croissante ou décroissante. En particulier,
fa) # f(b).

©  Supposons que f est continue et qu’elle n’est pas strictement monotone.
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Il existe donc x1,xe,z3,24 € I tels que x1 < 9 et x3 < x4 avec f(z1) < f(x) et

f(z3) > f(x4). Ainsi, sur 'intervalle [a, b] = [1%?4 Ti; 1A x;], la restriction de f n’est

pas strictement monotone.

Si f(a) = f(b), alors f n’est pas injective. Supposons maintenant que f(a) # f(b).
Quitte a remplacer f par —f, on peut supposer que f(a) < f(b).

f n’étant pas strictement croissante, il existe x,y € [a, b] tels que x < y et f(z) > f(y).
Pour tout t € [0, 1], posons g(t) = f((1 —t)b+ty) — f((1 — t)a + tx).

Ainsi, g(0) = f(b) — f(a) > 0 et g(1) = f(y) — f(z) <0, or g est continue d’apres
les théorémes usuels, donc d’apres le TVI, il existe ¢y € [0, 1] tel que g(tg) = 0. Alors
F((1=to)b+toy) = f((1—to)a+tox), or (1—to)b+toy € [y,b] et (1—tg)a+tox € [a, x],
donc (1 —tg)b + toy # (1 — tg)a + tox, ce qui prouve que f n’est pas injective. O

Théoreme de la bijection :

Soit f : I — R une application continue et strictement monotone.

Ainsi, en notant encore f la restriction f|/(V)) f est une bijection de I dans f(I).
Alors, f~1: f(I) — I est également continue et strictement monotone (de méme
sens de variation que f).

Remarque. La démonstration n’utilise la continuité de f que pour garantir que f(I)
est un intervalle. Ainsi, si f : I — R est strictement monotone, alors f|f() est
une bijection et (f|/D)~! est continue. En fait, f posséde un nombre dénombrable de
points de discontinuité qui font de f(I) une union disjointe d’intervalles sur lesquels il
y a bien continuité.

Corollaire. L’application z — /z est définie et continue sur R,
De plus, /x — +00.

Tr—>-+00
Démonstration. R
: — . N ;s
Notons + 5 . f est continue d’apres les théorémes usuels.
r — T

Pourtoutx,yeR’;telquex<y,x2:xxx<xy<y><y:y2etpourtoutx>0,
22 > 0, donc f est strictement croissante sur R,.

D’apres le TVI, f(R,) est un intervalle inclus dans R, contenant f(0) = 0, non majoré
car pour tout n € N*, n? =n xn >n, donc f(Ry) =R,.

D’apres le théoreme de la bijection, f~! est une bijection continue et strictement croiss-
nate de R, dans R, et le théoreme de la limite monotone permet de conclure. O

Remarque. De la méme facon, ce théoreme permet de définir les applications arcsin
et arccos et d’affirmer qu’elles sont continues.

Remarque. Dans un tableau de variations, les fleches obliques signifient que 'applica-
tion étudiée est continue et strictement monotone. Le théoreme de la bijection affirme
en particulier que toutes les valeurs intermédiaires sont atteintes exactement une fois.

Exemple. Montrer que pour tout n € N, il existe un unique u,, € |2n7,2nm + 7| tel
que u, sin(u,) = 1.
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Remarque. Ainsi, pour toute application continue bijective entre deux intervalles,
son application réciproque est continue.

C’est faux dans le cadre plus général des espaces métriques : I'application § — e
est une bijection continue de [0, 27| dans U (par restriction de I’exponentielle complexe
qui est continue car développable en série entiere (cf cours de seconde année)), mais
son application réciproque n’est pas continue en 1. En effet, pour tout z € U,

FH(z) = Arg(z), done f~1(e'@™)) = 271 2T £0=f"'(1),0re®w) — 1.

N n—-+o0

Définition. Soit F et F deux espaces métriques. f : E — F est un homeomor-
phisme entre £ et F' si et seulement si f est une bijection telle que f et f~! sont
continues.

Deux espaces métriques sont homéomorphes si et seulement si il existe un
homéomorphisme entre ces deux espaces.

3.2 Continuité et ouverts

Théoreme. Soit E et F' deux espaces métriques et soit f : E — F une application
définie sur Dy. Les propriétés suivantes sont équivalentes.

i) f est continue.

ii) L’'image réciproque par f de tout ouvert de F' est un ouvert
pour la topologie induite sur Dy.

iii) L’image réciproque par f de tout fermé de F' est un fermé
pour la topologie induite sur Dy.

Démonstration.

e i)=—ii). Supposons que f est continue.

Soit U un ouvert de F. Soit € f~Y(U). f(z) € U et U est un ouvert, donc

U € V(f(z)). Or f est continue en z, donc f(¢) — f(z). Ainsi il existe V € V(z) tel

tEDf

que f(VNDy) CU.

Siy e VNDy, fly) € U, donc y € f~1(U). Ainsi V.ND; C f~1(U), donc f~HU)
est un voisinage de x pour la topologie induite sur Dy. On a montré que f~1(U) est
voisinage de chacun de ses points, au sens de la topologie induite sur Dy, donc que
c’est un ouvert pour la topologie induite sur Dy.

e ii)==iii). Soit K un fermé de F. F'\ K est un ouvert de F, donc f~'(F\ K) est un
ouvert pour la topologie induite sur Dy. Or f~1(F \ K) =D, \ f~}(K), donc f~(K)
est un fermé pour la topologie induite sur Dy.

De méme on démontrerait que iii)==-ii).

e ii)==1i). Soit x € Dy. Soit V € V(f(x)). Il existe r > 0 tel que B,(f(x),r) C V.
Bo(f(x),r) est un ouvert de F, donc f~1(B,(f(x),r)) est un ouvert pour la topologie
induite sur Dy. Ainsi c’est la trace sur Dy d’'un ouvert pour la topologie globale de F
que 'on notera U.
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Siye UND; = fYB,(f(x),r)), f(y) € Bo(f(x),r) CV,donc f(UNDy) CV.
D’autre part f(x) € B,(f(x),r), donc x € U, or U est un ouvert, donc U € V(z).
On a donc montré que VV € V(f(z)) 3U € V(z) f(UNDy) C V. Clest dire que

f(t) — f(z) donc que [ est continue en . O
tEDf

Remarque. Ce théoreme est un moyen tres pratique pour montrer qu'une partie est
un ouvert ou un fermé.

Exemple. Dans R3, considérons
U={(z,y,2) e R¥/In(z? + y* + 1)sin(z) < e*F etz +y — 2 > 1}.
f: R? — R

(z,y,2) — In(z®+y?+ 1)sin(z) — e*** ot
g: R? — R

(r,y,2) — l—xz—y+=z
donc U = f~1(R*) N g~ '(R*) est un ouvert.
De méme, on montrerait que
{(x,y,2) € R®/In(2? + y*> + 1) sin(z) < e et x +y — 2 > 1} est un fermé.

Notons

. f et g sont continues d’apres les théoremes usuels,

Exercice. Soient A et B deux parties non vides de E telles que d(A, B) > 0.

Montrez qu'il existe deux ouverts disjoints U et V tels que A C U et B C V (on

dit que U et V séparent A et B).

d(A, B)
2

Solution. 11 suffit de prendre U = {z € E/d(z, A) <

d(A, B
et V={xeE/dx A) > (4, )}
On en déduit que A est un ouvert-fermé relatif de AU B, non vide et différent de
AUB.

}

3.3 Continuité d’une application linéaire

Notation. Dans ce paragraphe, E et F' désignent 2 K-espaces vectoriels normés.

Théoréme. On suppose que f € L(E, F). Les assertions suivantes sont équivalentes.

i)f est continue.

ii) f est continue en 0.

iii) f est bornée sur la boule unité de E.
iv) f est bornée sur la sphere unité de E.
v) Ik eRy Vo e B |[f(2)] <kl

vi) f est lipschitzienne.

Démonstration.

i)==1ii). C’est clair.

ii)==1iii). Il existe a > 0 tel que pour tout x € E, (||z]| < a = ||f(x)| < 1).

Soit € Bf(0,1). ||az| = aflz|| < «, donc ||f(az)|| < 1, or f est linéaire, donc

If @) < 3.
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iii)==1v). C’est clair.
iv)=v). Il existe k € R, tel que Vo € S(0,1) [[f(2)| < k
Soit x € £\ {0}. Tl € 5(0,1), donc [| f(z)]| = ||9€||||f(Hx”)|| < klj=]].

Pour z =0, || f(x)|| = 0 = k||z||, donc pour tout = € E, || f(z)|| < k|||

v)=vi). Soit (z,y) € E* |[f(z) — f(y)l = If(z =y < kllz —yl, donc f est
lipschitzienne.
vi)==1). C’est connu. O
.. p: E — R
Exemple. Choisissons E = C([0,1],R) et o f(0)

e ¢ est une application linéaire et pour tout f € E, |o(f)| = |f(0)] < || f|loo, donc ¢
est continue sur E pour ||.||s.
e Supposons que ¢ est continue pour ||.|[;. Ainsi il existe £ € R, tel que pour tout
f € B, lo(f)] < Ellf 11, cest-aedire | f(0)] < K [ |f(#)]dt.
Soit n € N*. Notons f,, Iapplication de [0, 1] dans R définie par les relations suivantes.
Pour tout ¢ € [0, 1] f,(t) =1 — nt et pour tout ¢ € [£,1] f,(t) = 0.
1
k
fn € E donc 1 = |f,(0)] < k:/ | fn(t)|dt = 2 o 0. Ainsi 1 < 0, ce qui est faux,
0 n n—-+oo

donc ¢ n’est pas continue pour ||.||;.

1

o Autre méthode. Posons g,(z) = (1—2)". ||gnl1 = 35 - 0, donc si ¢ est continue
n—-+0oo

pour |||, go(gn)njoogp(()) =0, ce qui est faux.

Propriété. On note LC(E, F') 'ensemble des applications linéaires continues de F
dans F. Pour tout uw € LC(E, F'), on pose ||u|| = sup ||u(x)| F.
zeE
lzll p<1
Alors LC(E, F') est un K-espace vectoriel normé.
De plus, pour tout uw € LC(E, F) et x € E, ||u(z)||r < ||ull||z]| &

Démonstration.

e 0€ LC(E,F), donc LC(E,F) #0.

Si (u,v,a, ) € LC(E, F) x LC(E, F) x Kx K, au + v est linéaire et continue d’apres
les théoremes usuels, donc au + fv € LC(E, F). Ainsi LC(E, F') est un sous-espace
vectoriel de L(E, F).

e Montrons maintenant que LC(F, F') est un espace vectoriel normé.

Notons B la boule unité de E. Alors pour tout u € LC(E, F'), u|p est une application
bornée de B dans F, et ||u]| = ||u|5||oo-

Sachant que |[|.||» est une norme sur B(B, F'), on en déduit :

pour tout u,v € LC(E, F) et A € K, |Ju|| > 0, [|[Aul|| = |A|||u]l

et [lu +of| < Jlul] + [|v]].

Enfin, si u € LC(F, F) vérifie ||u]| = 0, pour tout = € B, u(xz) =0, donc si y € E'\ {0},
u(i) =0etu(y) =0. Ainsiu=0. O

lyll

Propriété. Soit E, F' et G trois K-espaces vectoriels normés.
Soit u € LC(E, F) et v € LO(F,G). Alors ||[voul| < [jv|lul-
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Démonstration.
Pour tout z € E, |[(vou) ()| < |lof[lu(z)]| < [lvllf[u]ll=],
done [[v o ul] < |lvlf|[u]]. o

Théoreme. Toute application linéaire dont 1’ensemble de départ est de dimension
finie est continue.

Démonstration.
Soit ' un K-espace vectoriel de dimension n € N. Il existe une base de E notée

e =(e1,...,e,). Lorsque x = Zx e; € E, on pose N(x Z |z;|. On munit ainsi £

=1 =1
d’une norme.

Soient F' un K-espace vectoriel normé de dimension quelconque et u € L(E, F).
n

Soit & =Y " mie; € E. ||u(x y—nle u(e; ||<Z|xl] [ u(e;

i=1

— — < —
Posons [ = max ||u(e;)||. Pour tout x = z;x i € E, |lu(x)|| ﬂz |z;| = BN (x).
u étant linéaire, on en déduit qu’elle est S-lipschitzienne, donc u est contmue O

Théoréme. Soient Ej,..., E, une famille de p K-espaces vectoriels de dimensions
finies, ou p € N* et F' un K-espace vectoriel normé de dimension quelconque.
Toute application p-linéaire de I} X --- x E, dans F' est continue.

Démonstration.
Pour tout j € N,, on note n; la dimension de Ej et e; = (e1,...,en, ;) une base de
E;. Soit f une application p-linéaire de Fy x --- x F, dans F.

n

Soit (1]1, .. ,ZL'p) = (Z ai,jei,j)lﬁjﬁp e By XX Ep.
=1

flxy, ..., xp) = f( E a;1€i1, T2, ..,T,), donc en utilisant la linéarité selon la premiere

ni
variable, f(z1,...,x,) = Z a;1f(ei1, xa,...,xp,), puis

i=1
ni ng
flxy,...zp) = E aiq E ajof(ei1,ejo2,xs,...,2,), donc
i=1 j=1
f(l’l, ... ,I'p) = E Qi1 aip7pf(6i1717 ceey eipup)'
u=(i1,...,p) ENny X=X Np,,
. . N w1 . .
Soit j € Nyeti € {1,...,n;}. a;j = e ;(x;), sil'on désigne par (e, ;)1<k<n, la base duale
de e;. Mais e} ; est une application linéaire dont I'espace de départ est de dimension
finie, donc c¢’est une fonction continue. L’expression précédente de f(z1,...,z,) et les

théoremes usuels montrent alors que f est continue. O

Propriété. Soit n € N*.
Les applications polynémiales de K[X7, ..., X, sont continues.
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Démonstration.
Soit f une fonction polynomiale de K™ dans K. II existe une famille de scalaires (v, )yenn
indexée par N” et presque nulle telle que

Ve = (x1,...,2,) € K" f(z) = Z itk

u=(k1,....kn)EN"

f est donc continue sur K" d’apres les théoremes usuels. O

Remarque. Soient E un espace vectoriel de dimension finie muni d’une base
: E — K

n
€:<€17"‘7en>et mzzxiei — 9(351;---7*7;?1)‘

—
Si g est une application pofynémiale, alors f est continue. En effet, f = go h ou
h: N rF — K"

x = Z ziei — (T, ) h est continue car linéaire en dimension finie, et

i=1
g est continue car polynomiale, donc f est continue.

Exemple. L’application det est continue de M, (K) dans K.

3.4 Continuité et compacité

Propriété (hors programme) : f est continue si et seulement si ses restrictions aux
compacts de F inclus dans Dy sont continues.

Démonstration.

L’implication directe est connue.

Réciproquement, supposons que pour tout compact K de E inclus dans Dy, f|x est
continue.

Soit [ € Dy. Soit (z,,) une suite d’éléments de Dy qui tend vers [. Il suffit d’établir que
f(zn) n_>—+>oof(l). Mais B = {z,/n € N} U {l} est un compact de E inclus dans Dy,

donc f|p est continue. Or (x,,) est une suite d’éléments de B qui tend vers [ € B, donc

flan) = fla(a) — fls(l) = f(1). O

Théoreme.
’L’image directe d’'un compact par une application continue est un Compact.‘

Démonstration.

Soit F et F' deux espaces métriques. Soit A un compact de E et f : A — F une
application continue.

Soit (y,) € f(A)N. Pour tout n € N, il existe z,, € A tel que y,, = f(z,).

A est compact, donc il existe une application ¢ : N — N, strictement croissante et
x € Atels que z,0,) —> .

n—-+o0o

f étant continue, f(zyn)) - f(z) et f(z) € f(A), donc la suite (f(z,)) admet au

moins une valeur d’adhérence dans f(A). Ceci prouve que f(A) est compact. O
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Corollaire. Soient A un compact non vide de E et f : A — R une application
continue. Alors f est bornée et elle atteint ses bornes, c¢’est-a-dire qu’il existe

(T, xar) € A? tel que, pour tout x € A, f(xy,) < f(z) < flan).

Démonstration.

f(A) est un compact, donc f(A) est un fermé borné dans R. En particulier, f(A) est
une partie non vide et majorée de R, donc elle admet une borne supérieure, notée S.

1
Pour tout n € N, il existe y,, € f(A) tel que S — ] <y, <S. D’apres le théoréeme
n
des gendarmes, y, —+> S, mais f(A) est fermé, donc S € f(A), ce qui prouve que
n——+0oo

f(A) admet un maximum.
De méme, on montre que f(A) admet un minimum. O

Corollaire. L’image directe d'un segment de R par une application continue a valeurs
réelles est un segment.

Exercice. Soit f : R — R une application continue et périodique. Montrer
qu’elle est bornée.
'(zInz)"

Exercice. Pour tout n € N, posons [,, = / dx. Montrer que I, — 0.
0 n! n—+oo

Théoreme.
Sur un K-espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Démonstration.

Soit E un K—espace vectoriel de dimension finie, muni d'une base e = (ey,...,e,).

Lorsque y = Z yie; € E, posons N(y Z ly;|. On sait que N est une norme sur F,
=1 =1

pour laquelle les fermés bornés de E sont des compacts.
e Soit N’ june seconde norme sur E

Smt:c—Zx e; € E. N'(x N’szel <Z\xz|N’

i=1

Posons g = 1r£1;a<>;N (e;). Pour tout z € E, (1) : N'(z) < BZ |z;| = BN (x).
i=1

e On en déduit que pour tout (z,y) € E?, |[N'(z) — N'(y)| < N'(x —y) < BN(z —y),
c’est-a~dire que lapplication N’ : (E, N) — R, est une application S-lipschitzienne.
Alinsi, cette application est continue.

En particulier, si 'on note Sy(0,1) = {x € E / N(z) = 1} (c’est la sphere unité pour
la norme N), alors N'|s,(0,1) est continue, or Sy(0,1) est un fermé borné de (E, N),
donc il est compact. Ainsi N’|g,(0,1) est une application bornée qui atteint ses bornes.
En particulier, il existe zo € Sy(0,1) tel que pour tout z € Sy(0,1), N'(x) > N'(zo).

x
Sixz e E\{0}, € Sy(0,1), donc N’ (—> > N'(xo).
( ) N(z) "
De plus N(zg) = 1, donc zg # 0, ce qui montre que N'(xg) > 0.
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Ainsi, pour tout x € E, (2) : N(z) < N'(x).

N’(.’Eo)
(1) et (2) prouvent que N et N’ sont équivalentes. O

3.5 La continuité uniforme

Notation. On fixe deux espaces métriques E et F' ainsi qu’'une application
f + E— F définie sur Dy C E.

Définition.
f est uniformément continue sur Dy si et seulement si
Ve e R, Ja e RY V(z,y) € D]Qc (d(z,y) <a=d(f(x), f(y)) <e).

Remarque. Dans cette définition, les deux dernieres inégalités peuvent étre in-
différemment prises strictes ou larges.

Remarque. f est uniformément continue si et seulement si

Ve e R% Ja € R Vg € Dy Vo € Dy (d(z,z0) < a = d(f(x), f(z0)) < e),

et f est continue si et seulement si

Ve € RY Vag € Dy Jag, € RY Vo € Dy (d(x,20) < 0y = d(f(x), f(20)) < €).
Ainsi, si f est uniformément continue, elle est continue, mais de plus, pour € > 0 fixé,
on peut choisir o indépendamment de zy. On dit que xyp — «,, est uniforme en xy,
et, par extension, que la continuité est uniforme.

Cette indépendance de « par rapport a zy est souvent bien utile dans la démonstration
de théoremes généraux d’analyse. Ainsi l'intérét de la continuité uniforme est essen-
tiellement d’ordre théorique.

Propriété. Toute fonction uniformément continue est continue.

Propriété. Caractérisation séquentielle de la continuité uniforme.
f est uniformément continue si et seulement si pour tout couple ((x,), (y,)) de suites
d’éléments de Dy tel que d(x,, yn) - 0, d(f(xn), f(yn)) - 0.

n—-—+o0 n—-+0oo

Démonstration.
e Supposons que f est uniformément continue. Soit ((z,), (y,)) un couple de suites
d’éléments de Dy tel que d(x,,,y,) — 0.

n—-+oo

Soit € > 0. Il existe o > 0 tel que pour tout (x,y) € DJ%,

(d(z,y) < o= d(f(z), f(y) < &)
Il existe N € N tel que pour tout n > N, d(z,,y,) < a. Ainsi, pour tout n > N,

d(f(xn), f(y,)) < e. On a montré que d(f(x,), f(y,)) — 0.

n—-+0oo
e Supposons maintenant que f n’est pas uniformément continue. Ainsi il existe € > 0

tel que Va € R} I(z,y) € D} d(z,y) < a et d(f(z), f(y) > e.

En particulier, pour tout n € N, il existe (x,,y,) € DJ% tel que d(zp,yn) < et

d(f(zn), f(yn)) > €.

n+1
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d(xn,yn)n:)oot) mais d(f(x,), f(y,)) ne converge pas vers 0. On a ainsi montré la

contraposée de la réciproque. O

Remarque. Il existe des applications continues qui ne sont pas uniformément conti-

0,1] — . . . , .
nues. Par exemple, 10,1] est continue sans étre uniformément continue.
x
Démonstration. ) ) |
Posons z, = * et y, = . Ty —Yp — Omais — — — = —1.0
" n+1 n—-+0o T Yn

Exercice. Montrer que z — 22 n’est pas uniformément continue sur R.
Propriété. La composée de deux applications uniformément continues est uniformément
continue.

Démonstration.
A Taide de la caractérisation séquentielle. O
Propriété. Les applications lipschitziennes sont uniformément continues.
Ainsi, “lispchitzienne” = “uniformément continue”=—-“continue”.
) P

Démonstration.
A Taide de la caractérisation séquentielle. O

Propriété. Si F' = Fy x --- x F,, ou g € N* et Iy, ..., I}, sont g espaces vectoriels
PR . .. [+ F — F . , . .
normés, l'application est uniformément continue si et
v o— (fil2), .., o))

seulement si pour tout 7 € N, f; est uniformément continue.

Démonstration.
Exercice. O

Théoreme de Heine.
Toute application continue sur un compact est uniformément continue.

Démonstration.

Soit A un compact de E. On suppose que f : A — F est une application continue.
Supposons que f n’est pas uniformément continue. Ainsi il existe € > 0 tel que, pour
tout o > 0, il existe (x,y) € A? tel que d(z,y) < a et d(f(x), f(y)) > e.

et

En particulier, pour tout n € N, il existe (z,,y,) € A% tel que d(x,,y,) <

d(f(n), f(yn)) = €.

A est compact, donc A? est aussi compact. Ainsi, il existe ¢ : N — N strictement
croissante et (r,y) € A? tel que (T ), Ypm)) — (7,y). Or application distance est
n—-+o0o

continve, (en effet, |d(z',') — d(z, y)| < |d(z',y’) — d(x',y)| + |d(', ) — d(z, )],
done |d(2',y') —d(z,y)| < d(y'.y) +d(a",z)  — 0),

()= (z,y) | .
donc d(Zy(n), Yp(n)) e d(z,y). Mais d(Zp(n), Ypmn)) < STl < ] e 0, donc
d’apres l'unicité de la limite, d(z,y) = 0, ce qui prouve que x = y.

n+1
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[ étant continue, f(z,0m)) - f(@) et f(Ypm)) - f(x), donc de méme que ci-
n——+0o0 n—-+0oo
dessus, on en déduit que d(f(Tym)); [ (Yem))) - d(f(x), f(x)) = 0, ce qui est faux
n—-+o0
car, pour tout n € N, d(f(2ym)), f(Ypm))) = €. Ainsi f est uniformément continue. O

Corollaire. Toute application continue et définie sur un segment de R est uni-

formément continue.

f:0,1] — R
r

elle est uniformément continue d’apres le théoreme de Heine. Cependant, f n’est pas

V7 — VYl

|z —y

Exemple. Notons — f est continue sur le segment [0, 1], donc

lipschitzienne : sinon, { /0 <z <y < 1} serait majoré ce qui est faux car

Exercice. Montrez que toute application f : R — R continue et périodique
est uniformément continue.

Résolution. Soient T" > 0 et f : R — R une application T-périodique
et continue. [—T,27] est un compact et f|_727) est continue, donc d’apres le
théoreme de Heine, f|_727 est uniformément continue.

Soit € > 0. Il existe o/ > 0 tel que

V(z,y) € [-T,2T (d(z,y) < o' = d(f(z), f(y)) <e).

Posons a = min(a’,T) > 0. Soit (x,y) € R? tel que d(z,y) < a. Notons n la
partie enticre de 7. n < £ <n+1,doncnT <x <nT+T,puis0 <z—nT <T.
dly—nT,z—nT)=d(z,y) < a <T,orx—nT € [0,T], donc y —nT € [-T,2T].
Ainsi, (x —nT,y —nT) € [-T,2T)* et d(x — nT,y —nT) < a, donc

d(f(x), f(y)) = d(f(z —nT), fly —nT)) <e.
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