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2.1.1 Caractérisation séquentielle . . . . . . . . . . . . . . . . . . . . 18
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Limites et continuité 1 Topologie dans un espace métrique

K désigne R ou C.

1 Topologie dans un espace métrique

Pour tout ce chapitre, on fixe un espace métrique (E, d) non vide.

1.1 Ouverts et fermés

Définition. Soient x ∈ E et V une partie de E.
V est un voisinage de x si et seulement s’il existe r > 0 tel que Bo(x, r) ⊂ V .
V(x) désignera l’ensemble des voisinages de x.

Remarque. Si E est un espace vectoriel normé, lorsqu’on remplace la norme sur E
par une norme équivalente, pour tout x ∈ E, V(x) n’est pas modifié.

Propriété. La notion de voisinage satisfait les propriétés suivantes :
⋄ Pour tout x ∈ E, E ∈ V(x).
⋄ Pour tout x ∈ E et tout V ∈ V(x), si W ⊃ V , alors W ∈ V(x).
⋄ Si x ∈ E et si (V,W ) ∈ V(x)2, alors V ∩W ∈ V(x).

Démonstration.
⋄ Soit x ∈ E. Bo(x, 1) ⊂ E, donc E ∈ V(x).
⋄ Soient x ∈ E, V ∈ V(x) et W ⊃ V .
Il existe r > 0 tel que Bo(x, r) ⊂ V ⊂ W , donc W ∈ V(x).
⋄ Soient x ∈ E et (V,W ) ∈ V(x)2. Il existe (r, r′) ∈ (R∗

+)
2 tel que Bo(x, r) ⊂ V et

Bo(x, r
′) ⊂ W . Posons r” = min(r, r′). Bo(x, r”) ⊂ V ∩W , donc V ∩W ∈ V(x).

Propriété. Si x ∈ E, une intersection finie de voisinages de x est un voisinage de x.

Démonstration.
Par récurrence sur le nombre de voisinages.

Définition. Soit U une partie de E.
U est un ouvert si et seulement si U est un voisinage de chacun des ses points.

Remarque. “Intuitivement”, U est un ouvert si et seulement si aucun point de la
frontière de U n’est dans U . Notons Fr(U) la frontière de U . Ainsi, U est un ouvert
si et seulement si Fr(U) ∩ U = ∅. Plus tard, lorsque nous aurons mathématiquement
défini la frontière de U , cette propriété se démontrera. Pour le moment, elle donne une
version intuitive de la notion d’ouvert, fondée sur la notion intuitive de frontière d’une
partie.

Propriété. La notion d’ouvert satisfait les propriétés suivantes :
⋄ ∅ et E sont des ouverts de E.
⋄ Une intersection finie d’ouverts est un ouvert.
⋄ Si I est un ensemble quelconque (éventuellement de cardinal infini) et si (Ui)i∈I
est une famille d’ouverts de E, alors

⋃
i∈I

Ui est un ouvert de E.
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Limites et continuité 1 Topologie dans un espace métrique

Démonstration.
⋄ ∀x ∈ ∅ ∅ ∈ V(x), donc ∅ est un ouvert de E.
⋄ Pour tout x ∈ E, E ∈ V(x), donc E est un ouvert de E.

⋄ Soient p ∈ N et U1, . . ., Up p ouverts de E. Soit x ∈
p⋂

i=1

Ui.

Pour tout i ∈ Np, x ∈ Ui, donc Ui ∈ V(x). Ainsi
p⋂

i=1

Ui ∈ V(x).

On a montré que

p⋂
i=1

Ui est un voisinage de chacun de ses points. C’est donc un ouvert.

⋄ Soit I un ensemble quelconque et (Ui)i∈I une famille d’ouverts de E. Soit x ∈
⋃
i∈I

Ui.

Il existe j ∈ I tel que x ∈ Uj. Uj ∈ V(x) et Uj ⊂
⋃
i∈I

Ui, donc
⋃
i∈I

Ui ∈ V(x), ce qui

prouve que
⋃
i∈I

Ui est voisinage de chacun de ses points, donc que c’est un ouvert.

Définition. L’ensemble des ouverts de E est appelé la topologie de E.

Propriété. Les ouverts sont exactement les réunions de boules ouvertes.

Démonstration.
• Soit (a, r) ∈ E × R∗

+. Montrons que Bo(a, r) est un ouvert.
Soit x ∈ Bo(a, r). Posons α = r − d(a, x) > 0. Pour tout y ∈ Bo(x, α),
d(a, y) ≤ d(a, x) + d(x, y) < d(a, x) + α = r, donc y ∈ Bo(a, r). Ainsi
Bo(x, α) ⊂ Bo(a, r), ce qui prouve que Bo(a, r) ∈ V(x). Ainsi Bo(a, r) est voisinage de
chacun de ses points, donc c’est un ouvert.
Une réunion de boules ouvertes est donc un ouvert, en tant que réunion d’ouverts.
• Réciproquement, soit U un ouvert de E. Pour tout x ∈ U , U est un voisinage de x,
donc il existe rx > 0 tel que Bo(x, rx) ⊂ U .

Pour tout x ∈ U , Bo(x, rx) ⊂ U , donc
⋃
x∈U

Bo(x, rx) ⊂ U .

De plus, si y ∈ U , y ∈ Bo(y, ry) ⊂
⋃
x∈U

Bo(x, rx), donc U ⊂
⋃
x∈U

Bo(x, rx). Ainsi

U =
⋃
x∈U

Bo(x, rx).

Remarque. Dans la démonstration précédente, l’existence de la famille (rx)x∈U utilise
l’axiome du choix. On peut s’en passer car en adaptant la démonstration précédente,
on peut montrer que si U est un ouvert, alors U est la réunion de toutes les boules
ouvertes incluses dans U .

Remarque. Les intervalles ouverts de R sont des ouverts de R.
Démonstration.
• Soit I un intervalle ouvert de R. Si I =]a, b[ avec (a, b) ∈ R2 et a < b, I est la boule

ouverte de centre
a+ b

2
et de rayon

b− a

2
.
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Limites et continuité 1 Topologie dans un espace métrique

• Si I =]a,+∞[, où a ∈ R, I =
⋃
n∈N

]a, a+ n[ est un ouvert.

• Enfin, si I =]−∞, a[, où a ∈ R, I =
⋃
n∈N

]a− n, a[ est aussi un ouvert.

Remarque. Une intersection infinie d’ouverts n’est pas toujours un ouvert.

Démonstration.
Pour tout n ∈ N∗, ]0, 1 + 1

n
[ est un ouvert de R,

mais
⋂
n∈N∗

]0, 1 +
1

n
[=]0, 1] n’est pas un ouvert car ]0, 1] n’est pas un voisinage de 1. En

effet, pour tout r > 0, Bo(1, r) =]1− r, 1 + r[ ̸⊂]0, 1].

Définition.
Une partie F de E est un fermé de E
si et seulement si son complémentaire est un ouvert.

Exemple. Z est un fermé de R car son complémentaire est ouvert : R\Z =
⋃
n∈Z

]n, n+1[.

Remarque. “Intuitivement”, F est un fermé si et seulement si tous les points de la
frontière de F sont dans F , c’est-à-dire si et seulement si Fr(F ) ⊂ F . Plus tard, lorque
nous aurons mathématiquement défini la frontière de F , cette propriété se démontrera.
Pour le moment, elle donne une version intuitive de la notion de fermé, fondée sur la
notion intuitive de frontière d’une partie.

Propriété. La notion de fermé satisfait les propriétés suivantes :
⋄ ∅ et E sont des fermés de E.
⋄ Une réunion finie de fermés est un fermé.
⋄ Si I est un ensemble quelconque (éventuellement de cardinal infini) et si (Fi)i∈I
est une famille de fermés de E, alors

⋂
i∈I

Fi est un fermé de E.

Démonstration.
⋄ E \ ∅ = E est un ouvert, donc ∅ est un fermé. De même E est un fermé.

⋄ Soient p ∈ N∗ et F1, . . ., Fp p fermés de E. E \
⋃

1≤i≤p

Fi =
⋂

1≤i≤p

(E \ Fi) est une

intersection finie d’ouverts, donc est un ouvert, donc
⋃

1≤i≤p

Fi est un fermé de E.

⋄ Soient I un ensemble quelconque et (Fi)i∈I , une famille de fermés de E.

E \
⋂
i∈I

Fi =
⋃
i∈I

(E \ Fi) est une réunion d’ouverts, donc est un ouvert, donc
⋂
i∈I

Fi est

un fermé de E.

Remarque. Une partie de E peut être à la fois ouverte et fermée.

Remarque. Les intervalles fermés de R sont des fermés. En effet, leur complémentaire
est une réunion d’intervalles ouverts.

Remarque. Une réunion d’un nombre infini de fermés n’est pas toujours un fermé.
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Démonstration.
Pour tout n ∈ N∗, [−1 + 1

n
, 1− 1

n
] est un fermé mais⋃

n∈N∗

[−1 +
1

n
, 1− 1

n
] =]− 1, 1[ n’est pas un fermé car R\]− 1, 1[/∈ V(1).

Remarque. Il existe des parties de E qui ne sont ni fermées ni ouvertes. Par exemple,
[0, 1[ n’est ni un ouvert de R, ni un fermé de R.
Propriété. Les boules fermées (donc en particulier les singletons) sont des fermés.

Démonstration.
Soit (a, r) ∈ E × R+. Soit x ∈ E \ Bf (a, r). Posons α = d(a, x) − r > 0 et montrons
que Bo(x, α) ⊂ [E \Bf (a, r)].
En effet, si y ∈ Bo(x, α), d(a, y) ≥ d(a, x)− d(x, y) > d(a, x)− α = r, donc
y ∈ E \Bf (a, r).
Ainsi E \Bf (a, r) est un voisinage de x, pour tout x ∈ E \Bf (a, r). Donc E \Bf (a, r)
est un ouvert et Bf (a, r) est un fermé de E.

Corollaire. Toute partie de E de cardinal fini est un fermé de E.

Démonstration.
C’est une réunion finie de singletons.

1.2 Adhérence et intérieur

Définition. Soient a ∈ E et A une partie de E. On dit que a est un point intérieur

de A si et seulement si A ∈ V(a). On note
◦
A l’ensemble des points intérieurs de A.

Ainsi, pour tout a ∈ E, a ∈
◦
A ⇐⇒ A ∈ V(a) .

Remarque. Intuitivement,
◦
A = A \ Fr(A), propriété que nous démontrerons effecti-

vement plus loin.

Exemples. Dans R, l’intérieur de [a, b] est ]a, b[, l’intérieur de [a,+∞[ est ]a,+∞[ et
l’intérieur de Q est ∅.
Dans E,

◦
E = E et

◦
∅ = ∅.

Propriété. Soit A une partie de E.
◦
A est la réunion des ouverts contenus dans A.

C’est le plus grand ouvert inclus dans A.

Démonstration.
• Notons U l’ensemble des ouverts inclus dans A et B =

⋃
U∈U

U .

Si x ∈ B, il existe U ∈ U tel que x ∈ U . U est un ouvert, donc il est voisinage de

chacun de ses points. En particulier, U ∈ V(x), mais U ⊂ A, donc A ∈ V(x) et x ∈
◦
A.

Ainsi B ⊂
◦
A.
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Limites et continuité 1 Topologie dans un espace métrique

• Si x ∈
◦
A, il existe r > 0 tel que Bo(x, r) ⊂ A. Bo(x, r) ∈ U , donc x ∈ B. Ainsi

◦
A ⊂ B.

• En tant que réunion d’ouverts inclus dans A,
◦
A est un ouvert contenu dans A. De

plus, si C est un ouvert contenu dans A, C ∈ U , donc C ⊂
⋃
U∈U

U =
◦
A. Ainsi

◦
A est le

plus grand ouvert inclus dans A.

Propriété. Soient A et B deux parties de E.

⋄
◦
A ⊂ A,

⋄
◦
A = A si et seulement si A est un ouvert,

⋄
◦
◦
A =

◦
A,

⋄ A ⊂ B =⇒
◦
A ⊂

◦
B et

⋄
◦︷ ︸︸ ︷

A ∩B =
◦
A ∩

◦
B.

Démonstration.
Les trois premières propriétés sont simples à établir.

⋄ Supposons que A ⊂ B.
◦
A est un ouvert contenu dans A donc dans B et

◦
B est le

plus grand ouvert contenu dans B, donc
◦
A ⊂

◦
B.

⋄ A ∩B ⊂ A donc

◦︷ ︸︸ ︷
A ∩B ⊂

◦
A. De même,

◦︷ ︸︸ ︷
A ∩B ⊂

◦
B, donc

◦︷ ︸︸ ︷
A ∩B ⊂

◦
A ∩

◦
B.

De plus,
◦
A ⊂ A et

◦
B ⊂ B, donc

◦
A ∩

◦
B ⊂ A ∩B, puis

◦
A ∩

◦
B ⊂

◦︷ ︸︸ ︷
A ∩B.

Remarque.
◦
A ∪

◦
B ⊂

◦︷ ︸︸ ︷
A ∪B mais la réciproque est fausse.

Démonstration.

A ⊂ A ∪B, donc
◦
A ⊂

◦︷ ︸︸ ︷
A ∪B. De même,

◦
B ⊂

◦︷ ︸︸ ︷
A ∪B, donc

◦
A ∪

◦
B ⊂

◦︷ ︸︸ ︷
A ∪B.

Dans R,
◦
Q = ∅ et

◦︷ ︸︸ ︷
R \Q = ∅, mais

◦︷ ︸︸ ︷
Q ∪ (R \Q) = R, donc l’inclusion réciproque n’est

pas toujours vraie.

Définition. Soient a ∈ E et A une partie de E. On dit que a est un point adhérent
de A si et seulement si, pour tout V ∈ V(a), V ∩ A ̸= ∅.
On note A l’ensemble des points adhérents de A. A est appelée l’adhérence de A.

Ainsi, pour tout a ∈ E, a ∈ A ⇐⇒ [∀V ∈ V(a) V ∩ A ̸= ∅] .
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Remarque. Intuitivement, A = A∪Fr(A), propriété que nous démontrerons effecti-
vement plus loin.

Exemples. Dans R, l’adhérence de ]a, b] est [a, b], l’adhérence de ]a,+∞[ est [a,+∞[
et l’adhérence de Q est R.
Dans E, E = E et ∅ = ∅.

Remarque. R désigne tantôt l’adhérence de R et est alors égal à R, tantôt la droite
numérique achevée R = R ∪ {−∞,+∞}. Seul le contexte permet de déterminer dans
quel cas on est placé.
Remarque de la remarque : En fait, R ∪ {−∞,+∞} est bien l’adhérence de R,
et c’est d’ailleurs l’explication de cette notation R, mais dans un contexte d’espace
métrique qui n’est pas au programme :
notons temporairement A = R ∪ {−∞,+∞}.
Convenons que arctan(+∞) = π

2
et que arctan(−∞) = −π

2
.

Pour tout x, y ∈ A, posons d(x, y) = |arctan(x)− arctan(y)|.
On vérifie facilement que d est une distance sur A.
Soit ε > 0. Posons x = tan(π

2
− ε

2
) ∈ R. Alors d(+∞, x) = |π

2
− (π

2
− ε

2
)| = ε

2
, donc

x ∈ Bo(+∞, ε). Ceci prouve que, pour tout ε > 0, Bo(+∞, ε) ∩ R ̸= ∅, donc +∞
appartient à l’adhérence de R, que l’on désigne ici par R. De même, on montre que
−∞ ∈ R. Or R ⊂ R, donc A ⊂ R, mais bien sûr, R ⊂ A, donc on peut écrire que
A = R.

Propriété. Soit A une partie de E. E \ A =

◦︷ ︸︸ ︷
E \ A et E \

◦
A = E \ A.

Démonstration.
Soit x ∈ E. x ∈ E \ A ⇐⇒ x /∈ A ⇐⇒ (∃V ∈ V(x) V ∩ A = ∅), donc

x ∈ E \ A ⇐⇒ (∃V ∈ V(x) V ⊂ E \ A) ⇐⇒ x ∈
◦︷ ︸︸ ︷

E \ A.

En appliquant cette propriété au complémentaire de A, on en déduit que

E \ E \ A =

◦︷ ︸︸ ︷
E \ (E \ A) =

◦
A, donc E \

◦
A = E \ A.

Corollaire. Soit A une partie de E.
A est l’intersection des fermés contenant A. C’est le plus petit fermé contenant A.

Démonstration.
Notons F l’ensemble des fermés contenant A et U l’ensemble des ouverts inclus dans

E \A. Les applications F −→ U
F 7−→ E \ F et

U −→ F
U 7−→ E \ U sont réciproques l’une de

l’autre, et donc ces applications sont bijectives. On peut donc effectuer le changement
de variable F = E \ U .

A = E \ (E \ A) = E \
◦︷ ︸︸ ︷

E \ A = E \
⋃
U∈U

U =
⋂
U∈U

(E \ U) =
⋂
F∈F

F .
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En tant qu’intersection de fermés contenant A, A est un fermé contenant A. De plus,
si G est un fermé contenant A, G ∈ F , donc A ⊂ G. Ainsi A est le plus petit fermé
contenant A.

Propriété. Soient A et B deux parties de E.

⋄ A ⊃ A,
⋄ A = A si et seulement si A est un fermé,

⋄ A = A,
⋄ A ⊂ B =⇒ A ⊂ B et
⋄ A ∪B = A ∪B.

Démonstration.
Les trois premières propriétés sont simples à établir.
⋄ Supposons que A ⊂ B. B est un fermé contenant B donc A et A est le plus petit
fermé contenant A, donc A ⊂ B.
⋄ A ∪B ⊃ A donc A ∪B ⊃ A. De même, A ∪B ⊃ B, donc A ∪B ⊃ A ∪B.
De plus, A ⊃ A et B ⊃ B, donc A ∪B ⊃ A ∪B, puis A ∪B ⊃ A ∪B.

Remarque. A ∩B ⊃ A ∩B mais la réciproque est fausse.

Démonstration.
A ⊃ A ∩B, donc A ⊃ A ∩B. De même, B ⊃ A ∩B, donc A ∩B ⊃ A ∩B.
Dans R, Q = R et R \Q = R, mais Q ∩ (R \Q) = ∅, donc l’inclusion réciproque n’est
pas toujours vraie.

Propriété (hors programme) : Soit (xn) une suite de points de E.
Pour tout N ∈ N, notons XN = {xn/n ≥ N}.
Alors l’ensemble des valeurs d’adhérence de (xn) est

⋂
N∈N

XN .

En particulier, l’ensemble des valeurs d’adhérence de (xn) est un fermé.

Démonstration.
a est une valeur d’adhérence de (xn) si et seulement si
(1) : ∀ε > 0 ∀N ∈ N ∃n ≥ N d(xn, a) < ε, or
(1) ⇐⇒ ∀N ∈ N ∀ε > 0 XN ∩Bo(a, ε) ̸= ∅

⇐⇒ ∀N ∈ N ∀V ∈ V(a) XN ∩ V ̸= ∅
⇐⇒ ∀N ∈ N a ∈ XN

Ainsi, a est une valeur d’adhérence de (xn) si et seulement si a ∈
⋂
N∈N

XN .

Définition. Soit A une partie de E. Soit x ∈ A.
On dit que x est isolé dans A si et seulement si il existe V ∈ V(x) tel que V ∩A = {x},
c’est-à-dire si et seulement si x /∈ A \ {x}.

Définition. Soit A une partie de E. Soit x ∈ E.
On dit que x est un point d’accumulation de A si et seulement si, pour tout V ∈ V(x),
(V ∩ A) \ {x} ≠ ∅, c’est-à-dire si et seulement si x ∈ A \ {x}.

©Éric Merle 8 MPSI2, LLG
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Propriété. Soient A une partie non vide de E et a ∈ E. Alors d(a,A) = 0 ⇐⇒ a ∈ A.
Ainsi les points adhérents de A sont les points de E situés à une distance nulle de A.

Démonstration.
a ∈ A ⇐⇒ (∀V ∈ V(a) V ∩ A ̸= ∅) ⇐⇒ (∀ε ∈ R∗

+ Bo(a, ε) ∩ A ̸= ∅),
donc a ∈ A ⇐⇒ (∀ε ∈ R∗

+ ∃x ∈ A d(a, x) < ε) ⇐⇒ inf{d(x, a)/x ∈ A} = 0.
Ainsi a ∈ A ⇐⇒ d(a,A) = 0.

Remarque. On a vu lors de la présentation de l’ensemble des réels (Logique et
vocabulaire ensembliste, paragraphe 7.3.7) qu’une partie A de R est dense dans R si
et seulement si pour tout x, y ∈ R avec x < y, il existe a ∈ A tel que x < a < y. On
souhaite adapter cette définition à une partie d’un espace métrique quelconque.

Propriété. Une partie A de R est dense dans R si et seulement si A rencontre toutes
les boules ouvertes de R.
Démonstration.
Notons I = {]x, y[/x < y} : I désigne donc l’ensemble des intervalles ouverts, non vides,
et bornés de R. D’après la remarque précédente, A est dense dans R si et seulement si
A rencontre tous les éléments de I.
Notons B = {Bo(c, r)/c ∈ R, r ∈ R∗

+} :
B désigne l’ensemble des boules ouvertes de R. B = {]c − r, c + r[/c ∈ R, r ∈ R∗

+},
donc B ⊂ I. Mais réciproquement, pour tout x, y ∈ R avec x < y, ]x, y[= Bo(

x+y
2
, y−x

2
),

donc I ⊂ B. Ainsi I = B et A est dense dans R si et seulement si A rencontre tous les
éléments de B, ce qu’il fallait démontrer

Définition. Soit A une partie de E.
A est dense dans E si et seulement si A rencontre toutes les boules ouvertes de E.

Propriété. Une partie A de E est dense dans E si et seulement si A = E.

Démonstration.
Supposons que A = E et soit (a, r) ∈ E × R∗

+. a ∈ E = A et Bo(a, r) ∈ V(a), donc
Bo(a, r) ∩ A ̸= ∅. Ainsi, A rencontre toutes les boules ouvertes.
Réciproquement, supposons que A rencontre toutes les boules ouvertes de E. Soient
a ∈ E et V ∈ V(a). Il existe r > 0 tel que Bo(a, r) ⊂ V , or A ∩ Bo(a, r) ̸= ∅, donc
V ∩ A ̸= ∅. Ainsi, a ∈ A pour tout a ∈ E, donc A = E.

Définition. Soit A une partie de E.

La frontière de A est Fr(A) = A \
◦
A = A ∩ E \ A = A ∩ (E \

◦
A) .

Propriété. La frontière d’une partie de E est toujours fermée.

Démonstration.
Fr(A) = A ∩ E \ A est une intersection de deux fermés.

Exemple. Dans R, Fr([a, b[) = {a, b}, Fr(R) = ∅ et Fr(Q) = R.

Propriété. Soit A une partie de E. [A \ Fr(A)] =
◦
A ⊂ A ⊂ A = [A ∪ Fr(A)].
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Limites et continuité 1 Topologie dans un espace métrique

Démonstration.

⋄ Soit x ∈ A \ Fr(A). Si x /∈
◦
A, x ∈ A \

◦
A, donc x ∈ Fr(A), ce qui est faux. Ainsi

x ∈
◦
A, ce qui prouve que A \ Fr(A) ⊂

◦
A.

Réciproquement, supposons que x ∈
◦
A. Si x ∈ Fr(A), x /∈

◦
A, donc x ∈ A \ Fr(A).

Ainsi, [A \ Fr(A)] =
◦
A.

⋄ Soit x ∈ A. Si x /∈ A, x ∈ A \
◦
A = Fr(A), donc, dans tous les cas, x ∈ A ∪ Fr(A).

Réciproquement, supposons que x ∈ A ∪ Fr(A). Si x ∈ A alors x ∈ A.

Si x ∈ Fr(A) = A \
◦
A, on a aussi x ∈ A, donc dans tous les cas, x ∈ A, ce qui prouve

que A = [A ∪ Fr(A)].

Propriété. Soit A une partie de E.
A est ouvert si et seulement si A ∩ Fr(A) = ∅.
A est fermé si et seulement si Fr(A) ⊂ A.

Démonstration.

⋄ Si A est ouvert,
◦
A = A, donc Fr(A) ∩ A = (A \ A) ∩ A = ∅.

Réciproquement, supposons que Fr(A) ∩ A = ∅. Alors
◦
A = A \ Fr(A) = A, donc A

est ouvert.
⋄ Si A est fermé, Fr(A) ⊂ Fr(A) ∪ A = A = A.
Réciproquement si Fr(A) ⊂ A, A = A ∪ Fr(A) = A, donc A est fermé.

Remarque. Toutes ces notions sont définies uniquement à l’aide de la notion de
voisinages, donc lorsque E est un espace vectoriel normé, elles restent inchangées si on
change la norme de E par une norme équivalente.

1.3 Caractérisation par les suites

Propriété. Soient A une partie de E et a ∈ E.

a ∈ A si et seulement s’il existe une suite d’éléments de A qui converge vers a.

Démonstration.
⋄ Supposons que a ∈ A. Pour tout n ∈ N∗, il existe xn ∈ A ∩ Bo(a,

1
n
). Ainsi (xn) est

une suite d’éléments de A et xn −→
n→+∞

a car d(xn, a) ≤ 1
n

−→
n→+∞

0.

⋄ Réciproquement, supposons qu’il existe une suite (xn) d’éléments de A tels que
xn −→

n→+∞
a.

Soit V ∈ V(a). Il existe ε > 0 tel que Bo(a, ε) ⊂ V . xn −→
n→+∞

a, donc il existe N ∈ N∗ tel

que pour tout n ≥ N , d(xn, a) < ε. En particulier, xN ∈ A∩Bo(a, ε), donc V ∩A ̸= ∅,
ce qui prouve que a ∈ A.
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Limites et continuité 1 Topologie dans un espace métrique

Corollaire. A est dense dans E si et seulement si pour tout l ∈ E, il existe (xn) ∈ AN

telle que xn −→
n→+∞

l.

Exercice. Soient A et B deux parties non vides de E.
Montrer que d(A,B) = d(A,B).

Résolution.
• {d(a, b)/(a, b) ∈ A×B} ⊂ {d(α, β)/(α, β) ∈ A×B}, donc
d(A,B) = inf({d(a, b)/(a, b) ∈ A×B})

≥ inf({d(α, β)/(α, β) ∈ A×B}) = d(A,B).
• Soit (α, β) ∈ A×B. Il existe (an) ∈ AN et (bn) ∈ BN

telles que an −→
n→+∞

α et bn −→
n→+∞

β.

Pour tout n ∈ N, (an, bn) ∈ A×B, donc d(an, bn) ≥ d(A,B),
or d(an, bn) −→

n→+∞
d(α, β). En effet,

|d(α, β)− d(an, bn)| ≤ |d(α, β)− d(α, bn)|+ |d(α, bn)− d(an, bn)|
≤ d(β, bn) + d(α, an) −→

n→+∞
0.

(remarque : lorsque d est associée à une norme ∥.∥, seul cas au programme,
il est plus simple d’écrire que
|d(α, β)−d(an, bn)| = |∥α−β∥−∥an−bn∥| −→

n→+∞
|∥α−β∥−∥α−β∥| = 0, d’après

les théorèmes usuels sur les suites de vecteurs.)
Ainsi, d(α, β) ≥ d(A,B), pour tout (α, β) ∈ A×B, ce qui prouve que
d(A,B) = inf

(α,β)∈A×B
d(α, β) ≥ d(A,B).

Propriété.
A est fermé si et seulement si toute suite convergente d’éléments de A
a pour limite un élément de A.

Démonstration.
• Supposons que A est fermé et soit (an) une suite convergente d’éléments de A.
Notons a sa limite. a ∈ A et A = A, donc a ∈ A.
• Réciproquement, on suppose que toute suite convergente d’éléments de A a pour
limite un élément de A. Soit a ∈ A. Il existe une suite (an) de A telle que an −→

n→+∞
a.

D’après l’hypothèse, a ∈ A, donc A ⊂ A, ce qui montre que A est fermé.

Exemple. Montrons que toute droite de C est fermée :
Soit D une droite de C. Il existe a0 ∈ C et θ ∈ R tels que D = a0 + Reiθ. Ainsi, pour
tout z ∈ C, z ∈ D ⇐⇒ e−iθ(z − a0) ∈ R ⇐⇒ Im(e−iθ(z − a0)) = 0.
Soit (zn) ∈ DN une suite d’éléments de D telle que zn −→

n→+∞
z ∈ C.

Pour tout n ∈ N, Im(e−iθ(zn − a0)) = 0, or d’après le cours,
Im(e−iθ(zn − a0)) −→

n→+∞
Im(e−iθ(z − a0)), donc Im(e−iθ(z − a0)) = 0 ce qui montre que

z ∈ D. D’après la caractérisation des fermés, D est bien un fermé.

Exemple. En adaptant le raisonnement,
montrer que {(x, y, z) ∈ R3 / x2 − sin(zy) ≥ y3} est un fermé de R3.
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Limites et continuité 1 Topologie dans un espace métrique

Propriété. Soit G un K-espace vectoriel normé de dimension finie ou infinie.
Tout sous-espace vectoriel de G de dimension finie est fermé.

Démonstration.
Soit F un sous-espace vectoriel de G de dimension finie.
Soit (xn) une suite d’éléments de F qui converge vers l ∈ G.
En tant que suite convergente de G, (xn) est une suite de Cauchy de G, donc c’est
une suite de Cauchy de F , mais F est de dimension finie, donc F est complet, ce qui
prouve que la suite (xn) converge dans F , donc l ∈ F . Ainsi F est fermé.

1.4 Topologie induite sur une partie

Soit A une partie de E. On a déjà vu qu’alors (A, d|A2) est un espace métrique.
On a également vu que la topologie d’un espace métrique est l’ensemble de ses ou-
verts. Par extension, la topologie d’un espace métrique désigne tout ce qui concerne ses
ouverts, fermés, adhérences, intérieurs etc.
Dans ce contexte, on parle de la topologie “induite” sur A par la topologie “globale”
de E, ou encore de la topologie relative à A. On dispose ainsi des voisinages, ouverts,
fermés, intérieurs, adhérences, frontières et ensembles denses pour la topologie induite
(on parle de voisinages relatifs à A, ouverts relatifs etc.).

Propriété. Les boules, ouverts, fermés et voisinages pour la topologie induite sur
A sont les traces sur A des boules centrées dans A, des ouverts, des fermés et des
voisinages pour la topologie de E.

Démonstration.
• Soit (a, r) ∈ A× R∗

+. La boule ouverte de centre a et de rayon r pour la topologie
induite est BA

o (a, r) = {x ∈ A/d(a, x) < r} = BE
o (a, r) ∩ A.

La démonstration est identique pour les boules fermées.
• Soit UA un ouvert pour la topologie induite sur A. C’est une réunion de boules
ouvertes de la forme BA

o (a, r) où (a, r) ∈ A× R∗
+. Donc UA est de la forme⋃

i∈I

BA
o (ai, ri) = A ∩

(⋃
i∈I

BE
o (ai, ri)

)
= A ∩ U où U est un ouvert de E.

Réciproquement, soit U un ouvert pour la topologie globale de E. Soit a ∈ U ∩ A. Il
existe r > 0 tel que Bo(a, r) ⊂ U , donc BA

o (a, r) ⊂ U ∩ A. Ainsi, pour la topologie
induite sur A, U ∩ A est voisinage de chacun de ses points, donc est un ouvert.
• Soit FA une partie de A. FA est un fermé pour la topologie induite si et seulement
si A \ FA est un ouvert pour la topologie induite, donc si et seulement s’il existe un
ouvert U pour la topologie globale tel que A \FA = A∩U . Ainsi FA est un fermé pour
la topologie induite si et seulement s’il existe un ouvert U pour la topologie globale tel
que FA = A \ (A ∩ U) = (E \ U) ∩ A. Donc les fermés pour la topologie induite sont
les traces sur A des fermés pour la topologie globale.
• Soient V une partie de A et a ∈ A.
Supposons que V ∈ VA(a). Posons W = V ∪ (E \ A). Ainsi V = W ∩ A.
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Il existe r > 0 tel que BE
o (a, r)∩A = BA

o (a, r) ⊂ V . Ainsi BE
o (a, r) ⊂ W et W ∈ VE(a).

Donc V = W ∩ A est la trace sur A d’un voisinage de a pour la topologie globale.
Réciproquement, supposons que V est la trace sur A d’un voisinage de a pour la
topologie globale. Ainsi V = W∩A oùW ∈ VE(a). Il existe r > 0 tel que BE

o (a, r) ⊂ W .
Alors BA

o (a, r) = BE
o (a, r) ∩ A ⊂ W ∩ A = V , ce qui prouve que V ∈ VA(a).

Propriété. Si B est une partie de A, l’adhérence de B pour la topologie induite sur
A est la trace sur A de l’adhérence de B pour la topologie globale sur E.

Démonstration.
Soit a ∈ A.
a ∈ B

A ⇐⇒ (∀V ∈ VA(a) V ∩B ̸= ∅) ⇐⇒ (∀W ∈ VE(a) W ∩ A ∩B ̸= ∅),
or B ⊂ A, donc A∩B = B. Ainsi a ∈ B

A ⇐⇒ a ∈ B
E
, ce qui montre que B

A
= A∩BE

.

Remarque. L’intérieur et la frontière pour la topologie induite sur A ne correspondent
pas aux traces sur A des intérieur et frontière pour la topologie globale de E.

Démonstration.

Prenons B = A = [a, b]. B =]a− 1, b+1[∩A est un ouvert de A, donc
◦
B

A

= A = [a, b],

mais A ∩
◦
B

E

=]a, b[.

Avec le même exemple, FrA(B) = ∅ mais A ∩ FrE(B) = {a, b}.

Propriété. Soit B une partie de A. B est dense dans A si et seulement si A ⊂ B .

Démonstration.
B est dense dans A si et seulement si B

E ∩ A = B
A

= A, donc si et seulement si

A ⊂ B
E
.

1.5 Les compacts

Définition. Soit A une partie de E.
A est compacte si et seulement si
toute suite d’éléments de A admet au moins une valeur d’adhérence dans A.

Remarque. Lorsque E est un K-espace vectoriel, si N et N ′ sont deux normes
équivalentes sur E, alors une partie de E est compacte pour N si et seulement si
elle est compacte pour N ′.

Propriété. Tout compact de E est fermé et borné.

Démonstration.
• Soit A un compact de E. Soit (xn) une suite d’éléments de A qui converge vers
x ∈ E. A étant compact, (xn) admet au moins une valeur d’adhérence dans A, or x est
l’unique valeur d’adhérence de (xn), donc x ∈ A. Ainsi A est fermé.
• Il existe e ∈ E. Supposons que A n’est pas borné. Ainsi pour tout n ∈ N, il existe
xn ∈ A tel que d(e, xn) ≥ n. Si φ : N −→ N est une application strictement croissante,
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d(e, xφ(n)) ≥ φ(n) ≥ n −→
n→+∞

+∞, ainsi la suite (xφ(n)) n’est pas bornée donc ne

converge pas. Ainsi la suite (xn) n’admet aucune valeur d’adhérence, ce qui est faux.
On en déduit que A est borné.

Théorème. La réciproque est vraie en dimension finie : si E est un K-espace vectoriel
de dimension finie, les compacts de E sont exactement ses fermés bornés.

Démonstration.
Soit E un K-espace vectoriel de dimension finie et soit A une partie fermée bornée de
E. Soit (xn) ∈ AN.
A est bornée, donc (xn) est une suite bornée de E donc, d’après le théorème de Bolzano-
Weierstrass, elle possède une valeur d’adhérence a ∈ E. Il existe une extraction (xφ(n))
de (xn) qui converge vers a, mais (xφ(n)) ∈ AN et A est fermé, donc a ∈ A.

Remarque. Pour le moment, ce théorème ainsi que le théorème de Bolzano-Weierstrass
sont démontrés uniquement lorsque sur E, on utilise la norme N définie par : si

y =

q∑
i=1

yiei ∈ E, alors N(y) =

q∑
i=1

|yi|, où e = (e1, . . . , eq) est une base de E.

Nous démontrerons page 40 que sur un espace vectoriel de dimension finie, toutes les
normes sont équivalentes, donc ces théorèmes sont vrais pour toute norme de E.
Cependant, pour démontrer que toutes les normes sont équivalentes sur un espace E
de dimension finie, nous utiliserons que dans E les fermés bornés sont compacts, mais
seulement pour la norme N : il n’y aura donc pas de cercle vicieux.

Propriété. Soit A un compact de E.
Lorsque B ⊂ A, B est compact si et seulement s’il est fermé.

Démonstration.
Supposons que B est compact. Alors il est fermé d’après la propriété précédente.
Réciproquement, supposons que B est fermé. Soit (xn) une suite d’éléments de B. C’est
aussi une suite d’éléments de A qui est compact, donc il existe une application
φ : N −→ N, strictement croissante telle que (xφ(n)) converge dans A.
Mais (xφ(n)) ∈ BN et B est un fermé, donc (xφ(n)) converge dans B. Ainsi la suite (xn)
admet une valeur d’adhérence dans B, ce qui prouve que B est compact.

Théorème. Une suite d’éléments d’une partie compacte converge si et seulement si
elle admet une unique valeur d’adhérence.

Démonstration.
On sait déjà que lorsqu’une suite converge, sa limite est son unique valeur d’adhérence.
Réciproquement considérons une suite (xn) d’une partie compacte K de E. On suppose
que (xn) possède une unique valeur d’adhérence a mais que xn ne converge pas vers a
lorsque n tend vers +∞.
Il existe ε > 0 tel que, pour tout N ∈ N, il existe n ≥ N tel que d(xn, a) > ε.
Ainsi, l’ensemble M = {n ∈ N / d(xn, a) > ε} n’est pas majoré, donc c’est une partie
infinie de N. D’après le cours, il existe une unique bijection strictement croissante de
N dans M , que l’on notera φ. Alors, pour tout n ∈ N, d(xφ(n), a) > ε. Or la suite
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extraite (xφ(n)) est à valeurs dans K qui est compact, donc il existe b ∈ K et une
application Ψ strictement croissante de N dans N telle que xφ(Ψ(n)) −→

n→+∞
b. Alors b est

une valeur d’adhérence de (xn) donc d’après l’unicité, b = a. Or, pour tout n ∈ N,
d(xφ(Ψ(n)), a) > ε, donc en faisant tendre n vers +∞ (cf l’exercice en début de la page
11), on obtient d(b, a) ≥ ε, ce qui est faux car a = b. Ceci prouve par l’absurde que
xn −→

n→+∞
a.

Théorème. On suppose que E et F sont deux K-espaces vectoriels normés.
Si A et B sont des compacts de E et de F , alors A×B est un compact de E × F .

Démonstration.
Soit ((xn, yn))n∈N ∈ (A×B)N. A est compact, donc il existe une application
φ : N −→ N, strictement croissante et x ∈ A tels que xφ(n) −→

n→+∞
x.

(yφ(n)) ∈ BN et B est compact, donc il existe une application Ψ : N −→ N, strictement
croissante et y ∈ B tels que yφ(Ψ(n)) −→

n→+∞
y. De plus, par composition des limites,

xφ(Ψ(n)) −→
n→+∞

x. Ainsi (xφ◦Ψ(n), yφ◦Ψ(n)) −→
n→+∞

(x, y) ∈ A× B, ce qui prouve que A× B

est un compact de E × F .

Corollaire. Soient p ∈ N∗, E1, . . ., Ep p K-espaces vectoriels norméset A1, . . ., Ap

p compacts respectivement dans E1, . . ., Ep. Alors A1 × · · · × Ap est un compact de
E1 × · · · × Ep.

Démonstration.
Se démontre par récurrence sur p.

Théorème (hors programme) : Caractérisation de la compacité par la pro-
priété de Borel Lebesgue.
Soit A une partie de E. Les assertions suivantes sont équivalentes.
i) A est compact.

ii) Pour tout ensemble I et pour toute famille d’ouverts (Ui)i∈I telle que A ⊂
⋃
i∈I

Ui, il

existe une partie J finie de I telle que A ⊂
⋃
i∈J

Ui.

C’est la propriété de Borel Lebesgue, qui signifie que, de tout recouvrement de A par
des ouverts, on peut en extraire un recouvrement fini.

iii) Pour tout ensemble I et pour toute famille de fermés (Fi)i∈I telle que A∩
⋂
i∈I

Fi = ∅,

il existe une partie J finie de I telle que A ∩
⋂
i∈J

Fi = ∅.

Démonstration.
Par passage au complémentaire, ii) ⇐⇒ iii).
• Supposons iii) et montrons i).
Soit (xn) une suite de points deA. Supposons qu’elle n’admet aucune valeur d’adhérence
dans A. Ainsi, avec les notations de la propriété précédente,
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A∩
⋂
N∈N

XN = ∅, donc d’après iii), il existe p ∈ N tel que A∩
⋂

0≤N≤p

XN = ∅. Mais la suite

(XN) est décroissante au sens de l’inclusion, donc
⋂

0≤N≤p

XN = Xp. Ainsi, A ∩Xp = ∅,

ce qui est faux.
• i) =⇒ ii) : On suppose que A est compact. Si A est vide, la propriété ii) est vraie
(en prenant J = ∅), donc on peut supposer que A est non vide pour la suite.
⋄ Lemme de précompacité :Montrons d’abord que pour tout ε > 0, A est recouvert
par un nombre fini de boules ouvertes de rayon ε, c’est-à-dire qu’il existe n ∈ N∗ et

x1, . . . , xn ∈ A tels que A ⊂
⋃

1≤i≤n

Bo(xi, ε).

Pour cela, on raisonne par l’absurde, en supposant qu’il existe ε > 0 tel que, pour tout

n ∈ N∗ et pour tout x1, . . . , xn ∈ A, A ̸⊂
⋃

1≤i≤n

Bo(xi, ε).

A étant non vide, il existe x0 ∈ A. Or A ̸⊂ Bo(x0, ε), donc il existe x1 ∈ A \ Bo(x0, ε).
Ainsi, d(x0, x1) > ε.
Soit p ∈ N∗. Supposons construits x0, . . . , xp ∈ A tels que, pour i, j ∈ {0, . . . , p}
avec i ̸= j, d(xi, xj) > ε. D’après l’hypothèse, A ̸⊂

⋃
0≤i≤p

Bo(xi, ε), donc il existe

xp+1 ∈ A\
⋃

0≤i≤p

Bo(xi, ε). Alors, pour tout i, j ∈ {0, . . . , p+1} avec i ̸= j, d(xi, xj) > ε.

Par récurrence, on a ainsi construit une suite (xn)n∈N de vecteurs de A telle que, pour
tout i, j ∈ N avec i ̸= j, d(xi, xj) > ε.
A étant supposé compact, il existe a ∈ A et φ : N −→ N strictement croissante telle
que xφ(n) −→

n→+∞
a. Alors, pour tout n ∈ N, d(xφ(n), xφ(n+1)) > ε, donc en faisant tendre

n vers +∞, on obtient d(a, a) ≥ ε, ce qui est faux.
Ceci démontre le lemme de précompacité.

⋄ Soit maintenant un ensemble I et une famille d’ouverts (Ui)i∈I telle que A ⊂
⋃
i∈I

Ui.

On souhaite déjà montrer qu’il existe ε > 0 tel que, pour tout x ∈ A, il existe ix ∈ I
tel que Bo(x, ε) ⊂ Uix . Pour cela, on raisonne à nouveau par l’absurde en supposant
que pour tout ε > 0, il existe xε ∈ A tel que, pour tout i ∈ I, Bo(xε, ε) ̸⊂ Ui.
Alors, pour tout n ∈ N∗, en prenant ε = 1

n
, il existe xn ∈ A tel que, pour tout i ∈ I,

Bo(xn,
1
n
) ̸⊂ Ui. A étant compact, il existe a ∈ A et φ : N −→ N strictement croissante

telle que xφ(n) −→
n→+∞

a. Par récurrence, on sait montrer que, pour tout n ∈ N, φ(n) ≥ n.

a ∈ A ⊂
⋃
i∈I

Ui, donc il existe i0 ∈ I tel que a ∈ Ui0 .

Ui0 est un ouvert, donc il existe α > 0 tel que Bo(a, α) ⊂ Ui0 .
Il existe N ∈ N tel que d(xφ(N), a) <

α
2
avec N > 2

α
. Alors 1

φ(N)
≤ 1

N
< α

2
.

Pour tout y ∈ Bo(xφ(N),
1

φ(N)
), d(y, a) ≤ d(y, xφ(N)) + d(xφ(N), a) <

1
φ(N)

+ α
2
< α, donc

Bo(xφ(N),
1

φ(N)
) ⊂ Bo(a, α) ⊂ Ui0 , ce qui est faux.

⋄ On peut maintenant terminer la démonstration : on vient de montrer qu’il existe
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ε > 0 tel que, pour tout x ∈ A, il existe ix ∈ I tel que Bo(x, ε) ⊂ Uix . D’après le lemme

de précompacité, il existe n ∈ N∗ et x1, . . . , xn ∈ A tels que A ⊂
⋃

1≤j≤n

Bo(xj, ε).

Pour tout j ∈ Nn, Bo(xj, ε) ⊂ Uixj
, donc A ⊂

⋃
1≤j≤n

Uixj
, ce qui conclut.

Propriété. Soit (xn) ∈ EN une suite convergente. Notons l sa limite.
Alors l’ensemble {xn/n ∈ N} ∪ {l} est un compact de E.

Démonstration.
Soit (Ui)i∈I un recouvrement de A = {xn/n ∈ N} ∪ {l} par des ouverts. Il existe j ∈ I
tel que l ∈ Uj.
Uj est un ouvert, donc il existe ε > 0 tel que Bo(l, ε) ⊂ Uj. Mais xn −→

n→+∞
l, donc il

existe N ∈ N tel que, pour tout n ≥ N , xn ∈ Bo(l, ε).
Pour tout n ∈ {0, . . . , N − 1}, il existe in ∈ I tel que xn ∈ Uin , donc la famille finie
d’ouverts (Uj, Ui0 , . . . , UiN−1

) est un recouvrement de A.
Ceci prouve que A est compact.

Remarque. Dans cette démonstration, on a utilisé la caractérisation de Borel Le-
besgue, mais seulement dans le sens ii) =⇒ i), assez facile à établir.

2 Continuité ponctuelle

On fixe deux espaces métriques E et F , ainsi qu’une fonction f : E −→ F , dont le
domaine de définition sera noté Df .

2.1 Limite en un point

Notation. On fixe une partie A de Df . On fixe également a et

on suppose qu’il existe au moins une suite (an) ∈ AN telle que an −→
n→+∞

a.

Ainsi, lorsque a ∈ E, ceci signifie que a ∈ A.
On envisagera cependant également le cas des limites infinies :

— Si a = ∞, on suppose que A n’est pas borné, c’est-à-dire qu’il existe une suite
(an) ∈ AN telle que an −→

n→+∞
∞.

— Si a = +∞, on suppose que E = R et que A n’est pas majorée, c’est-à-dire qu’il
existe une suite (an) ∈ AN telle que an −→

n→+∞
+∞.

— Si a = −∞, on suppose que E = R et que A n’est pas minorée, c’est-à-dire qu’il
existe une suite (an) ∈ AN telle que an −→

n→+∞
−∞.

On fixe aussi l dans F ∪ {∞}. Lorsque F = R, on pourra avoir l = +∞ ou l = −∞.
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Limites et continuité 2 Continuité ponctuelle

2.1.1 Caractérisation séquentielle

Définition. f(x) tend vers l lorsque x tend vers a en appartenant à A si et seulement

si ∀(xn)n∈N ∈ AN
(
xn −→

n→+∞
a =⇒ f(xn) −→

n→+∞
l
)
.

Dans ce cas, on note f(x)−→
x→a
x∈A

l.

Remarque. Il s’agit d’une définition “séquentielle” car elle utilise un critère reposant
sur des suites.

Propriété. Lorsque E et F sont des espaces vectoriels normés, si l’on remplace l’une
des normes sur E ou F par une norme équivalente, la condition f(x)−→

x→a
x∈A

l est inchangée.

Exemples :
— En utilisant que | sinx| ≤ |x| pour tout x ∈ R, on montre que sinx −→

x→0
0.

—
1

x
−→
x→±∞
x∈R

0.

— ⌊x⌋ −→
x→+∞
x∈R

+∞, car si (xn) ∈ RN vérifie xn −→
n→+∞

+∞, en utilisant que

⌊xn⌋ ≥ xn − 1, le principe des gendarmes prouve que ⌊xn⌋ −→
n→+∞

+∞.

— sinx n’admet pas de limite lorsque x tend vers +∞. Sinon, en notant ℓ cette
limite, on aurait sin(nπ) −→

n→+∞
ℓ, donc ℓ = 0 et sin(2nπ+ π

2
) −→
n→+∞

ℓ, donc ℓ = 1.

Propriété. Unicité de la limite. Si F = R, on impose que l, l′ ∈ R ∪ {+∞,−∞}.
Si f(x)−→

x→a
x∈A

l et f(x)−→
x→a
x∈A

l′, alors l = l′.

Dans ce cas, on dit que l est la limite de f(x) lorsque x tend vers a en appartenant à
A et on note l = lim

x→a
x∈A

f(x).

Démonstration.
Soit (l, l′) ∈ F 2 tel que f(x)−→

x→a
x∈A

l et f(x)−→
x→a
x∈A

l′.

Il existe au moins une suite (xn) ∈ AN qui tend vers a. Alors f(xn) −→
n→+∞

l et f(xn) −→
n→+∞

l′,

donc l = l′ en vertu de l’unicité de la limite d’une suite.

Remarque. L’existence d’une suite (xn) ∈ AN qui tend vers a est une hypothèse

nécessaire car sinon, la condition “∀(xn)n∈N ∈ AN
(
xn −→

n→+∞
a =⇒ f(xn) −→

n→+∞
l
)
” est

vraie pour tout l.

Remarque. lorsque f(x)−→
x→a
x∈A

+∞, il convient de dire que f(x) diverge vers +∞. On

ne parlera de convergence que dans le cas où l ∈ F .

Propriété. On suppose que F = C et que l ∈ C.
Alors f(x)−→

x→a
x∈A

ℓ si et seulement si (Re(f)(x)−→
x→a
x∈A

Re(ℓ)) ∧ (Im(f)(x)−→
x→a
x∈A

Im(ℓ)).
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Démonstration.
Supposons que f(x)−→

x→a
x∈A

ℓ. Soit (xn) ∈ AN telle que xn −→
n→+∞

a. Alors f(xn) −→
n→+∞

ℓ,

donc Re(f)(xn) = Re(f(xn)) −→
n→+∞

Re(ℓ) d’après le cours sur les suites de vecteurs.

C’est vrai pour toute suite (xn) ∈ AN telle que xn −→
n→+∞

ℓ, donc Re(f)(x)−→
x→a
x∈A

Re(ℓ). De

même on montre que Im(f)(x)−→
x→a
x∈A

Im(ℓ).

Réciproquement, supposons que (Re(f)(x)−→
x→a
x∈A

Re(ℓ)) ∧ (Im(f)(x)−→
x→a
x∈A

Im(ℓ)). Soit

(xn) ∈ AN telle que xn −→
n→+∞

a. Alors Re(f)(xn) −→
n→+∞

Re(ℓ) et Im(f)(xn) −→
n→+∞

Im(ℓ),

donc f(xn) = ℓ d’après le cours sur les suites de vecteurs. C’est vrai pour toute suite
(xn) ∈ AN telle que xn −→

n→+∞
ℓ, donc f(x)−→

x→a
x∈A

ℓ.

Propriété. Soient A et B deux parties de Df telles que A ⊂ B.
Si f(x)−→

x→a
x∈B

l, alors f(x)−→
x→a
x∈A

l.

Démonstration.
Supposons que f(x)−→

x→a
x∈B

l. Soit (xn) ∈ AN telle que xn −→
n→+∞

a.

A ⊂ B, donc (xn) ∈ BN. Or f(x)−→
x→a
x∈B

l, donc f(xn) −→
n→+∞

l. Ainsi f(x)−→
x→a
x∈A

l.

2.1.2 Caractérisation par “ε”

Propriété. On suppose que a ∈ E et que l ∈ F .
f(x)−→

x→a
x∈A

l ⇐⇒ ∀ε ∈ R∗
+ ∃α ∈ R∗

+ ∀x ∈ A (d(x, a) ≤ α =⇒ d(f(x), l) ≤ ε).

Démonstration.
• Supposons que ∀ε ∈ R∗

+ ∃α ∈ R∗
+ ∀x ∈ A (d(x, a) < α =⇒ d(f(x), l) < ε).

Soit (xn) ∈ AN telle que xn −→
n→+∞

a. Soit ε > 0. Il existe α > 0 tel que

∀x ∈ A (d(x, a) < α =⇒ d(f(x), l) < ε).
Il existe N ∈ N tel que pour tout n ≥ N d(xn, a) < α.
Ainsi, pour tout n ≥ N d(f(xn), l) < ε. Donc f(xn) −→

n→+∞
l.

• Pour démontrer la réciproque, établissons sa contraposée. Supposons qu’il existe
ε > 0 tel que pour tout α > 0, il existe x ∈ A tel que d(x, a) < α et d(f(x), l) ≥ ε.

En particulier, pour tout n ∈ N, il existe xn ∈ A tel que d(xn, a) <
1

n+ 1
et

d(f(xn), l) ≥ ε.
xn −→

n→+∞
a car d(xn, a) −→

n→+∞
0. D’autre part, la suite (f(xn)) ne tend pas vers l car

(d(f(xn), l)) ne converge pas vers 0.

Remarque. Dans (1), on peut prendre les deux dernières inégalités indifféremment
strictes ou larges.
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Propriété. On peut adapter cette caractérisation (ainsi que sa démonstration) dans
le cas où a et l sont éventuellement infinis. On obtient par exemple :

— Si l ∈ F et E = R,
f(x) −→

x→+∞
x∈A

l ⇐⇒ ∀ε ∈ R∗
+ ∃M ∈ R∗

+ ∀x ∈ A (x ≥ M =⇒ d(f(x), l) < ε).

— Si a ∈ E et F = R,
f(x)−→

x→a
x∈A

+∞ ⇐⇒ ∀M ∈ R∗
+ ∃α ∈ R∗

+ ∀x ∈ A (d(x, a) ≤ α =⇒ f(x) ≥ M).

— Si a = ∞ et l ∈ F , en choisissant e0 ∈ E,
f(x) −→

x→∞
x∈A

l ⇐⇒ ∀ε ∈ R∗
+ ∃M ∈ R∗

+ ∀x ∈ A (d(x, e0) ≥ M =⇒ d(f(x), l) ≤ ε).

— Si a = ∞ et l = ∞, en fixant e0 ∈ E et f0 ∈ F , f(x) −→
x→∞
x∈A

∞ si et seulement si

∀M ∈ R∗
+ ∃N ∈ R∗

+ ∀x ∈ A (d(x, e0) ≥ N =⇒ d(f(x), f0) ≥ M).

Remarque. Une suite (xn) ∈ EN peut être vue comme la fonction
N −→ E
n 7−→ xn

,

définie sur N qui est une partie non majorée de R. La notion de limite d’une suite
dans un espace métrique devient donc un cas particulier de la notion de limite d’une
fonction en +∞.

2.1.3 Caractérisation par voisinages

Définition. Dans R, on appelle voisinage de +∞ toute partie contenant un intervalle
]c,+∞[ où c ∈ R et voisinage de −∞ toute partie contenant un intervalle ]−∞, c[. Ainsi
V(+∞) = {V ⊂ R/∃c ∈ R ]c,+∞[⊂ V } et V(−∞) = {V ⊂ R/∃c ∈ R ]−∞, c[⊂ V }.

Définition. Si E est non borné, on appelle voisinage de ∞ toute partie contenant le
complémentaire d’une boule fermée centrée en l’origine.
Ainsi V(∞) = {V ⊂ E / ∃R > 0 E \ Bf (e, R) ⊂ V }, où e ∈ E : on peut montrer
(exercice) que cet ensemble ne dépend pas de e.

Propriété. Avec les définitions précédentes de voisinages, on a encore :
Une intersection de deux voisinages de a est un voisinage a.
Toute partie contenant un voisinage de a est un voisinage de a.

Remarque.
Avec ces nouvelles définitions, les hypothèses portant sur a et A énoncées au début du
présent paragraphe se résument ainsi : tout voisinage V de a rencontre A .

Définition. On dit que f |A est bornée au voisinage de a si et seulement s’il existe un
voisinage V de a tel que f |V ∩A est bornée.
Plus généralement, on dit que f |A vérifie une certaine propriété au voisinage de a si et
seulement s’il existe un voisinage V de a tel que f |V ∩A vérifie cette propriété.
Lorsqu’on énonce une propriété portant sur f au voisinage de a ∈ E, on dit que c’est
une propriété locale (de f au voisinage de a).
Lorsqu’on énonce une propriété portant sur f au voisinage de ∞ ou de ±∞, on dit que
c’est une propriété asymptotique.
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Exemples :
— x 7−→ lnx est négative au voisinage de 0.
— sin est croissante au voisinage de 0.

— x 7−→ sinx

x
est strictement positive au voisinage de 0.

Propriété. f(x)−→
x→a
x∈A

l ⇐⇒ ∀V ∈ V(l) ∃U ∈ V(a) f(U ∩ A) ⊂ V .

Démonstration.
Plaçons-nous dans le cas où a ∈ E et l ∈ F .
f(x)−→

x→a
x∈A

l ⇐⇒ ∀ε ∈ R∗
+ ∃α ∈ R∗

+ ∀x ∈ E (x ∈ Bo(a, α) ∩ A =⇒ f(x) ∈ Bo(l, ε))

⇐⇒ ∀ε ∈ R∗
+ ∃α ∈ R∗

+ f(Bo(a, α) ∩ A) ⊂ Bo(l, ε)
⇐⇒ ∀ε ∈ R∗

+ ∃U ∈ V(a) f(U ∩ A) ⊂ Bo(l, ε)
⇐⇒ ∀V ∈ V(l) ∃U ∈ V(a) f(U ∩ A) ⊂ V.

.

Cette démonstration s’adapte aux différents cas de limites infinies, avec les définitions
précédentes des voisinages de ∞ dans E et de ±∞ dans R.

Propriété. Caractère local (ou asymptotique) de la notion de limite.
Pour tout U0 ∈ V(a), f(x)−→

x→a
x∈A

l ⇐⇒ f(x) −→
x→a

x∈A∩U0

l.

Ainsi la valeur de l’éventuelle limite de f(x) lorsque x tend vers a pour x appartenant à
A ne dépend pas du comportement global de f sur A mais seulement du comportement
de f |A au voisinage de a. En particulier, si l’on modifie les valeurs de f(x) lorsque
x /∈ U0, on ne modifie pas la valeur logique de la proposition f(x)−→

x→a
x∈A

l.

Démonstration.
“=⇒” découle d’une remarque précédente, car A ⊃ A ∩ U0.
Réciproquement, supposons que f(x) −→

x→a
x∈A∩U0

l.

Soit V ∈ V(l). Il existe U ∈ V(a) tel que f(U ∩ (A∩U0)) ⊂ V . Ainsi U ∩U0 ∈ V(a) et
f((U ∩ U0) ∩ A) ⊂ V . On a donc montré que f(x)−→

x→a
x∈A

l.

Définition. Soit a ∈ E tel que a ∈ Df \ {a}. Ainsi, a est un point d’accumulation de
Df . S’il existe l ∈ F tel que f(x) −→

x→a
x∈Df \{a}

l, on écrit que f(x) −→
x→a
x ̸=a

l ou même f(x)−→
x→a

l.

On note aussi l = lim
x→a
x̸=a

f(x), ou même l = lim
x→a

f(x). C’est la notion usuelle de limite

d’une fonction en un point.

Propriété. Soient A et B deux parties de Df qui rencontrent tout voisinage de a.
Alors, (f(x)−→

x→a
x∈A

l et f(x)−→
x→a
x∈B

l) ⇐⇒ f(x) −→
x→a

x∈A∪B

l.

Démonstration.
“⇐=” découle d’une remarque précédente car A ∪B ⊃ A et A ∪B ⊃ B.
Réciproquement, supposons que (f(x)−→

x→a
x∈A

l et f(x)−→
x→a
x∈B

l).

Soit V ∈ V(l). Il existe (U,U ′) ∈ V(a)2 tel que f(U ∩ A) ⊂ V et f(U ′ ∩B) ⊂ V .
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Posons U” = U∩U ′ ∈ V(a). f(U”∩A) ⊂ f(U∩A) ⊂ V et f(U”∩B) ⊂ f(U ′∩B) ⊂ V .
Ainsi f(U” ∩ (A ∪B)) = f((U” ∩ A) ∪ (U” ∩B)) = f(U” ∩ A) ∪ f(U” ∩B) ⊂ V .
On a montré que f(x) −→

x→a
x∈A∪B

l.

Définition. Supposons que E = R et que a ∈ R.
• Si a ∈ Df∩]a,+∞[, et si f(x) −→

x→a
x∈Df∩]a,+∞[

l, on note f(x) −→
x→a
x>a

l et l = lim
x→a
x>a

f(x). Il

s’agit de la notion de limite à droite du réel a.
• De même, si a ∈ Df∩]−∞, a[, et si f(x) −→

x→a
x∈Df∩]−∞,a[

l, on note f(x) −→
x→a
x<a

l

et l = lim
x→a
x<a

f(x). Il s’agit de la notion de limite à gauche du réel a.

Exemples :
— la limite à droite de ⌊x⌋ en n ∈ Z est égale à n et la limite à gauche est égale à

n− 1.

— x 7−→ 1

x− 1
tend vers −∞ en 1− et vers +∞ en 1+.

—
|x|
x

−→
x→0+

1 et
|x|
x

−→
x→0−

−1.

Remarque. Comme les notions de limites à droite et à gauche ne sont que des cas
particuliers de la notion de limite, toutes les propriétés relatives aux limites s’appliquent
au cas des limites à droite et à gauche.

Propriété. On suppose que E = R et a ∈ Df∩]−∞, a[ ∩ Df∩]a,+∞[.
Alors f(x)−→

x→a
l si et seulement si f(x) −→

x→a
x>a

l et f(x) −→
x→a
x<a

l.

Démonstration.
Df \ {a} = (Df∩]−∞, a[) ∪ (Df∩]a,+∞[), donc, d’après la propriété précédente,
f(x) −→

x→a
x∈Df \{a}

l si et seulement si f(x) −→
x→a

x∈Df∩]a,+∞[

l et f(x) −→
x→a

x∈Df∩]−∞,a[

l.

Propriété. Si f(x)−→
x→a
x∈A

l et si f(A) ⊂ B, alors l ∈ B.

Démonstration.
Il existe une suite (xn) ∈ AN telle que xn −→

n→+∞
a. Alors f(xn) −→

n→+∞
l. Or pour tout

n ∈ N, f(xn) ∈ f(A) ⊂ B, donc l ∈ B.

Exemple. Supposons que F = R et que ∀x ∈ A f(x) > 0. Alors, s’il existe l ∈ R
telle que f(x)−→

x→a
x∈A

l, l ≥ 0.
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2.2 Continuité en un point

Remarque. Si a ∈ A et si f(x)−→
x→a
x∈A

l, alors l = f(a).

Démonstration.
Supposons que a ∈ A et que f(x)−→

x→a
x∈A

l.

a ∈ A, donc la suite constante égale à a est une suite d’éléments de A. Ainsi la suite
constante égale à f(a) converge vers l. D’après l’unicité de la limite, f(a) = l.

Définition. Soit a ∈ Df . f est continue en a si et seulement si f(x) −→
x→a
x∈Df

f(a).

Exemple. x 7−→ ⌊x⌋ est continue en x si et seulement si x ∈ R \ Z.
Exemple. La fonction caractéristique de Q, notée 1Q, est discontinue en tout réel.
En effet, soit x ∈ R. Q et R \Q étant denses dans R, il existe (qn) ∈ QN et
(rn) ∈ (R \ Q)N telle que qn −→

n→+∞
x et rn −→

n→+∞
x. Ainsi, si 1Q était continue en x, on

aurait 1Q(x) = lim
n→+∞

1Q(qn) = 1 = lim
n→+∞

1Q(rn) = 0.

Propriété. On suppose que F = C. Soit a ∈ Df .
f est continue en a si et seulement si Re(f) et Im(f) sont continues en a.

Propriété. Soit a ∈ Df . f est continue en a si et seulement si l’une des propriétés
suivantes est vérifiée :
i) Pour toute suite (xn) de points de Df telle que xn −→

n→+∞
a, f(xn) −→

n→+∞
f(a).

ii) ∀ε > 0 ∃α > 0 ∀x ∈ Df (d(x, a) ≤ α =⇒ d(f(x), f(a)) ≤ ε).
iii) ∀V ∈ V(f(a)) ∃U ∈ V(a) f(U ∩ Df ) ⊂ V .

Remarque. Notamment, lorsque f est continue en a, si xn −→
n→+∞

a, avec pour tout

n ∈ N, xn ∈ Df , alors f(xn) −→
n→+∞

f(a).

Propriété. Soit a ∈ Df .

Si a /∈ Df \ {a} (on dit que a est un point isolé de Df ), f est continue en a.

Si a ∈ Df \ {a}, f est continue en a si et seulement si f(x) −→
x→a

x∈Df \{a}

f(a).

Démonstration.
• Supposons que a /∈ Df \ {a}. Ainsi, il existe V ∈ V(a) tel que
V ∩ (Df \ {a}) = ∅. Or il existe ε > 0 tel que Bo(a, ε) ⊂ V . Donc pour tout x ∈ Df ,
d(x, a) < ε =⇒ x = a.
Soit (xn) ∈ DN

f telle que xn −→
n→+∞

a. Il existe N ∈ N telle que pour tout n ≥ N ,

d(xn, a) < ε. Ainsi la suite (xn) est stationnaire à partir du rang N et égale à a. Donc
la suite (f(xn)) est stationnaire à partir du rang N et égale à f(a). En particulier,
f(xn) −→

n→+∞
f(a). On a prouvé que f est continue en a.

• Supposons que a ∈ Df \ {a}.
Posons A = Df \ {a} et B = {a}. Ainsi a ∈ A ∩B,
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donc d’après une propriété précédente,
f(x) −→

x→a
x∈Df=A∪B

f(a) si et seulement si [f(x) −→
x→a

x∈Df \{a}=A

f(a)]∧[f(x) −→
x→a

x∈B={a}

f(a)], or d’après

la caractérisation séquentielle de la limite en un point, il est évident que l’on a toujours
f(x) −→

x→a
x∈{a}

f(a), donc f est continue en a si et seulement si f(x) −→
x→a

x∈Df \{a}

f(a).

Remarque. Soient a ∈ Df et U0 ∈ V(a). f est continue en a si et seulement si f |Df∩U0

est continue en a. Ainsi la notion de continuité (au point a) est une notion locale.

Définition. On dit que f est continue si et seulement si elle est continue en chaque
point de son domaine de définition.

Exemple. L’application z 7−→ 1
z
est continue sur C∗.

Démonstration.
On a vu dans le chapitre “suites de vecteurs” que si (xn) est une suite de complexes

non nuls telle que xn −→
n→+∞

ℓ ∈ C∗, alors
1

xn

−→
n→+∞

1

ℓ
.

Propriété. Les applications lipschitziennes sont continues.

Démonstration.
Supposons que f est k-lipschitzienne et soit a ∈ Df .
Si (xn) ∈ DN

f converge vers a, comme d(f(xn), f(a)) ≤ kd(xn, a) −→
n→+∞

0, (f(xn))

converge vers f(a). Ainsi f est continue en a.

Propriété. Soient A une partie de Df et a ∈ A. Si f est continue en a, alors f |A est
aussi continue en a.

Démonstration.
Si f(x) −→

x→a
x∈Df

f(a), comme Df ⊃ A, f(x)−→
x→a
x∈A

f(a).

Corollaire. Soit A une partie incluse dans Df . Si f est continue, alors f |A est continue.

Remarque. Il est important de distinguer la propriété P : “f |A est continue” et la
propriété Q : “f |Df

est continue en tout point de A”.
En effet, Q =⇒ P , mais la réciproque est fausse. Par exemple, (1Q)|Q est continue, car
constante, mais 1Q n’est continue en aucun point de Q.

Définition. On suppose que E = R. Soit a ∈ Df . On dit que f est continue à droite
en a si et seulement si f |[a,+∞[∩Df

est continue en a. On définit de même la notion de
continuité à gauche.

Propriété. On suppose que E = R. Soit a ∈ Df .
f est continue en a si et seulement si f est continue à droite et à gauche en a.

Exemple. x 7−→ |x|, de R dans R, est continue à gauche et à droite en 0, donc elle
est continue sur R.

Exemple. Posons f(x) = ⌊x⌋+ (x− ⌊x⌋)2, pour tout x ∈ R.
f est clairement continue sur R \ Z.
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Soit m ∈ Z. lim
x→m−

f(x) = m− 1 + (m− (m− 1))2 = m− 1 + 1 = m

et lim
x→m+

f(x) = m+ (m−m)2 = m, donc f est continue sur R.

Exemple. Posons f(x) = ⌊−|x|⌋, pour tout x ∈ R.
f est clairement continue sur R \ Z.
Soit m ∈ N∗. lim

x→m−
f(x) = −m = lim

x→−m+
f(x) et lim

x→m+
f(x) = −m − 1 = lim

x→−m−
f(x),

donc f est discontinue en tout point de Z∗.
En 0, lim

x→0+
f(x) = −1 = lim

x→0−
f(x), mais f(0) = 0, donc f n’est pas continue en 0.

Remarque. Considérons l’application f : R −→ R définie par les relations suivantes.
Pour tout x < 0, f(x) = 0 et pour tout x ≥ 0 f(x) = 1.
f |R∗

−
et f |R+ sont continues (car elles sont constantes) mais f = f |R∗

−∪R+ n’est pas

continue (car f(− 1
n
) −→
n→+∞

0 et f( 1
n
) −→
n→+∞

1).

Définition. On suppose que f est continue. Soit D ⊃ Df . On dit que f se prolonge
par continuité sur D si et seulement s’il existe une application f̃ : D −→ F continue
et telle que f̃ |Df

= f .

Propriété. Soit a ∈ Df \ Df . f admet un prolongement par continuité en a si et
seulement si f admet une limite finie en a. Dans ce cas, l’unique prolongement par
continuité f̃ de f sur Df ∪ {a} est donné par f̃(a) = lim

x→a
x ̸=a

f(x).

Démonstration.
Posons D = Df ∪ {a}.
• Supposons que f admet un prolongement par continuité sur D, noté f̃ .
Alors f̃(x)−→

x→a
x∈D

f̃(a), or Df ⊂ D et a ∈ Df , donc f(x) −→
x→a
x∈Df

f̃(a). Donc f admet une

limite finie en a et f̃(a) est égal à cette limite.
Ainsi, sous l’hypothèse de l’existence du prolongement, on a déjà montré son unicité.
• Supposons que f admet une limite en a et posons f̃(a) = lim

x→a
x ̸=a

f(x).

a ∈ D \ {a}, et f̃(a) = lim
x→a
x ̸=a

f̃(x), donc f̃ est continue en a.

Soit x ∈ Df : il faut également montrer que f̃ est continue en x. Posons ε = d(x, a) > 0 :
Bo(x, ε) ∩ (Df ∪ {a}) = Bo(x, ε) ∩Df , donc f̃ |Bo(x,ε)∩(Df∪{a}) = f |Bo(x,ε)∩Df

. Ainsi, f et

f̃ cöıncident sur un voisinage de x, or f est continue en x, donc f̃ est continue en x.

Exemple. L’application “sinus cardinal” est définie par sinc(x) =
sinx

x
lorsque x ̸= 0

et sinc(0) = 1. Elle est continue sur R.

Exemple. L’application f définie par f(x) = x2 sin 1
x
si x ̸= 0 et f(x) = 0 est une

application continue de R dans R.

Propriété. Soient A ⊂ E et f et g deux applications continues de A dans F .
Si f et g cöıncident sur une partie dense dans A, alors f = g.

©Éric Merle 25 MPSI2, LLG
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Démonstration.
On suppose qu’il existe B ⊂ A telle que ∀x ∈ B f(x) = g(x) et B ⊃ A.
Soit x ∈ A. Il existe (xn) ∈ BN telle que xn −→

n→+∞
x.

Pour tout n ∈ N, f(xn) = g(xn). De plus, f et g étant continues, f(xn) −→
n→+∞

f(x) et

g(xn) −→
n→+∞

g(x), donc par unicité de la limite, f(x) = g(x).

Ainsi f et g cöıncident sur A, donc f = g.

2.3 Théorèmes de composition

Notation. Dans ce paragraphe, on fixe un troisième espace métrique noté G et une
seconde fonction g : F −→ G, définie sur Dg.

Propriété. Soit B une partie de Dg telle que f(A) ⊂ B .
Soit m tel que m ∈ G ∪ {∞} ou bien, lorsque G = R, tel que m = +∞ ou m = −∞.

Pour que g(f(x))−→
x→a
x∈A

m,

il suffit que f(x)−→
x→a
x∈A

l (auquel cas B rencontre tout voisinage de l) et que g(y)−→
y→l
y∈B

m.

Démonstration.
Supposons que f(x)−→

x→a
x∈A

l et que g(y)−→
y→l
y∈B

m.

Soit (xn) ∈ AN telle que xn −→
n→+∞

a. Alors f(xn) −→
n→+∞

l et (f(xn)) ∈ BN,

donc g(f(xn)) −→
n→+∞

m. Ainsi g(f(x))−→
x→a
x∈A

m.

Exemple. Si l’on admet que
ln(1 + x)

x
−→
x→0

1 (ce qui provient du fait que ln est

dérivable en 1 avec ln′(1) = 1) et que et−1 −→
t→0

0 (ce qui provient de la continuité de exp

en 0), par composition, on obtient que
ln(1 + (et − 1))

et − 1
−→
t→0

1, donc que
t

et − 1
−→
t→0

1.

Corollaire. On suppose que f(Df ) ⊂ Dg et on fixe a ∈ Df .
Si f est continue en a et g en f(a), alors g ◦ f est continue en a.

Démonstration.
On applique la propriété précédente avec A = Df , B = Dg et b = f(a).

Corollaire. On suppose que f(Df ) ⊂ Dg.
Si f et g sont continues, alors g ◦ f est continue (et définie sur Df ).

Exemple. Si f est une application continue de R dans R, alors |f | est aussi continue.

Corollaire. On suppose que f(A) ⊂ Dg.
Si f(x)−→

x→a
x∈A

b et si g est continue en b, alors g(f(x))−→
x→a
x∈A

g(b).
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Propriété. Limite en un point d’une application à valeurs dans un produit.
Supposons que F = F1 × · · · × Fq, où F1, . . ., Fq sont des espaces vectoriels normés et

notons
f : E −→ F

x 7−→ f(x) = (f1(x), . . . , fq(x))
. Soit l = (l1, . . . , lq) ∈ F . Alors,

f(x)−→
x→a
x∈A

l si et seulement si pour tout i ∈ Nq, fi(x)−→x→a
x∈A

li.

Démonstration.
En effet, on a déjà vu lors du cours sur les suites de vecteurs que,
pour toute suite (xn) ∈ AN telle que xn −→

n→+∞
a, f(xn) −→

n→+∞
l ⇐⇒ ∀i ∈ Np, fi(xn) −→

n→+∞
li.

Propriété. Continuité en un point d’une application à valeurs dans un
produit.
Supposons que F = F1 × · · · × Fq, où F1, . . ., Fq sont des espaces vectoriels normés et

notons
f : E −→ F

x 7−→ f(x) = (f1(x), . . . , fq(x))
. Soit a ∈ Df . Alors,

f est continue en a si et seulement si pour tout i ∈ Nq, fi est continue en a.

Exemple. L’application
]− 1,+∞[ −→ M2(R)

x 7−→
(
1 + 4x ex

sinx ln(1 + x)

)
est continue.

Propriété. Limite d’une application à valeurs dans un espace de dimension
finie. Supposons que F est un K-espace vectoriel de dimension finie dont une base est

(e1, . . . , eq) et notons

f : E −→ F

x 7−→ f(x) =

q∑
i=1

fi(x)ei
.

Soient A une partie de Df , a ∈ A et l =

q∑
i=1

liei ∈ F . Alors,

f(x)−→
x→a
x∈A

l si et seulement si pour tout i ∈ Nq, fi(x)−→x→a
x∈A

li.

Démonstration.
Toutes les normes étant équivalentes en dimension finie, on peut choisir la norme sui-

vante :

∥.∥ : F −→ R+
q∑

i=1

yiei 7−→
q∑

i=1

|yi|
.

Notons

φ : Kq −→ F

(y1, . . . , yq) 7−→
q∑

i=1

yiei
. Pour tout y = (y1, . . . , yq) ∈ Kq,

∥φ(y)∥ = ∥y∥1. Ainsi φ et φ−1 sont continues.
D’après le théorème de composition des limites, f(x)−→

x→a
x∈A

l si et seulement si

φ−1(f(x))−→
x→a
x∈A

φ−1(l), donc si et seulement si pour tout i ∈ Nq, fi(x)−→x→a
x∈A

li.
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Propriété. Continuité en un point d’une application à valeurs dans un
espace de dimension finie. Supposons que F est un K-espace vectoriel de dimension

finie dont une base est (e1, . . . , eq) et notons

f : E −→ F

x 7−→ f(x) =

q∑
i=1

fi(x)ei
.

Si a ∈ Df , f est continue en a si et seulement si pour tout i ∈ Nq, fi est continue en a.

2.4 Opérations algébriques sur les limites

2.4.1 Somme de deux applications à valeurs vectorielles

Notation.
Dans ce paragraphe, on fixe une seconde fonction g : E −→ F , définie sur Dg, où F
est un K-espace vectoriel normé.
On suppose que A ⊂ Df ∩ Dg.

Propriété. Si f(x)−→
x→a
x∈A

l et g(x)−→
x→a
x∈A

l′, alors (f + g)(x)−→
x→a
x∈A

l + l′.

Démonstration.
Supposons que f(x)−→

x→a
x∈A

l et g(x)−→
x→a
x∈A

l′. Soit (xn) ∈ AN telle que xn −→
n→+∞

a.

Alors f(xn) −→
n→+∞

l et g(xn) −→
n→+∞

l′, donc (f + g)(xn) −→
n→+∞

l + l′,

ce qui prouve que (f + g)(x)−→
x→a
x∈A

l + l′.

Remarque. La démonstration (et donc l’énoncé) est valable dans le cadre des limites
infinies, à condition d’éviter la forme indéterminée ∞−∞, c’est-à-dire lorsque l et l′

sont les deux éléments distincts de {+∞,−∞}.
Propriété. Soit a ∈ Df ∩ Dg. Si f et g sont continues en a, f + g est continue en a.

Corollaire. La somme de deux applications continues est continue.

2.4.2 Produit d’une application scalaire par une application vectorielle

Notation. Dans ce paragraphe, on suppose que f est une application de E dans
K et que g est une application de E dans un K-espace vectoriel normé F . Ainsi f
est une “application scalaire” et g est une “application vectorielle”. On suppose que
A ⊂ Df ∩ Dg.

Propriété. Si f(x)−→
x→a
x∈A

l et g(x)−→
x→a
x∈A

l′, alors (fg)(x)−→
x→a
x∈A

ll′.

Démonstration.
Supposons que f(x)−→

x→a
x∈A

l et g(x)−→
x→a
x∈A

l′. Soit (xn) ∈ AN telle que xn −→
n→+∞

a.

Alors f(xn) −→
n→+∞

l et g(xn) −→
n→+∞

l′, donc (fg)(xn) −→
n→+∞

ll′,

ce qui prouve que (fg)(x)−→
x→a
x∈A

ll′.
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Remarque. La démonstration (et donc l’énoncé) est valable dans le cadre des limites
infinies, à condition d’éviter la forme indéterminée 0×∞.

Propriété. Soit a ∈ Df ∩ Dg.
Si f et g sont continues en a, fg est aussi continue en a.

Corollaire. Le produit d’une application scalaire continue par une application vecto-
rielle continue est continue.

Propriété. Soit A une partie de E et F un K-espace vectoriel normé.
L’ensemble C(A,F ) des applications continues de A dans F est un K-espace vectoriel.
C(A,K) est une K-algèbre.

Propriété. On suppose que f est une application de E dans K∗.

Si f(x)−→
x→a
x∈A

l ∈ K alors (
1

f
)(x)−→

x→a
x∈A

1

l
.

Remarque. Cette propriété est valable avec des limites infinies dans les cas suivants :
— Si l = ∞, en convenant que 1

∞ = 0.
— Si K = R et l = 0+ (c’est-à-dire que l = 0 et que f est strictement positive au

voisinage de a), en convenant que 1
0+

= +∞.
— Si K = R et l = 0−, en convenant que 1

0−
= −∞.

Exemple. Lorsque x tend vers +∞, la quantité
x3 + 1

x2 − 1
présente une forme indéterminée

du type ∞
∞ = 0×∞. On peut lever cette indétermination en écrivant que, au voisinage

de +∞,
x3 + 1

x2 − 1
∼ x3

x2
= x −→

x→+∞
+∞.

Exemple. Déterminons la limite de f(x) =
ln(sinx)

lnx
lorsque x tend vers 0+.

ln(sinx) = ln
(
x× sinx

x

)
= lnx+ ln

(sinx
x

)
, or

sinx

x
−→
x→0

1,

donc ln x+ ln
(sinx

x

)
∼

x→0
ln(x) puis f(x) −→

x→0
1.

Exemple. Déterminons la limite de xx lorsque x tend vers 0+.
xx = ex lnx, or d’après les croissances comparées, x lnx −→

x→0
0, donc xx −→

x→0
1.

2.5 Cas des fonctions à valeurs dans R.
On suppose ici que F = R.

Propriété : passage à la limite sur une inégalité large :
Si ∀x ∈ A f(x) ≤ g(x), f(x)−→

x→a
x∈A

l et g(x)−→
x→a
x∈A

l′, alors l ≤ l′.

Démonstration.
(g − f)(A) ⊂ R+, et d’après les propriétés précédentes,
(g − f)(x)−→

x→a
x∈A

l′ − l, donc l′ − l ∈ R+ = R+.
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Principe du tunnel (pour des inégalités strictes) :
On suppose que f(x)−→

x→a
x∈A

ℓ ∈ R.

Soit α, β ∈ R tels que α < ℓ < β. Alors, au voisinage de a, α < f(x) < β.

Corollaire. Si f(x)−→
x→a
x∈A

ℓ ∈ R alors f |A est bornée au voisinage de a.

Propriété. Principe des gendarmes.

Soient h1, h2 et h3 trois fonctions de E dans R telles que A ⊂
3⋂

i=1

Dhi
.

Si ∀x ∈ A h1(x) ≤ h2(x) ≤ h3(x), h1(x)−→x→a
x∈A

l et h3(x)−→x→a
x∈A

l, alors h2(x)−→x→a
x∈A

l.

Démonstration.
Soit (xn) ∈ AN telle que xn −→

n→+∞
a. Alors h1(xn) −→

n→+∞
l,

h3(xn) −→
n→+∞

l et ∀n ∈ N h1(xn) ≤ h2(xn) ≤ h3(xn), donc d’après le principe des

gendarmes établi pour les suites, h2(xn) −→
n→+∞

l. Ainsi h2(x)−→x→a
x∈A

l.

Remarque. Il suffit que l’encadrement h1(x) ≤ h2(x) ≤ h3(x) soit réalisé lorsque x
est au voisinage de a.

Exemple. |sinx
x

| ≤ 1

x
−→

x→+∞
0, donc |sinx

x
| −→
x→+∞

0.

Corollaire. Le produit d’une fonction bornée au voisinage de a et d’une fonction qui
tend vers 0 en a est une fonction qui tend vers 0 en a.

Remarque. On peut adapter le principe des gendarmes au cas où l = ±∞.

Exemple. x+ cosx ≥ x− 1 −→
x→+∞

+∞.

2.6 Exemples

Exemple 1 : L’application

f : ]− 3,+∞[ −→ R

x 7−→
(√

1

x+ 3
+ e2x

)3
est continue.

Démonstration.
R −→ R
x 7−→ x

et les applications constantes sont continues car lipschitziennes. Le produit

de deux applications continues à valeurs réelles étant continue,
R −→ R
x 7−→ 2x

est continue. Or l’application
exp : R −→ R

x 7−→ ex
est continue (admis),

donc par composition,
R −→ R
x 7−→ e2x

est continue.

La somme de deux applications continues à valeurs réelles étant continue, l’application

R −→ R
x 7−→ x+ 3

est continue. Or
R∗

+ −→ R

x 7−→ 1

x

est continue, donc par composition,
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]− 3,+∞[ −→ R
x 7−→ 1

x+ 3

est continue. En composant à nouveau par l’application conti-

nue
R∗

+ −→ R
x 7−→

√
x
, on obtient la continuité de

]− 3,+∞[ −→ R

x 7−→
√

1

x+ 3

.

La somme de deux applications continues à valeurs réelles étant continue, l’application
]− 3,+∞[ −→ R

x 7−→
√

1

x+ 3
+ e2x

est continue. Enfin en composant par l’application

continue
R −→ R
x 7−→ x3 , on obtient la continuité de f .

Sur une copie, on se contentera pour ce type d’applications numériques (construites à
partir des fonctions usuelles par composition, sommation et produit) d’écrire : “D’après
les théorèmes usuels, f est continue”.

Exemple 2. L’application

R3 −→ R2x
y
z

 7−→

 2x+ yz2 + sin

(
x

x2 + y2 + z2 + 1

)
ln(x2 + 1)

z2 + 3

 est

continue d’après les théorèmes usuels.

Exemple 3. Notons

f : R2 −→ R

(x, y) 7−→

∣∣∣∣∣
x3ex+y

x2 + y2
si (x, y) ̸= 0

0 si (x, y) = 0

.

f est continue sur R2 \ {0} d’après les théorèmes usuels.
De plus, pour tout (x, y) ∈ R2 \ {0}, 0 ≤ |f(x, y)| ≤ |x|ex+y = g(x, y). L’application
g est continue sur R2 d’après les théorèmes usuels, donc g(x, y) −→

(x,y)→0
g(0, 0) = 0. On

déduit alors du théorème des gendarmes que f(x, y) −→
(x,y)→0
(x,y)̸=0

0 = f(0, 0), ce qui prouve

que f est continue en 0, donc sur R2.

Exemple 4. Notons
f : R2 \ {0} −→ R

(x, y) 7−→ x2ex+y

x2 + y2
.

Pour tout n ∈ N∗, f(0, 1
n
) = 0 −→

n→+∞
0 et f( 1

n
, 1
n
) = 1

2
e

2
n −→

n→+∞

1

2
̸= 0,

or (0, 1
n
) −→
n→+∞

0 et ( 1
n
, 1
n
) −→
n→+∞

0, donc f n’est pas prolongeable par continuité en 0.
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2.7 Cas des fonctions de R dans R.
Théorème de la limite monotone : Soit (m,M) ∈ R2

avec m < M .
Notons I =]m,M [ et soit f une application de I dans R.
Si f est croissante, alors f(x) −→

x→M
x∈I

sup
y∈I

f(y) ∈ R et f(x) −→
x→m
x∈I

inf
y∈I

f(y) ∈ R .

Si f est décroissante, alors f(x) −→
x→M
x∈I

inf
y∈I

f(y) ∈ R et f(x) −→
x→m
x∈I

sup
y∈I

f(y) ∈ R .

Démonstration.
Par exemple, avec f décroissante, lorsque x tend vers M , en supposant f minorée
(ainsi, inf

y∈I
f(y) ∈ R).

Soit ε > 0. Par définition de la borne inférieure, il existe a ∈ I tel que f(a) < inf
y∈I

f(y)+ε.

Ainsi, en notant l = inf
y∈I

f(y), pour tout x ∈ [a,M [, l ≤ f(x) ≤ f(a) ≤ l + ε, donc

|f(x)− l| ≤ ε.

Propriété. Reprenons les notations du théorème précédent. Si f est monotone, alors,
pour tout a ∈ I, f possède en a une limite à droite, notée f(a+), et une limite à
gauche, notée f(a−). De plus, si f est croissante, f(a−) ≤ f(a) ≤ f(a+), et si f est
décroissante, f(a−) ≥ f(a) ≥ f(a+).
f est discontinue en a si et seulement si f(a+) ̸= f(a−) et dans ce cas |f(a+)− f(a−)|
s’appelle le saut de discontinuité de f en a.

Démonstration.
Supposons par exemple que f est croissante. Soit a ∈ I. Appliquons le théorème
précédent à la restriction de f sur l’intervalle ]a,M [. On obtient que f(x) tend vers
inf

t∈]a,M [
f(t) lorsque x tend vers a par valeurs supérieures. Mais f |]a,M [ est minorée par

f(a), donc inf
t∈]a,M [

f(t) ∈ R. Ceci prouve que f(a+) est bien définie,

avec f(a+) = inf
t∈]a,M [

f(t). En particulier, f(a+) ≥ f(a).

De même, en considérant l’intervalle ]m, a[, on montre que f(a−) est bien définie, avec
f(a−) ≤ f(a).
Lorsque f est décroissante, −f est croissante, ce qui permet de montrer que f(a+) et
f(a−) sont bien définies, avec f(a+) ≤ f(a) ≤ f(a−).

Remarque. On peut en déduire que l’ensemble des points de discontinuité d’une
fonction monotone définie sur un intervalle est au plus dénombrable :

Exercice. Soit f : I −→ R une application croissante, où I est un intervalle de
R. Montrer que le nombre de points de discontinuité de f est au plus dénombrable.

Solution : Notons D l’ensemble des points de discontinuité de f qui appar-
tiennent à l’intérieur de I. Il suffit de montrer que D est au plus dénombrable.
Soit a ∈ D. Alors, avec les notations précédentes, f(a−) < f(a+), donc il existe
qa ∈ Q tel que f(a−) < qa ≤ f(a+). On peut ainsi considérer l’application
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g : D −→ Q
a 7−→ qa

.

(remarque : on peut éviter d’utiliser l’axiome du choix en construisant qa en
fonction de a, par exemple en prenant pour qa le développement décimal de
f(a+), tronqué au premier rang pour lequel f(a−) < qa).
Si l’on montre que g est injective, on en déduit que D est en bijection avec g(D)
qui est au plus dénombrable en tant que partie de Q, donc cela prouve que D est
au plus dénombrable.
Soit a, b ∈ D tel que que a < b. Il existe c ∈]a, b[. Alors, f étant croissante,
qa ≤ f(a+) = inf

t>a
f(t) ≤ f(c) ≤ sup

t<b
f(t) = f(b−) < qb, donc g(a) ̸= g(b), ce qui

conclut.

3 Continuité globale

3.1 Cas des fonctions de R dans R

Notation. : Dans ce paragraphe, on fixe un intervalle I d’intérieur non vide.

Théorème des valeurs intermédiaires (TVI) :
Soit f : I −→ R une application continue à valeurs réelles. Soit a, b ∈ I avec a < b.
Alors, pour tout réel k compris entre f(a) et f(b), il existe c ∈ [a, b] tel que f(c) = k.

Démonstration.
Au tableau.

Exercice. Soit P une application polynomiale de R dans R de degré impair.
Montrer que P possède au moins une racine réelle.

Exercice. Soit f : [a, b] −→ [a, b] une application continue, où a, b ∈ R avec
a < b. Montrer que f possède au moins un point fixe.

Seconde formulation du TVI :
L’image d’un intervalle par une application continue à valeurs réelles est un intervalle.

Démonstration.
Reprenons les notations de la première formulation.
Pour tout α, β ∈ f(I), pour tout k dans le segment [α, β], k ∈ f(I), donc f(I) est une
partie convexe de R.
Théorème. Soit f : I −→ R une fonction continue. Alors f est injective si et
seulement si elle est strictement monotone.

Démonstration.
⋄ Supposons que f est strictement monotone. Alors f est injective, même lorsque f
n’est pas continue. En effet, lorsque a, b ∈ I avec a < b, on a f(a) < f(b) ou bien
f(a) > f(b) selon que f est strictement croissante ou décroissante. En particulier,
f(a) ̸= f(b).
⋄ Supposons que f est continue et qu’elle n’est pas strictement monotone.
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Il existe donc x1, x2, x3, x4 ∈ I tels que x1 < x2 et x3 < x4 avec f(x1) < f(x2) et
f(x3) > f(x4). Ainsi, sur l’intervalle [a, b] = [ min

1≤i≤4
xi, max

1≤i≤4
xi], la restriction de f n’est

pas strictement monotone.
Si f(a) = f(b), alors f n’est pas injective. Supposons maintenant que f(a) ̸= f(b).
Quitte à remplacer f par −f , on peut supposer que f(a) < f(b).
f n’étant pas strictement croissante, il existe x, y ∈ [a, b] tels que x < y et f(x) ≥ f(y).
Pour tout t ∈ [0, 1], posons g(t) = f((1− t)b+ ty)− f((1− t)a+ tx).
Ainsi, g(0) = f(b) − f(a) > 0 et g(1) = f(y) − f(x) ≤ 0, or g est continue d’après
les théorèmes usuels, donc d’après le TVI, il existe t0 ∈ [0, 1] tel que g(t0) = 0. Alors
f((1− t0)b+ t0y) = f((1− t0)a+ t0x), or (1− t0)b+ t0y ∈ [y, b] et (1− t0)a+ t0x ∈ [a, x],
donc (1− t0)b+ t0y ̸= (1− t0)a+ t0x, ce qui prouve que f n’est pas injective.

Théorème de la bijection :
Soit f : I −→ R une application continue et strictement monotone.
Ainsi, en notant encore f la restriction f |f(I), f est une bijection de I dans f(I).
Alors, f−1 : f(I) −→ I est également continue et strictement monotone (de même
sens de variation que f).

Remarque. La démonstration n’utilise la continuité de f que pour garantir que f(I)
est un intervalle. Ainsi, si f : I −→ R est strictement monotone, alors f |f(I) est
une bijection et (f |f(I))−1 est continue. En fait, f possède un nombre dénombrable de
points de discontinuité qui font de f(I) une union disjointe d’intervalles sur lesquels il
y a bien continuité.

Corollaire. L’application x 7−→
√
x est définie et continue sur R+.

De plus,
√
x −→

x→+∞
+∞.

Démonstration.

Notons
f : R+ −→ R+

x 7−→ x2 . f est continue d’après les théorèmes usuels.

Pour tout x, y ∈ R∗
+ tel que x < y, x2 = x× x < xy < y × y = y2 et pour tout x > 0,

x2 > 0, donc f est strictement croissante sur R+.
D’après le TVI, f(R+) est un intervalle inclus dans R+, contenant f(0) = 0, non majoré
car pour tout n ∈ N∗, n2 = n× n ≥ n, donc f(R+) = R+.
D’après le théorème de la bijection, f−1 est une bijection continue et strictement croiss-
nate de R+ dans R+ et le théorème de la limite monotone permet de conclure.

Remarque. De la même façon, ce théorème permet de définir les applications arcsin
et arccos et d’affirmer qu’elles sont continues.

Remarque. Dans un tableau de variations, les flèches obliques signifient que l’applica-
tion étudiée est continue et strictement monotone. Le théorème de la bijection affirme
en particulier que toutes les valeurs intermédiaires sont atteintes exactement une fois.

Exemple. Montrer que pour tout n ∈ N, il existe un unique un ∈ ]2nπ, 2nπ + π
2
[ tel

que un sin(un) = 1.
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Remarque. Ainsi, pour toute application continue bijective entre deux intervalles,
son application réciproque est continue.
C’est faux dans le cadre plus général des espaces métriques : l’application θ 7−→ eiθ

est une bijection continue de [0, 2π[ dans U (par restriction de l’exponentielle complexe
qui est continue car développable en série entière (cf cours de seconde année)), mais
son application réciproque n’est pas continue en 1. En effet, pour tout z ∈ U,
f−1(z) = Arg(z), donc f−1(ei(2π−

1
n
)) = 2π− 1

n
−→

n→+∞
2π ̸= 0 = f−1(1), or ei(2π−

1
n
) −→
n→+∞

1.

Définition. Soit E et F deux espaces métriques. f : E −→ F est un homeomor-
phisme entre E et F si et seulement si f est une bijection telle que f et f−1 sont
continues.
Deux espaces métriques sont homéomorphes si et seulement si il existe un
homéomorphisme entre ces deux espaces.

3.2 Continuité et ouverts

Théorème. Soit E et F deux espaces métriques et soit f : E −→ F une application
définie sur Df . Les propriétés suivantes sont équivalentes.

i) f est continue.
ii) L’image réciproque par f de tout ouvert de F est un ouvert

pour la topologie induite sur Df .
iii) L’image réciproque par f de tout fermé de F est un fermé

pour la topologie induite sur Df .

Démonstration.
• i)=⇒ii). Supposons que f est continue.
Soit U un ouvert de F . Soit x ∈ f−1(U). f(x) ∈ U et U est un ouvert, donc
U ∈ V(f(x)). Or f est continue en x, donc f(t)−→

t→x
t∈Df

f(x). Ainsi il existe V ∈ V(x) tel

que f(V ∩ Df ) ⊂ U .
Si y ∈ V ∩ Df , f(y) ∈ U , donc y ∈ f−1(U). Ainsi V ∩ Df ⊂ f−1(U), donc f−1(U)
est un voisinage de x pour la topologie induite sur Df . On a montré que f−1(U) est
voisinage de chacun de ses points, au sens de la topologie induite sur Df , donc que
c’est un ouvert pour la topologie induite sur Df .

• ii)=⇒iii). Soit K un fermé de F . F \K est un ouvert de F , donc f−1(F \K) est un
ouvert pour la topologie induite sur Df . Or f−1(F \K) = Df \ f−1(K), donc f−1(K)
est un fermé pour la topologie induite sur Df .
De même on démontrerait que iii)=⇒ii).

• ii)=⇒i). Soit x ∈ Df . Soit V ∈ V(f(x)). Il existe r > 0 tel que Bo(f(x), r) ⊂ V .
Bo(f(x), r) est un ouvert de F , donc f−1(Bo(f(x), r)) est un ouvert pour la topologie
induite sur Df . Ainsi c’est la trace sur Df d’un ouvert pour la topologie globale de E
que l’on notera U .
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Si y ∈ U ∩ Df = f−1(Bo(f(x), r)), f(y) ∈ Bo(f(x), r) ⊂ V , donc f(U ∩ Df ) ⊂ V .
D’autre part f(x) ∈ Bo(f(x), r), donc x ∈ U , or U est un ouvert, donc U ∈ V(x).
On a donc montré que ∀V ∈ V(f(x)) ∃U ∈ V(x) f(U ∩ Df ) ⊂ V . C’est dire que
f(t)−→

t→x
t∈Df

f(x) donc que f est continue en x.

Remarque. Ce théorème est un moyen très pratique pour montrer qu’une partie est
un ouvert ou un fermé.

Exemple. Dans R3, considérons
U = {(x, y, z) ∈ R3/ ln(x2 + y2 + 1) sin(z) < ex+z et x+ y − z > 1}.
Notons

f : R3 −→ R
(x, y, z) 7−→ ln(x2 + y2 + 1) sin(z)− ex+z et

g : R3 −→ R
(x, y, z) 7−→ 1− x− y + z

. f et g sont continues d’après les théorèmes usuels,

donc U = f−1(R∗
−) ∩ g−1(R∗

−) est un ouvert.
De même, on montrerait que
{(x, y, z) ∈ R3/ ln(x2 + y2 + 1) sin(z) ≤ ex+z et x+ y − z ≥ 1} est un fermé.

Exercice. Soient A et B deux parties non vides de E telles que d(A,B) > 0.
Montrez qu’il existe deux ouverts disjoints U et V tels que A ⊂ U et B ⊂ V (on
dit que U et V séparent A et B).

Solution. Il suffit de prendre U = {x ∈ E/d(x,A) <
d(A,B)

2
}

et V = {x ∈ E/d(x,A) >
d(A,B)

2
}.

On en déduit que A est un ouvert-fermé relatif de A∪B, non vide et différent de
A ∪B.

3.3 Continuité d’une application linéaire

Notation. Dans ce paragraphe, E et F désignent 2 K-espaces vectoriels normés.

Théorème. On suppose que f ∈ L(E,F ). Les assertions suivantes sont équivalentes.

i)f est continue.
ii) f est continue en 0.
iii) f est bornée sur la boule unité de E.
iv) f est bornée sur la sphère unité de E.
v) ∃k ∈ R+ ∀x ∈ E ∥f(x)∥ ≤ k∥x∥.
vi) f est lipschitzienne.

Démonstration.
i)=⇒ii). C’est clair.
ii)=⇒iii). Il existe α > 0 tel que pour tout x ∈ E, (∥x∥ ≤ α =⇒ ∥f(x)∥ ≤ 1).
Soit x ∈ Bf (0, 1). ∥αx∥ = α∥x∥ ≤ α, donc ∥f(αx)∥ ≤ 1, or f est linéaire, donc
∥f(x)∥ ≤ 1

α
.
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iii)=⇒iv). C’est clair.
iv)=⇒v). Il existe k ∈ R+ tel que ∀x ∈ S(0, 1) ∥f(x)∥ ≤ k.

Soit x ∈ E \ {0}. x

∥x∥
∈ S(0, 1), donc ∥f(x)∥ = ∥x∥∥f( x

∥x∥
)∥ ≤ k∥x∥.

Pour x = 0, ∥f(x)∥ = 0 = k∥x∥, donc pour tout x ∈ E, ∥f(x)∥ ≤ k∥x∥.
v)=⇒vi). Soit (x, y) ∈ E2. ∥f(x) − f(y)∥ = ∥f(x − y)∥ ≤ k∥x − y∥, donc f est
lipschitzienne.
vi)=⇒i). C’est connu.

Exemple. Choisissons E = C([0, 1],R) et φ : E −→ R
f 7−→ f(0)

.

• φ est une application linéaire et pour tout f ∈ E, |φ(f)| = |f(0)| ≤ ∥f∥∞, donc φ
est continue sur E pour ∥.∥∞.
• Supposons que φ est continue pour ∥.∥1. Ainsi il existe k ∈ R+ tel que pour tout

f ∈ E, |φ(f)| ≤ k∥f∥1, c’est-à-dire |f(0)| ≤ k
∫ 1

0
|f(t)|dt.

Soit n ∈ N∗. Notons fn l’application de [0, 1] dans R définie par les relations suivantes.
Pour tout t ∈ [0, 1

n
] fn(t) = 1− nt et pour tout t ∈ [ 1

n
, 1] fn(t) = 0.

fn ∈ E donc 1 = |fn(0)| ≤ k

∫ 1

0

|fn(t)|dt =
k

2n
−→

n→+∞
0. Ainsi 1 ≤ 0, ce qui est faux,

donc φ n’est pas continue pour ∥.∥1.
• Autre méthode. Posons gn(x) = (1−x)n. ∥gn∥1 = 1

n+1
−→

n→+∞
0, donc si φ est continue

pour ∥.∥1, φ(gn) −→
n→+∞

φ(0) = 0, ce qui est faux.

Propriété. On note LC(E,F ) l’ensemble des applications linéaires continues de E
dans F . Pour tout u ∈ LC(E,F ), on pose ∥u∥ = sup

x∈E
∥x∥E≤1

∥u(x)∥F .

Alors LC(E,F ) est un K-espace vectoriel normé.
De plus, pour tout u ∈ LC(E,F ) et x ∈ E, ∥u(x)∥F ≤ ∥u∥∥x∥E.
Démonstration.
• 0 ∈ LC(E,F ), donc LC(E,F ) ̸= ∅.
Si (u, v, α, β) ∈ LC(E,F )×LC(E,F )×K×K, αu+βv est linéaire et continue d’après
les théorèmes usuels, donc αu + βv ∈ LC(E,F ). Ainsi LC(E,F ) est un sous-espace
vectoriel de L(E,F ).
• Montrons maintenant que LC(E,F ) est un espace vectoriel normé.
Notons B la boule unité de E. Alors pour tout u ∈ LC(E,F ), u|B est une application
bornée de B dans F , et ∥u∥ = ∥u|B∥∞.
Sachant que ∥.∥∞ est une norme sur B(B,F ), on en déduit :
pour tout u, v ∈ LC(E,F ) et λ ∈ K, ∥u∥ ≥ 0, ∥λu∥ = |λ|∥u∥
et ∥u+ v∥ ≤ ∥u∥+ ∥v∥.
Enfin, si u ∈ LC(E,F ) vérifie ∥u∥ = 0, pour tout x ∈ B, u(x) = 0, donc si y ∈ E \{0},
u(

y

∥y∥
) = 0 et u(y) = 0. Ainsi u = 0.

Propriété. Soit E,F et G trois K-espaces vectoriels normés.
Soit u ∈ LC(E,F ) et v ∈ LC(F,G). Alors ∥v ◦ u∥ ≤ ∥v∥∥u∥.
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Démonstration.
Pour tout x ∈ E, ∥(v ◦ u)(x)∥ ≤ ∥v∥∥u(x)∥ ≤ ∥v∥∥u∥∥x∥,
donc ∥v ◦ u∥ ≤ ∥v∥∥u∥.
Théorème. Toute application linéaire dont l’ensemble de départ est de dimension
finie est continue.

Démonstration.
Soit E un K-espace vectoriel de dimension n ∈ N. Il existe une base de E notée

e = (e1, . . . , en). Lorsque x =
n∑

i=1

xiei ∈ E, on pose N(x) =
n∑

i=1

|xi|. On munit ainsi E

d’une norme.
Soient F un K-espace vectoriel normé de dimension quelconque et u ∈ L(E,F ).

Soit x =
n∑

i=1

xiei ∈ E. ∥u(x)∥ = ∥
n∑

i=1

xiu(ei)∥ ≤
n∑

i=1

|xi|.∥u(ei)∥.

Posons β = max
1≤i≤n

∥u(ei)∥. Pour tout x =
n∑

i=1

xiei ∈ E, ∥u(x)∥ ≤ β
n∑

i=1

|xi| = βN(x).

u étant linéaire, on en déduit qu’elle est β-lipschitzienne, donc u est continue.

Théorème. Soient E1, . . . , Ep une famille de p K-espaces vectoriels de dimensions
finies, où p ∈ N∗ et F un K-espace vectoriel normé de dimension quelconque.
Toute application p-linéaire de E1 × · · · × Ep dans F est continue.

Démonstration.
Pour tout j ∈ Np, on note nj la dimension de Ej et ej = (e1,j, . . . , enj ,j) une base de
Ej. Soit f une application p-linéaire de E1 × · · · × Ep dans F .

Soit (x1, . . . , xp) = (

nj∑
i=1

ai,jei,j)1≤j≤p ∈ E1 × · · · × Ep.

f(x1, . . . , xp) = f(

n1∑
i=1

ai,1ei,1, x2, . . . , xp), donc en utilisant la linéarité selon la première

variable, f(x1, . . . , xp) =

n1∑
i=1

ai,1f(ei,1, x2, . . . , xp), puis

f(x1, . . . xp) =

n1∑
i=1

ai,1

n2∑
j=1

aj,2f(ei,1, ej,2, x3, . . . , xp), donc

f(x1, . . . , xp) =
∑

u=(i1,...,ip)∈Nn1×···×Nnp

ai1,1 . . . aip,pf(ei1,1, . . . , eip,p).

Soit j ∈ Np et i ∈ {1, . . . , nj}. ai,j = e∗i,j(xj), si l’on désigne par (e∗k,j)1≤k≤nj
la base duale

de ej. Mais e∗i,j est une application linéaire dont l’espace de départ est de dimension
finie, donc c’est une fonction continue. L’expression précédente de f(x1, . . . , xp) et les
théorèmes usuels montrent alors que f est continue.

Propriété. Soit n ∈ N∗.
Les applications polynômiales de K[X1, . . . , Xn] sont continues.
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Démonstration.
Soit f une fonction polynômiale deKn dansK. Il existe une famille de scalaires (αu)u∈Nn

indexée par Nn et presque nulle telle que

∀x = (x1, . . . , xn) ∈ Kn f(x) =
∑

u=(k1,...,kn)∈Nn

αux
k1
1 · · ·xkn

n .

f est donc continue sur Kn d’après les théorèmes usuels.

Remarque. Soient E un espace vectoriel de dimension finie muni d’une base

e = (e1, . . . , en) et

f : E −→ K

x =
n∑

i=1

xiei 7−→ g(x1, . . . , xn)
.

Si g est une application polynômiale, alors f est continue. En effet, f = g ◦ h où
h : E −→ Kn

x =
n∑

i=1

xiei 7−→ (x1, . . . , xn)
. h est continue car linéaire en dimension finie, et

g est continue car polynômiale, donc f est continue.

Exemple. L’application det est continue de Mn(K) dans K.

3.4 Continuité et compacité

Propriété (hors programme) : f est continue si et seulement si ses restrictions aux
compacts de E inclus dans Df sont continues.

Démonstration.
L’implication directe est connue.
Réciproquement, supposons que pour tout compact K de E inclus dans Df , f |K est
continue.
Soit l ∈ Df . Soit (xn) une suite d’éléments de Df qui tend vers l. Il suffit d’établir que
f(xn) −→

n→+∞
f(l). Mais B = {xn/n ∈ N} ∪ {l} est un compact de E inclus dans Df ,

donc f |B est continue. Or (xn) est une suite d’éléments de B qui tend vers l ∈ B, donc
f(xn) = f |B(xn) −→

n→+∞
f |B(l) = f(l).

Théorème.
L’image directe d’un compact par une application continue est un compact.

Démonstration.
Soit E et F deux espaces métriques. Soit A un compact de E et f : A −→ F une
application continue.
Soit (yn) ∈ f(A)N. Pour tout n ∈ N, il existe xn ∈ A tel que yn = f(xn).
A est compact, donc il existe une application φ : N −→ N, strictement croissante et
x ∈ A tels que xφ(n) −→

n→+∞
x.

f étant continue, f(xφ(n)) −→
n→+∞

f(x) et f(x) ∈ f(A), donc la suite (f(xn)) admet au

moins une valeur d’adhérence dans f(A). Ceci prouve que f(A) est compact.
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Corollaire. Soient A un compact non vide de E et f : A −→ R une application
continue. Alors f est bornée et elle atteint ses bornes, c’est-à-dire qu’il existe
(xm, xM) ∈ A2 tel que, pour tout x ∈ A, f(xm) ≤ f(x) ≤ f(xM).

Démonstration.
f(A) est un compact, donc f(A) est un fermé borné dans R. En particulier, f(A) est
une partie non vide et majorée de R, donc elle admet une borne supérieure, notée S.

Pour tout n ∈ N, il existe yn ∈ f(A) tel que S − 1

n+ 1
< yn ≤ S. D’après le théorème

des gendarmes, yn −→
n→+∞

S, mais f(A) est fermé, donc S ∈ f(A), ce qui prouve que

f(A) admet un maximum.
De même, on montre que f(A) admet un minimum.

Corollaire. L’image directe d’un segment de R par une application continue à valeurs
réelles est un segment.

Exercice. Soit f : R −→ R une application continue et périodique. Montrer
qu’elle est bornée.

Exercice. Pour tout n ∈ N, posons In =

∫ 1

0

(x lnx)n

n!
dx. Montrer que In −→

n→+∞
0.

Théorème.
Sur un K-espace vectoriel de dimension finie, toutes les normes sont équivalentes.

Démonstration.
Soit E un K-espace vectoriel de dimension finie, muni d’une base e = (e1, . . . , eq).

Lorsque y =

q∑
i=1

yiei ∈ E, posons N(y) =

q∑
i=1

|yi|. On sait que N est une norme sur E,

pour laquelle les fermés bornés de E sont des compacts.
• Soit N ′ une seconde norme sur E.

Soit x =
n∑

i=1

xiei ∈ E. N ′(x) = N ′(
n∑

i=1

xiei) ≤
n∑

i=1

|xi|N ′(ei).

Posons β = max
1≤i≤n

N ′(ei). Pour tout x ∈ E, (1) : N ′(x) ≤ β

n∑
i=1

|xi| = βN(x).

• On en déduit que pour tout (x, y) ∈ E2, |N ′(x)−N ′(y)| ≤ N ′(x− y) ≤ βN(x− y),
c’est-à-dire que l’application N ′ : (E,N) −→ R+ est une application β-lipschitzienne.
Ainsi, cette application est continue.
En particulier, si l’on note SN(0, 1) = {x ∈ E / N(x) = 1} (c’est la sphère unité pour
la norme N), alors N ′|SN (0,1) est continue, or SN(0, 1) est un fermé borné de (E,N),
donc il est compact. Ainsi N ′|SN (0,1) est une application bornée qui atteint ses bornes.
En particulier, il existe x0 ∈ SN(0, 1) tel que pour tout x ∈ SN(0, 1), N

′(x) ≥ N ′(x0).

Si x ∈ E \ {0}, x

N(x)
∈ SN(0, 1), donc N ′

(
x

N(x)

)
≥ N ′(x0).

De plus N(x0) = 1, donc x0 ̸= 0, ce qui montre que N ′(x0) > 0.
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Ainsi, pour tout x ∈ E, (2) : N(x) ≤ 1

N ′(x0)
N ′(x).

(1) et (2) prouvent que N et N ′ sont équivalentes.

3.5 La continuité uniforme

Notation. On fixe deux espaces métriques E et F ainsi qu’une application
f : E −→ F définie sur Df ⊂ E.

Définition.
f est uniformément continue sur Df si et seulement si
∀ε ∈ R∗

+ ∃α ∈ R∗
+ ∀(x, y) ∈ D2

f (d(x, y) ≤ α =⇒ d(f(x), f(y)) ≤ ε).

Remarque. Dans cette définition, les deux dernières inégalités peuvent être in-
différemment prises strictes ou larges.

Remarque. f est uniformément continue si et seulement si
∀ε ∈ R∗

+ ∃α ∈ R∗
+ ∀x0 ∈ Df ∀x ∈ Df (d(x, x0) ≤ α =⇒ d(f(x), f(x0)) ≤ ε),

et f est continue si et seulement si
∀ε ∈ R∗

+ ∀x0 ∈ Df ∃αx0 ∈ R∗
+ ∀x ∈ Df (d(x, x0) ≤ αx0 =⇒ d(f(x), f(x0)) ≤ ε).

Ainsi, si f est uniformément continue, elle est continue, mais de plus, pour ε > 0 fixé,
on peut choisir α indépendamment de x0. On dit que x0 7−→ αx0 est uniforme en x0,
et, par extension, que la continuité est uniforme.
Cette indépendance de α par rapport à x0 est souvent bien utile dans la démonstration
de théorèmes généraux d’analyse. Ainsi l’intérêt de la continuité uniforme est essen-
tiellement d’ordre théorique.

Propriété. Toute fonction uniformément continue est continue.

Propriété. Caractérisation séquentielle de la continuité uniforme.
f est uniformément continue si et seulement si pour tout couple ((xn), (yn)) de suites
d’éléments de Df tel que d(xn, yn) −→

n→+∞
0, d(f(xn), f(yn)) −→

n→+∞
0.

Démonstration.
• Supposons que f est uniformément continue. Soit ((xn), (yn)) un couple de suites
d’éléments de Df tel que d(xn, yn) −→

n→+∞
0.

Soit ε > 0. Il existe α > 0 tel que pour tout (x, y) ∈ D2
f ,

(d(x, y) ≤ α =⇒ d(f(x), f(y)) ≤ ε).
Il existe N ∈ N tel que pour tout n ≥ N , d(xn, yn) ≤ α. Ainsi, pour tout n ≥ N ,
d(f(xn), f(yn)) ≤ ε. On a montré que d(f(xn), f(yn)) −→

n→+∞
0.

• Supposons maintenant que f n’est pas uniformément continue. Ainsi il existe ε > 0
tel que ∀α ∈ R∗

+ ∃(x, y) ∈ D2
f d(x, y) ≤ α et d(f(x), f(y)) > ε.

En particulier, pour tout n ∈ N, il existe (xn, yn) ∈ D2
f tel que d(xn, yn) ≤ 1

n+ 1
et

d(f(xn), f(yn)) > ε.
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d(xn, yn) −→
n→+∞

0 mais d(f(xn), f(yn)) ne converge pas vers 0. On a ainsi montré la

contraposée de la réciproque.

Remarque. Il existe des applications continues qui ne sont pas uniformément conti-

nues. Par exemple,
]0, 1] −→ R

x 7−→ 1
x

est continue sans être uniformément continue.

Démonstration.

Posons xn = 1
n
et yn =

1

n+ 1
. xn − yn −→

n→+∞
0 mais

1

xn

− 1

yn
= −1.

Exercice. Montrer que x 7−→ x2 n’est pas uniformément continue sur R.

Propriété. La composée de deux applications uniformément continues est uniformément
continue.

Démonstration.
A l’aide de la caractérisation séquentielle.

Propriété. Les applications lipschitziennes sont uniformément continues.
Ainsi, “lispchitzienne”=⇒“uniformément continue”=⇒“continue”.

Démonstration.
A l’aide de la caractérisation séquentielle.

Propriété. Si F = F1 × · · · × Fq, où q ∈ N∗ et F1, . . ., Fq sont q espaces vectoriels

normés, l’application
f : E −→ F

x 7−→ (f1(x), . . . , fq(x))
est uniformément continue si et

seulement si pour tout i ∈ Nq, fi est uniformément continue.

Démonstration.
Exercice.

Théorème de Heine.
Toute application continue sur un compact est uniformément continue.

Démonstration.
Soit A un compact de E. On suppose que f : A −→ F est une application continue.
Supposons que f n’est pas uniformément continue. Ainsi il existe ε > 0 tel que, pour
tout α > 0, il existe (x, y) ∈ A2 tel que d(x, y) ≤ α et d(f(x), f(y)) ≥ ε.

En particulier, pour tout n ∈ N, il existe (xn, yn) ∈ A2 tel que d(xn, yn) ≤ 1

n+ 1
et

d(f(xn), f(yn)) ≥ ε.
A est compact, donc A2 est aussi compact. Ainsi, il existe φ : N −→ N strictement
croissante et (x, y) ∈ A2 tel que (xφ(n), yφ(n)) −→

n→+∞
(x, y). Or l’application distance est

continue, (en effet, |d(x′, y′)− d(x, y)| ≤ |d(x′, y′)− d(x′, y)|+ |d(x′, y)− d(x, y)|,
donc |d(x′, y′)− d(x, y)| ≤ d(y′, y) + d(x′, x) −→

(x′,y′)→(x,y)
0),

donc d(xφ(n), yφ(n)) −→
n→+∞

d(x, y). Mais d(xφ(n), yφ(n)) ≤
1

φ(n+ 1)
≤ 1

n+ 1
−→

n→+∞
0, donc

d’après l’unicité de la limite, d(x, y) = 0, ce qui prouve que x = y.
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f étant continue, f(xφ(n)) −→
n→+∞

f(x) et f(yφ(n)) −→
n→+∞

f(x), donc de même que ci-

dessus, on en déduit que d(f(xφ(n)), f(yφ(n))) −→
n→+∞

d(f(x), f(x)) = 0, ce qui est faux

car, pour tout n ∈ N, d(f(xφ(n)), f(yφ(n))) ≥ ε. Ainsi f est uniformément continue.

Corollaire. Toute application continue et définie sur un segment de R est uni-
formément continue.

Exemple. Notons
f : [0, 1] −→ R

x 7−→
√
x
. f est continue sur le segment [0, 1], donc

elle est uniformément continue d’après le théorème de Heine. Cependant, f n’est pas

lipschitzienne : sinon, {
|
√
x−√

y|
|x− y|

/0 ≤ x < y ≤ 1} serait majoré ce qui est faux car√
1
n
−

√
0

1
n
− 0

=
√
n −→

n→+∞
+∞.

Exercice. Montrez que toute application f : R −→ R continue et périodique
est uniformément continue.

Résolution. Soient T > 0 et f : R −→ R une application T -périodique
et continue. [−T, 2T ] est un compact et f |[−T,2T ] est continue, donc d’après le
théorème de Heine, f |[−T,2T ] est uniformément continue.
Soit ε > 0. Il existe α′ > 0 tel que
∀(x, y) ∈ [−T, 2T ]2 (d(x, y) < α′ =⇒ d(f(x), f(y)) < ε).
Posons α = min(α′, T ) > 0. Soit (x, y) ∈ R2 tel que d(x, y) < α. Notons n la
partie entière de x

T
. n ≤ x

T
< n+1, donc nT ≤ x ≤ nT +T , puis 0 ≤ x−nT ≤ T .

d(y−nT, x−nT ) = d(x, y) < α ≤ T , or x−nT ∈ [0, T ], donc y−nT ∈ [−T, 2T ].
Ainsi, (x− nT, y − nT ) ∈ [−T, 2T ]2 et d(x− nT, y − nT ) < α, donc
d(f(x), f(y)) = d(f(x− nT ), f(y − nT )) < ε.

©Éric Merle 43 MPSI2, LLG


