DS 5 : Enoncé.

Les calculatrices sont interdites.

Premier probleme : une application du théoreme de
Ramsey

Pour tout ce probléeme, on fixe un entier naturel p. On suppose que p est premier.
On notera (Z/pZ)* = (Z/pZ) \ {0}.
Lorsque E est un ensemble fini, on notera |E| le cardinal de E.

Partie I : Racines d’un polynome modulo p

On note Z[X] 'ensemble des polynomes a coefficients dans Z.
Par exemple, Py(X) = 2X? —3X + 1 est un élément de Z[X].

1°) Déterminer les racines réelles de F.

Lorsque P € Z[X], on note P Tapplication de Z/pZ dans Z/pZ définie par :
pour tout h € Z, P(h) = P(h).

2°) Lorsque P € Z[X], montrer que P est correctement définie.

Lorsque o € Z/pZ, on dit que « est une racine de P modulo p si et seulement si
P(a) =0.

3°) Déterminer les racines modulo 7 de F.

4°) Soit P € Z[)_(] -

On suppose que P # 0, c’est-a-dire qu'il existe y € Z/pZ tel que P(y) # 0.

Soit o € Z/pZ. On suppose que « est une racine de P modulo p.

Montrer que deg(P) > 1 et qu'il existe @ € Z[X] avec deg(Q) < deg(P) — 1 tel que,
pour tout x € Z/pZ, P(x) = (x — a)Q(z).

5°) Soit P € Z[X] tel que P # 0.

Soit k& € N. On suppose qu’il existe dans Z/pZ au moins k racines de P modulo p.
Montrer que deg(P) > k.



Partie II : Puissances n-iemes dans Z/pZ

Dans cette partie, on fixe n € N*.

On note S = {2" / x € (Z/pZ)*}.
6°) Montrer que S est un groupe pour le produit.

7°) On définit sur (Z/pZ)* une relation binaire en convenant que,
pour tout z,y € (Z/pZ)*, x Ry <= z"'y e S.

Montrer que R est une relation d’équivalence.

Pour tout a € (Z/pZ)*, notons aS = {as / s € S}.

Montrer que {aS / a € (Z/pZ)*} constitue une partition de (Z/pZ)*.

) -1
8°) A l'aide de la question 5, montrer que |S| > b=
n

9°) Montrer que [{aS / a € (Z/pZ)*}| < n.

Partie III : Théoréeme de Schur

Dans cette partie, on fixe un entier n € N*,

On admettra le théoreme de Ramsey (démontré lors du DS 4), dont voici une version
simplifiée, qui suffira pour cette partie :

Théoreme de Ramsey :

Définitions et données : Lorsque V est un ensemble fini, on note Py(V') 'ensemble des
parties de V' de cardinal 2. On dit que les éléments de P(V') sont les arétes du graphe
complet dont les sommets sont les éléments de V. On notera K (V') ce graphe complet.
Soit C' un ensemble de cardinal n, dont les éléments sont appelés des couleurs. On
appelle coloriage de K (V') dans C' toute application ¢ de Py(V) dans C. Pour un tel
coloriage c, lorsque «, 8, sont trois éléments distincts de V,

on dit qu’ils constituent un triangle monochrome

si et seulement si c({a, B}) = c({a,v}) = e¢({5,7}).

Conclusion : il existe N € N* tel que, pour tout ensemble V' de cardinal supérieur ou
égal a N, pour tout ensemble C' de cardinal n, pour tout coloriage de K (V') dans C, il
existe dans V' un triangle monochrome.

10°) Montrer qu'il existe N € N* tel que, lorsque p > N (avec p € P),
pour tout ensemble C' de cardinal n, pour toute application d de (Z/pZ)* dans C, il
existe x,y, z € (Z/pZ)* tels que d(x) = d(y) =d(z) et x +y = 2.

11°) En déduire qu’il existe N tel que, lorsque p > N (avec p € P),
il existe des entiers relatifs x, y, 2 tels que, modulo p, " +y™ = 2" (Equation de Fermat
modulo p), alors que x, y et z sont tous les trois non congrus a 0 modulo p.



Second probleme :
Inverses généralisés d’applications linéaires

Dans ce probleme, K désigne un corps quelconque.

Lorsque u et v sont deux applications pour lesquelles la composée u o v est définie, on
notera aussi uv au lieu de u o v.
En particulier, u? désigne u o u.

Pour tout le probleme, on suppose que F et F' sont deux K-espaces vectoriels de
dimensions finies.
Lorsque u € L(E, F'), on appelle rang de u et on note rg(u) la quantité dim(Im(u)).

Partie I : préliminaires

1°) Soit F et G deux sous-espaces vectoriels de E tels que F & G = E.

Si (eq,...,e,) est une base de F' et si (epi1,...,€,) est une base de G, montrer que
(é1,...,e,) est une base de E.

En déduire que dim(E) = dim(F) + dim(G).

2°) Réciproquement, montrer que si (eq, ..., e,) est une base de F et sip € {0,...,n},

en posant F' = Vect(ey, ..., e,) et G = Vect(epi1,...,€,), alors E = F & G.

3°) Soit uw € L(E, F) et H un sous-espace vectoriel de E tel que Ker(u) @ H = E.

Montrer que u|1;1n(u) est un isomorphisme.
En déduire la formule du rang : dim(F) = rg(u) + dim(Ker(u)).

Soit p € L(E). On dit que p est un projecteur de E si et seulement si p* = p.

4°) Soit p un projecteur de E.
Montrer que Im(p) = {z € E / p(x) = x}.
Montrer que Im(p) ® Ker(p) = E.

Partie II : g-inverses

Lorsque u € L(E,F) et v € L(F, E), on dit que v est un inverse généralisé de u, ou
bien que v est un g-inverse de u si et seulement si uvu = u.

5°) Soit u € L(E, F). Lorsque u = 0, quels sont les g-inverses de u ?
Lorsque u est un isomorphisme, quels sont les g-inverses de u ?

6°) Soit u € L(E,F) et v € L(F, E). On suppose que v est un g-inverse de u.
On pose p = vu et ¢ = uv.

a) Montrer que p et ¢ sont des projecteurs.

b) Montrer que Im(q) = Im(u) et Ker(p) = Ker(u).

¢) Montrer que rg(p) = rg(q) = rg(u) < rg(v).



d) Montrer qu’il existe un sous-espace vectoriel F; de E tel que Ker(u) ® E; = E et
-1
E Im(u)
tel que v[;) ) = (u B u)
7°) Soit u € L(E, F).
Montrer que u possede au moins un g-inverse v.
Soit s un entier compris entre rg(u) et min(dim(£), dim(F')). Montrer que u possede
au moins un g-inverse v tel que rg(v) = s.

8°) Soit u € L(FE, F'). Notons vy un g-inverse de u.
a) Montrer que 'ensemble des g-inverses de u est {vg +a / a € A}, ou A est un
sous-espace vectoriel de L(F, E') que 'on précisera.

b) Pour tout w € A, on pose p(w) = w|Im(u) :

Montrer que ¢ est une application linéaire surjective de A sur L(Im(u), Ker(u)).
c) Calculer la dimension de A en fonction de w.

9°) Soit u € L(FE, F) et soit v un g-inverse de u. Soit b € F.

On note (£) I"équation u(x) = b en I'inconnue x € FE.

Montrer que (€) possede au moins une solution si et seulement si b = (uv)(b) et dans
ce cas, montrer que I'ensemble des solutions est {v(b) + (Idg —vu)(z) / 2 € E}.



