
DS 5 : Énoncé.
Les calculatrices sont interdites.

Premier problème : une application du théorème de

Ramsey

Pour tout ce problème, on fixe un entier naturel p. On suppose que p est premier.
On notera (Z/pZ)∗ = (Z/pZ) \ {0}.
Lorsque E est un ensemble fini, on notera |E| le cardinal de E.

Partie I : Racines d’un polynôme modulo p

On note Z[X] l’ensemble des polynômes à coefficients dans Z.
Par exemple, P0(X) = 2X2 − 3X + 1 est un élément de Z[X].

1◦) Déterminer les racines réelles de P0.

Lorsque P ∈ Z[X], on note P l’application de Z/pZ dans Z/pZ définie par :
pour tout h ∈ Z, P (h) = P (h).

2◦) Lorsque P ∈ Z[X], montrer que P est correctement définie.

Lorsque α ∈ Z/pZ, on dit que α est une racine de P modulo p si et seulement si
P (α) = 0.

3◦) Déterminer les racines modulo 7 de P0.

4◦) Soit P ∈ Z[X].
On suppose que P ̸= 0, c’est-à-dire qu’il existe y ∈ Z/pZ tel que P (y) ̸= 0.
Soit α ∈ Z/pZ. On suppose que α est une racine de P modulo p.
Montrer que deg(P ) ≥ 1 et qu’il existe Q ∈ Z[X] avec deg(Q) ≤ deg(P ) − 1 tel que,
pour tout x ∈ Z/pZ, P (x) = (x− α)Q(x).

5◦) Soit P ∈ Z[X] tel que P ̸= 0.
Soit k ∈ N. On suppose qu’il existe dans Z/pZ au moins k racines de P modulo p.
Montrer que deg(P ) ≥ k.
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Partie II : Puissances n-ièmes dans Z/pZ
Dans cette partie, on fixe n ∈ N∗.
On note S = {xn / x ∈ (Z/pZ)∗}.

6◦) Montrer que S est un groupe pour le produit.

7◦) On définit sur (Z/pZ)∗ une relation binaire en convenant que,
pour tout x, y ∈ (Z/pZ)∗, x R y ⇐⇒ x−1y ∈ S.
Montrer que R est une relation d’équivalence.
Pour tout a ∈ (Z/pZ)∗, notons aS = {as / s ∈ S}.
Montrer que {aS / a ∈ (Z/pZ)∗} constitue une partition de (Z/pZ)∗.

8◦) À l’aide de la question 5, montrer que |S| ≥ p− 1

n
.

9◦) Montrer que |{aS / a ∈ (Z/pZ)∗}| ≤ n.

Partie III : Théorème de Schur

Dans cette partie, on fixe un entier n ∈ N∗.

On admettra le théorème de Ramsey (démontré lors du DS 4), dont voici une version
simplifiée, qui suffira pour cette partie :
Théorème de Ramsey :
Définitions et données : Lorsque V est un ensemble fini, on note P2(V ) l’ensemble des
parties de V de cardinal 2. On dit que les éléments de P2(V ) sont les arêtes du graphe
complet dont les sommets sont les éléments de V . On notera K(V ) ce graphe complet.
Soit C un ensemble de cardinal n, dont les éléments sont appelés des couleurs. On
appelle coloriage de K(V ) dans C toute application c de P2(V ) dans C. Pour un tel
coloriage c, lorsque α, β, γ sont trois éléments distincts de V ,
on dit qu’ils constituent un triangle monochrome
si et seulement si c({α, β}) = c({α, γ}) = c({β, γ}).
Conclusion : il existe N ∈ N∗ tel que, pour tout ensemble V de cardinal supérieur ou
égal à N , pour tout ensemble C de cardinal n, pour tout coloriage de K(V ) dans C, il
existe dans V un triangle monochrome.

10◦) Montrer qu’il existe N ∈ N∗ tel que, lorsque p ≥ N (avec p ∈ P),
pour tout ensemble C de cardinal n, pour toute application d de (Z/pZ)∗ dans C, il
existe x, y, z ∈ (Z/pZ)∗ tels que d(x) = d(y) = d(z) et x+ y = z.

11◦) En déduire qu’il existe N tel que, lorsque p ≥ N (avec p ∈ P),
il existe des entiers relatifs x, y, z tels que, modulo p, xn+yn ≡ zn (Équation de Fermat
modulo p), alors que x, y et z sont tous les trois non congrus à 0 modulo p.
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Second problème :

Inverses généralisés d’applications linéaires

Dans ce problème, K désigne un corps quelconque.

Lorsque u et v sont deux applications pour lesquelles la composée u ◦ v est définie, on
notera aussi uv au lieu de u ◦ v.
En particulier, u2 désigne u ◦ u.

Pour tout le problème, on suppose que E et F sont deux K-espaces vectoriels de
dimensions finies.
Lorsque u ∈ L(E,F ), on appelle rang de u et on note rg(u) la quantité dim(Im(u)).

Partie I : préliminaires

1◦) Soit F et G deux sous-espaces vectoriels de E tels que F ⊕G = E.
Si (e1, . . . , ep) est une base de F et si (ep+1, . . . , en) est une base de G, montrer que
(e1, . . . , en) est une base de E.
En déduire que dim(E) = dim(F ) + dim(G).

2◦) Réciproquement, montrer que si (e1, . . . , en) est une base de E et si p ∈ {0, . . . , n},
en posant F = Vect(e1, . . . , ep) et G = Vect(ep+1, . . . , en), alors E = F ⊕G.

3◦) Soit u ∈ L(E,F ) et H un sous-espace vectoriel de E tel que Ker(u)⊕H = E.

Montrer que u|Im(u)
H est un isomorphisme.

En déduire la formule du rang : dim(E) = rg(u) + dim(Ker(u)).

Soit p ∈ L(E). On dit que p est un projecteur de E si et seulement si p2 = p.

4◦) Soit p un projecteur de E.
Montrer que Im(p) = {x ∈ E / p(x) = x}.
Montrer que Im(p)⊕Ker(p) = E.

Partie II : g-inverses

Lorsque u ∈ L(E,F ) et v ∈ L(F,E), on dit que v est un inverse généralisé de u, ou
bien que v est un g-inverse de u si et seulement si uvu = u.

5◦) Soit u ∈ L(E,F ). Lorsque u = 0, quels sont les g-inverses de u ?
Lorsque u est un isomorphisme, quels sont les g-inverses de u ?

6◦) Soit u ∈ L(E,F ) et v ∈ L(F,E). On suppose que v est un g-inverse de u.
On pose p = vu et q = uv.
a) Montrer que p et q sont des projecteurs.

b) Montrer que Im(q) = Im(u) et Ker(p) = Ker(u).

c) Montrer que rg(p) = rg(q) = rg(u) ≤ rg(v).
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d) Montrer qu’il existe un sous-espace vectoriel E1 de E tel que Ker(u) ⊕ E1 = E et

tel que v|E1

Im(u) =
(
u|Im(u)

E1

)−1

.

7◦) Soit u ∈ L(E,F ).
Montrer que u possède au moins un g-inverse v.
Soit s un entier compris entre rg(u) et min(dim(E), dim(F )). Montrer que u possède
au moins un g-inverse v tel que rg(v) = s.

8◦) Soit u ∈ L(E,F ). Notons v0 un g-inverse de u.
a) Montrer que l’ensemble des g-inverses de u est {v0 + a / a ∈ A}, où A est un
sous-espace vectoriel de L(F,E) que l’on précisera.

b) Pour tout w ∈ A, on pose φ(w) = w|Ker(u)
Im(u) .

Montrer que φ est une application linéaire surjective de A sur L(Im(u),Ker(u)).

c) Calculer la dimension de A en fonction de u.

9◦) Soit u ∈ L(E,F ) et soit v un g-inverse de u. Soit b ∈ F .
On note (E) l’équation u(x) = b en l’inconnue x ∈ E.
Montrer que (E) possède au moins une solution si et seulement si b = (uv)(b) et dans
ce cas, montrer que l’ensemble des solutions est {v(b) + (IdE − vu)(z) / z ∈ E}.
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