
DS 5 : Corrigé

Premier problème : une application du théorème de

Ramsey

Partie I : Racines d’un polynôme modulo p

1◦) 1 est une racine évidente et on vérifie que P0(X) = (X − 1)(2X − 1), donc

les racines réelles de P0 sont exactement 1 et 1
2
.

2◦) Soit P ∈ Z[X]. Ainsi, P (X) =
∑
n∈N

anX
n, où (an)n∈N est une famille presque

nulle d’entiers relatifs. Alors, pour tout h ∈ Z, d’après les règles de calcul dans Z/pZ,
P (h) =

∑
n∈N

anh
n
. Ainsi, P (h) est bien une fonction de h et pas seulement de h, elle est

bien définie.

3◦) Soit h ∈ Z. Alors P0(h) = P0(h) = (h − 1)(2h − 1). Or Z/pZ est intègre, donc

P0(h) = 0 ⇐⇒ (h − 1 = 0 ou 2h − 1 = 0) ⇐⇒ (h = 1 ou h = 2
−1
). En effet, 2 ̸= 0,

donc 2 est inversible dans le corps Z/7Z. De plus 2.4 = 8 ≡ 1[7], donc 2
−1

= 4.
Ainsi, les racines modulo 7 de P0 sont exactement 1 et 4 .

4◦) Supposons que deg(P ) ≤ 0. Alors il existe b ∈ Z tel que P (X) = b, donc pour tout
x ∈ Z/pZ, P (x) = b. Or par hypothèse, P (α) = 0, donc b = 0. On en déduit que P = 0
ce qui est faux. Ainsi, deg(P ) ≥ 1. Notons n = deg(P ). Ainsi, il existe a0, . . . , an ∈ Z

tels que P (X) =
n∑

k=0

akX
k.

Soit x ∈ Z/pZ. P (x) = P (x) − P (α) =
n∑

k=1

ak(x
k − αk), donc d’après la formule de

Bernoulli, P (x) =
n∑

k=1

ak(x− α)
k−1∑
h=0

xhαk−1−h.

Il existe c ∈ Z tel que α = c. Alors, pour tout x ∈ Z/pZ, P (x) = (x − α)Q(x), où

Q(X) =
n∑

k=1

ak

k−1∑
h=0

ck−1−hXh. Q est bien un élément de Z[X]
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et deg(Q) ≤ n− 1 = deg(P )− 1.

5◦) ⋄ Soit k ∈ N. Notons R(k) l’assertion suivante, que l’on se propose de démontrer
par récurrence : soit P ∈ Z[X] tel que P ̸= 0 et tel qu’il existe k racines de P modulo
p notées α1, . . . , αk, deux à deux distinctes. Alors il existe Q ∈ Z[X] tel que, pour tout

x ∈ Z/pZ, P (x) = Q(x)
k∏

i=1

(x− αi), avec k + deg(Q) ≤ deg(P ).

En particulier, deg(P ) ≥ k.
⋄ Lorsque k = 0, la propriété est évidente en prenant Q = P . P ̸= 0, donc P ̸= 0
donc deg(P ) ≥ 0.
⋄ Soit k ∈ N. On suppose R(k).
soit P ∈ Z[X] tel que P ̸= 0 et tel qu’il existe k + 1 racines de P modulo p notées
α1, . . . , αk+1, deux à deux distinctes. D’après R(k), il existe Q ∈ Z[X] tel que, pour

tout x ∈ Z/pZ, P (x) = Q(x)
k∏

i=1

(x− αi), avec k + deg(Q) ≤ deg(P ).

D’après cette dernière égalité, si Q = 0, alors P = 0, ce qui est faux. Ainsi, Q ̸= 0.
De plus, en remplaçant x par αk+1 dans la dernière égalité, on obtient que

0 = P (αk+1) = Q(αk+1)
k∏

i=1

(αk+1 − αi), or Z/pZ est intègre et pour tout i ∈ Nk,

αk+1 − αi ̸= 0, donc Q(αk+1) = 0. Ainsi, αk+1 est une racine modulo p de Q et Q ̸= 0.
On peut donc appliquer la question précédente à Q : deg(Q) ≥ 1 et il existe H ∈ Z[X]
tel que deg(H) ≤ deg(Q)− 1 et tel que, pour tout x ∈ Z/pZ, Q(x) = (x− αk+1)H(x).

Ainsi, pour tout x ∈ Z/pZ, P (x) = H(x)
k+1∏
i=1

(x− αi),

avec k + 1 + deg(H) ≤ k + deg(Q) ≤ deg(P ).
Si H = 0, alors H = 0, puis d’après la dernière égalité, P = 0, ce qui est faux. Ainsi,
H ̸= 0, donc deg(P ) ≥ deg(H) + k + 1 ≥ k + 1. Ceci démontre R(k + 1).
⋄ D’après le principe de récurrence, R(k) est vraie pour tout k ∈ N.
En particulier, si P ∈ Z[X] avec P ̸= 0 et si P possède au moins k racines modulo p,
alors deg(P ) ≥ k.

Partie II : Puissances n-ièmes dans Z/pZ

6◦) D’après le cours, ((Z/pZ)∗,×) est un groupe.
Montrons que S en est un sous-groupe.
1n = 1 ∈ S, donc S est non vide.
Soit x, y ∈ S. Il existe a, b ∈ (Z/pZ)∗ tels que x = an et y = bn.
Alors xy−1 = anb−n = (ab−1)n ∈ S, ce qui conclut.

7◦) ⋄ Soit x, y, z ∈ (Z/pZ)∗.
x−1x = 1 ∈ S, donc x R x, ce qui prouve que R est réflexive.
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Si x R y, alors y−1x = (x−1y)−1 ∈ S, car S est un groupe et x−1y ∈ S. Ainsi, R est
symétrique.
Supposons que x R y et y R z. Alors x−1z = (x−1y)(y−1z) ∈ S, car S est stable pour
le produit. Ainsi, R est transitive.
On a montré que R est bien une relation d’équivalence.
⋄ Soit a ∈ (Z/pZ)∗. Pour tout y ∈ (Z/pZ)∗,
a R y ⇐⇒ (∃h ∈ S, a−1y = h) ⇐⇒ (∃h ∈ S, y = ah) ⇐⇒ y ∈ aS,
donc {aS / a ∈ (Z/pZ)∗} est l’ensemble des classes d’équivalence de R. D’après le
cours, c’est une partition de (Z/pZ)∗.

8◦) Lorsque s ∈ S, notons Rs = {x ∈ (Z/pZ)∗ / xn = s}.
Soit s ∈ S. Il existe h ∈ Z tel que s = h. Posons P (X) = Xn − h.
n ∈ N∗, donc P (0) = −h, or s ̸= 0, donc P (0) ̸= 0. Ainsi, P ̸= 0, or deg(P ) = n et Rs

est égal à l’ensemble des racines de P modulo p, donc d’après la question 5, |Rs| ≤ n.
Soit s, s′ ∈ S tels que Rs ∩ Rs′ ̸= ∅. Alors il existe x ∈ Rs ∩ Rs′ . On a s = xn = s′.
Ainsi, lorsque s, s′ ∈ S avec s ̸= s′, Rs ∩Rs′ = ∅.
De plus, lorsque x ∈ (Z/pZ)∗, il est clair que x ∈ Rxn , donc

⊔
s∈S

Rs = (Z/pZ)∗. Ainsi,

en passant aux cardinaux,

p− 1 =
∣∣∣ ⊔
s∈S

Rs

∣∣∣ = ∑
s∈S

|Rs| ≤
∑
s∈S

n = n|S|. Ceci démontre que |S| ≥ p− 1

n
.

9◦) Notons P = {aS / a ∈ (Z/pZ)∗} et k = |P|.
On a vu que P est une partition de (Z/pZ)∗,
donc en passant aux cardinaux, p− 1 =

∑
c∈P

|c|.

Soit c ∈ P . Il existe a ∈ (Z/pZ)∗ tel que c = aS.

Notons
f : (Z/pZ)∗ −→ (Z/pZ)∗

x 7−→ ax
. f est clairement une bijection dont la bijection

réciproque est x 7−→ a−1x, or aS = f(S), donc |c| = |S|.
On en déduit que p− 1 = |S|

∑
c∈P

1 = |S|k.

Ainsi, k =
p− 1

|S|
, or d’après la question précédente, n ≥ p− 1

|S|
, donc k = |P| ≤ n.

Partie III : Théorème de Schur

10◦) Soit C un ensemble de cardinal n et soit d une application de (Z/pZ)∗ dans C.
Notons N ′ (à la place de N) l’entier fourni par le théorème de Ramsey. On peut imposer
N ′ ≥ 2.
Posons V = (Z/pZ)∗. On munit V d’un ordre arbitraire total noté ≤, ce qui est possible
car V est fini. On notera < l’ordre strict associé.
Pour tout i, j ∈ V avec i < j, posons c({i, j}) = d(i − j). Ainsi, c est un coloriage de
K(V ) dans C.

3



Posons N = N ′ + 1 et supposons que p ≥ N . Alors |V | = p− 1 ≥ N ′, donc d’après le
théorème de Ramsey, il existe i, j, k ∈ V , deux à deux distincts, tels que
c({i, j}) = c({i, k}) = c({j, k}).
Quitte à permuter i, j, k, on peut supposer que i < j < k.
Alors, d(i− j) = d(j − k) = d(i− k).
Posons x = i− j, y = j − k et z = i− k. Alors d(x) = d(y) = d(z) et x+ y = z.

11◦) Notons à nouveau N l’entier de la question précédente et supposons que p ≥ N .
D’après la question 9, il existe un ensemble C de cardinal n tel que P ⊂ C.
Pour tout a ∈ (Z/pZ)∗, posons d(a) = aS. Ainsi d est une application de (Z/pZ)∗
dans C, donc d’après la question précédente, il existe x′, y′, z′ ∈ (Z/pZ)∗ tels que
d(x′) = d(y′) = d(z′) et x′ + y′ = z′.
Il existe a ∈ (Z/pZ)∗ tel que d(x′) = d(y′) = d(z′) = aS.
x′ ∈ x′S = d(x′) = aS, donc il existe x ∈ Z \ pZ tel que x′ = axn.
De même, il existe y, z ∈ Z \ pZ tels que y′ = ayn et z′ = azn.
Dans Z/pZ, on a donc axn + ayn = azn, or a ∈ (Z/pZ)∗ et Z/pZ est intègre, donc
xn + yn = zn. Ainsi, xn + yn ≡ zn [p].
De plus, x, y, z ∈ Z \ pZ, donc x, y et z sont tous les trois non congrus à 0 modulo p.

Second problème :

Inverses généralisés d’applications linéaires

Partie I : préliminaires

1◦) ⋄ Soit x ∈ E. E = F + G, donc il existe f ∈ F et g ∈ G tels que x = f + g.

Alors, par hypothèse, il existe α1, . . . , αn ∈ K tels que f =

p∑
i=1

αiei et g =
n∑

i=p+1

αiei,

donc x =
n∑

i=1

αiei, ce qui prouve que (e1, . . . , en) est une famille génératrice de E.

⋄ Soit α1, . . . , αn ∈ K tels que
n∑

i=1

αiei = 0. Posons f =

p∑
i=1

αiei et g =
n∑

i=p+1

αiei.

Alors f ∈ F , g ∈ G et f + g = 0, or la somme F +G est directe, donc f = g = 0.
Cependant (e1, . . . , ep) et (ep+1, . . . , en) sont libres, donc pour tout i ∈ Nn, αi = 0. Ceci
prouve que (e1, . . . , en) est une famille libre de E.
En conclusion, (e1, . . . , en) est une base de E.
⋄ La dimension d’un espace vectoriel étant égale au nombre d’éléments de l’une de
ses bases, on a dim(F ) = p, dim(G) = n− p et dim(E) = n,
donc dim(E) = dim(F ) + dim(G).
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2◦) Soit x ∈ E. (e1, . . . , en) étant une famille génératrice de E, il existe α1, . . . , αn ∈ K

tels que x =
n∑

i=1

αiei. Alors x =

p∑
i=1

αiei +
n∑

i=p+1

αiei ∈ F +G, donc E = F +G.

Soit x ∈ F ∩ G. Alors, il existe α1, . . . , αn ∈ K tels que x =

p∑
i=1

αiei =
n∑

i=p+1

(−αi)ei.

Alors
n∑

i=1

αiei = x − x = 0, or (e1, . . . , en) est libre, donc pour tout i ∈ Nn, αi = 0.

Ainsi, x = 0, ce qui prouve que F ∩G = {0}.
On a donc montré que E = F ⊕G.

3◦) ⋄ Pour tout x ∈ H, u(x) ∈ Im(u), donc l’application u|Im(u)
H est bien définie. Pour

cette question, on pose v = u|Im(u)
H

Soit x ∈ H tel que v(x) = 0. Alors u(x) = 0, donc x ∈ Ker(u)∩H = {0}, car la somme
H +Ker(u) est directe. Ainsi, Ker(v) = {0}, donc v est injective.
Soit y ∈ Im(u). Il existe x ∈ E tel que y = u(x). De plus, Ker(u) ⊕ H = E, donc il
existe h ∈ H et k ∈ Ker(u) tel que x = h + k. Alors y = u(x) = u(h) = v(h). Ceci
prouve que v est surjective.
D’après le cours, par restriction et corestriction d’une application linéaire, v reste
linéaire. On a donc montré que v est un isomorphisme de H sur Im(u).
⋄ On en déduit que dim(H) = dim(Im(u)) = rg(u), de plus d’après la question
précédente, dim(H) + dim(Ker(u)) = dim(E), donc dim(E) = rg(u) + dim(Ker(u)).

4◦) ⋄ Notons F = {x ∈ E / p(x) = x}.
Si x ∈ F , alors x = p(x) ∈ Im(p), donc F ⊂ Im(p).
Soit x ∈ Im(p). Il existe y ∈ E tel que x = p(y). Alors p(x) = p2(y), or par hypothèse,
p2 = p, donc p(x) = p(y) = x. Ainsi x ∈ F , ce qui prouve que Im(p) ⊂ F .
On a montré par double inclusion que Im(p) = {x ∈ E / p(x) = x}.
⋄ Soit x ∈ Im(p) ∩ Ker(p). Alors d’après le point précédent, x = p(x) = 0, donc
Im(p) ∩Ker(p) = {0}, ce qui prouve que la somme Im(p) + Ker(p) est directe.
Soit x ∈ E. p(x− p(x)) = p(x)− p2(x) = 0, donc x− p(x) ∈ Ker(p).
Ainsi, x = p(x) + (x− p(x)) ∈ Im(p)⊕Ker(p). Ceci prouve que E = Im(p)⊕Ker(p).

Partie II : g-inverses

5◦) ⋄ Soit v ∈ L(F,E). v est un g-inverse de 0 si et seulement si 0 = 0, donc tout
élément de L(F,E) est un g-inverse de 0.
⋄ Supposons que u est un isomorphisme. Soit v ∈ L(F,E).
Supposons que v est un g-inverse de u. Alors uvu = u, donc en multipliant cette égalité
respectivement à gauche et à droite par u−1, on obtient que vu = IdE et uv = IdF .
Ainsi, v = u−1.
Réciproquement, si v = u−1, il est clair que uvu = u.
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Ainsi, lorsque u est un isomorphisme, il possède un unique g-inverse, égal à son inverse.
Ainsi la notion de g-inverse généralise bien la notion d’inverse.

6.a) Par associativité de la composition, q2 = (uv)(uv) = (uvu)v = uv = q, donc q est
un projecteur. De même, p2 = vuvu = vu = p, donc p est un projecteur.

6.b) ⋄ Soit x ∈ Im(q). Alors d’après la question 4, x = q(x) = u(v(x)) ∈ Im(u).
Réciproquement, si x ∈ Im(u), il existe y ∈ F tel que x = u(y).
Alors q(x) = uvu(y) = u(y) = x, donc x ∈ Im(q).
Ainsi, on a montré que Im(q) = Im(u).
⋄ Soit x ∈ Ker(u). Alors p(x) = v(u(x)) = v(0) = 0, donc x ∈ Ker(p).
Réciproquement, soit x ∈ Ker(p). Alors u(x) = uvu(x) = u(p(x)) = 0,
donc x ∈ Ker(u). Ainsi, on a montré que Ker(p) = Ker(u).

6.c) p ∈ L(E), donc d’après la formule du rang,
rg(p) = dim(E)− dim(Ker(p)) = dim(E)− dim(Ker(u)) = rg(u).
De plus, Im(q) = Im(u), donc rg(u) = rg(q). Ainsi, rg(p) = rg(q) = rg(u).
Si x ∈ Im(p), alors x = p(x) = vu(x) = v(u(x)) ∈ Im(v), donc Im(p) ⊂ Im(v), puis en
passant aux dimensions, rg(p) ≤ rg(v), ce qui conclut.

6.d) ⋄ Posons E1 = Im(p). p étant un projecteur, d’après la question 4,
E = E1 ⊕Ker(p) = E1 ⊕Ker(u).

Alors d’après la question 3, la quantité
(
u|Im(u)

E1

)−1

est bien définie.

⋄ Soit y ∈ Im(u). Alors v(y) ∈ v(Im(u)) = v(u(E)) = Im(vu) = Im(p) = E1. Ainsi, la
quantité v|E1

Im(u) est également bien définie.

Posons a = u|Im(u)
E1

et b = v|E1

Im(u). Il reste à montrer que ab = IdIm(u) et que ba = IdE1 ,

c’est-à-dire que, pour tout x ∈ E1 et y ∈ Im(u), ba(x) = x et ab(y) = y.
⋄ Soit x ∈ E1. ba(x) = vu(x) = p(x) = x car E1 = Im(p) et p est un projecteur.
Soit y ∈ Im(u). ab(y) = uv(y) = q(y), or y ∈ Im(q) et q est un projecteur, donc
q(y) = y, puis ab(y) = y, ce qui conclut.

7◦) ⋄ Soit v ∈ L(F,E).
Notons (C) la condition suivante : il existe un sous-espace vectoriel E1 de E vérifiant

E = E1 ⊕Ker(u), v(Im(u)) ⊂ E1 et v|E1

Im(u) =
(
u|Im(u)

E1

)−1

.

La question précédente montre que si v est un g-inverse de u, alors (C) est vraie.
Réciproquement, supposons que (C) est vraie et montrons que v est un g-inverse de u.
Soit x ∈ E. Posons y = u(x). Alors y ∈ Im(u), donc v(y) ∈ E1.

Ainsi, uv(y) = u|Im(u)
E1

◦ v|E1

Im(u)(y) = IdIm(u)(y) = y, or y = u(x), donc uvu(x) = u(x),
pour tout x ∈ E. Ceci prouve que uvu = u, ce qui conclut : on a montré que v est un
g-inverse si et seulement si (C) est vérifiée.
⋄ Notons r = rg(u) et n = dim(E). Alors d’après la formule du rang,
dim(Ker(u)) = n−r. Ainsi, d’après le cours, il existe une base (er+1, . . . , en) de Ker(u).
Toujours d’après le cours, on peut compléter cette famille libre en une base de E, notée
(e1, . . . , en). Posons E1 = Vect(e1, . . . , er). Alors d’après la question 2, E1⊕Ker(u) = E.
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⋄ On effectue une construction similaire dans F : il existe une base (f1, . . . , fr) de
Im(u), que l’on complète en une base (f1, . . . , fp) de F , où p = dim(F ).
Alors, en posant G = Vect(fr+1, . . . , fp), on a G⊕ Im(u) = F .
⋄ Soit s un entier compris entre rg(u) = r et min(dim(E), dim(F )) = min(n, p).

Pour tout i ∈ Nr, fi ∈ Im(u), donc on peut poser v(fi) =
(
u|Im(u)

E1

)−1

(fi).

Pour tout i ∈ {r + 1, . . . , s}, posons v(fi) = ei et
pour tout i ∈ {s + 1, . . . , p}, posons v(fi) = 0. On a ainsi défini les images par v des
vecteurs de la base (f1, . . . , fn) de F , donc ces conditions définissent une application
v ∈ L(F,E).

Par construction, v|E1

Im(u) est bien défini et cöıncide avec
(
u|Im(u)

E1

)−1

sur les vecteurs de

la base (f1, . . . , fr) de Im(u), donc v|E1

Im(u) =
(
u|Im(u)

E1

)−1

. Ainsi, la condition (C) est

réalisée, ce qui prouve que v est un g-inverse de u.
⋄ Posons H = Vect(er+1, . . . , es). H ⊂ Ker(u), donc H ∩ E1 ⊂ Ker(u) ∩ E1 = {0}.
Ainsi H et E1 sont en somme directe et on peut poser E ′ = E1 ⊕H.
v|E1

Im(u) est un isomorphisme de Im(u) dans E1, donc (v(f1), . . . , v(fr)) est une base de

E1. De plus (er+1, . . . , es) est libre en tant que sous-famille d’une famille libre, donc
c’est une base de H. Alors d’après la question 1, (v(f1), . . . , v(fr), er+1, . . . , es) est une
base de E ′.
⋄ v(F ) = v(Vect(f1, . . . , fp)), donc d’après le cours,
v(F ) = Vect(v(f1), . . . , v(fp))

= Vect(v(f1), . . . , v(fr), er+1, . . . , es, 0, . . . , 0)
= Vect(v(f1), . . . , v(fr), er+1, . . . , es) = E ′.

Ainsi, rg(v) = dim(v(F )) = dim(E ′) = s.
On a donc montré qu’il existe un g-inverse de rang s.
⋄ r = rg(u) ≤ p car Im(u) ⊂ F et d’après la formule du rang, r = n−dim(Ker(u)) ≤ n,
donc r ≤ min(p, n). Ainsi, il existe au moins un entier compris entre rg(u) = r et
min(dim(E), dim(F )) = min(n, p). Alors ce qui précède montre que u possède bien au
moins un g-inverse.

8.a) Soit v ∈ L(F,E). Notons (E) l’équation uvu = u, d’inconnue v.

Notons
φ : L(F,E) −→ L(E,F )

v′ 7−→ uv′u
. Alors (E) ⇐⇒ φ(v) = u.

Pour tout v′, v′′ ∈ L(F,E), pour tout α ∈ K, il est clair que u(αv′+v′′)u = αuv′u+uv′′u,
car u est linéaire. Ceci montre que φ est une application linéaire, donc (E) est une
équation linéaire. Alors,
(E) ⇐⇒ φ(v) = φ(v0) ⇐⇒ φ(v − v0) = 0 ⇐⇒ v − v0 ∈ Ker(φ).
Ceci montre que l’ensemble des g-inverses de u est v0 +A, où A = Ker(φ) est bien un
sous-espace vectoriel de L(F,E). On a A = {w ∈ L(F,E) / uwu = 0} .

8.b) ⋄ Soit w ∈ L(F,E).

7



w ∈ A ⇐⇒ (∀x ∈ E, uw(u(x)) = 0)
⇐⇒ (∀y ∈ Im(u), u(w(y)) = 0)
⇐⇒ (∀y ∈ Im(u), w(y) ∈ Ker(u))
⇐⇒ w(Im(u)) ⊂ Ker(u).

En particulier, lorsque w ∈ A, la quantité w|Ker(u)
Im(u) est bien définie. On peut donc poser

φ(w) = w|Ker(u)
Im(u) .

⋄ Soit w,w′ ∈ A et α ∈ K. Soit x ∈ Im(u). Alors
φ(αw + w′)(x) = (αw + w′)(x) = α(w(x)) + w′(x)

= αφ(w)(x) + φ(w′)(x) = (αφ(w) + φ(w′))(x).
C’est vrai pour tout x ∈ Im(u), donc φ(αw +w′) = αφ(w) + φ(w′), ce qui prouve que
φ est linéaire.
⋄ Soit ω ∈ L(Im(u),Ker(u)). Notons à nouveau (f1, . . . , fr) une base de Im(u) et
(er+1, . . . , en) une base de Ker(u). On les complète en une base (f1, . . . , fp) de F et une
base (e1, . . . , en) de E.
pour tout i ∈ Nr, posons w(fi) = ω(fi) et pour tout i ∈ {r+1, . . . , p}, posons w(fi) = 0.
Ceci définit une unique application w ∈ L(F,E).
De plus, w(Im(u)) = w(Vect(f1, . . . , fr)) = Vect(ω(f1), . . . , ω(fr)) ⊂ Ker(u), donc
d’après ce qui précède, w ∈ A.
De plus, φ(w) et ω cöıncident par construction sur (f1, . . . , fr) qui est une base de
Im(u), donc φ(w) = ω. Ceci prouve que φ est surjective.

8.c)
⋄ Soit w ∈ A. w ∈ Ker(φ) ⇐⇒ (∀x ∈ Im(u), w(x) = 0) ⇐⇒ w(Im(u)) = {0}.
Reprenons les notations du 7.b. Pour tout w ∈ Ker(φ), posons Ψ(w) = (w(fr+1), . . . , w(fp)).
Ainsi, Ψ est une application de Ker(φ) dans Ep−r. Elle est clairement linéaire.
Soit g = (gr+1, . . . , gp) ∈ Ep−r. Soit w ∈ Ker(φ).
Alors Ψ(w) = g ⇐⇒ [(∀i ∈ Nr, w(fi) = 0) et (∀i ∈ {r + 1, . . . , p}, w(fi) = gi)].
D’après le cours, ceci définit une unique application linéaire w de F dans E, car
(f1, . . . , fp) est une base de F . De plus cette application w est bien dans A, donc
Ψ est une bijection. C’est donc un isomorphisme.
⋄ On en déduit que dim(Ker(φ)) = dim(Ep−r) = n(p− r).
Alors, d’après la formule du rang,
dim(A) = dim(Ker(φ)) + dim(Im(φ))

= n(p− r) + dim(L(Im(u),Ker(u))
= n(p− r) + r(n− r)
= np− r2.

En conclusion, dim(A) = dim(E)dim(F )− rg(u)2 .

9◦) ⋄ Supposons que (E) possède au moins une solution x ∈ E.
Alors b = u(x) = uvu(x) = uv(u(x)) = uv(b).
⋄ Réciproquement, supposons que uv(b) = b. Soit x ∈ E.
(E) ⇐⇒ u(x) = b = uv(b) ⇐⇒ u(x−v(b)) = 0 ⇐⇒ x−v(b) ∈ Ker(u). Ainsi l’ensemble
S des solutions de l’équation (E) est v(b) + Ker(u).
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Ce dernier ensemble est non vide, car il contient v(b), donc on a montré que (E) possède
au moins une solution si et seulement si b = (uv)(b).
De plus, d’après la question 6.b, Ker(u) = Ker(p).
Soit x ∈ Ker(p). Alors x = x− p(x) ∈ {(IdE − p)(z) / z ∈ E}.
Réciproquement, s’il existe z ∈ E tel que x = (IdE−p)(z), alors p(x) = p(z)−p2(z) = 0,
car p est un projecteur, donc x ∈ Ker(p).
Ceci démontre que Ker(u) = Ker(p) = {(IdE − p)(z) / z ∈ E}, or p = vu, donc
S = {v(b) + (IdE − vu)(z) / z ∈ E}, ce qui conclut.
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