DS 5 : Corrigé

Premier probleme : une application du théoreme de
Ramsey

Partie I : Racines d’un polynéme modulo p

1°) 1 est une racine évidente et on vérifie que Py(X) = (X — 1)(2X — 1), donc
les racines réelles de P, sont exactement 1 et % )

2°) Soit P € Z[X]. Ainsi, P(X) = ZanX”, ol (Gp)nen est une famille presque
neN
nulle d’entiers relatifs. Alors, pour tout h € Z, d’apres les regles de calcul dans Z/pZ,

P(h) = Zmﬁn Ainsi, P(h) est bien une fonction de h et pas seulement de h, elle est
neN
bien définie.

3°) Soit h € Z. Alors Py(h) = Py(h) = (h — 1)(2h — 1). Or Z/pZ est integre, donc
Pyh)=0«= (h—1=00u2h—1=0) <= (h=1o0uh=2"). En effet, 2 # 0,
donc 2 est inversible dans le corps Z/7Z. De plus 2.4 = 8 = 1[7], donc 2 ' = 1.

Ainsi,

les racines modulo 7 de P, sont exactement 1 et Z_l‘ -

4°) Supposons que deg(P) < 0. Alors il existe b € Z tel que P(X) = b, donc pour tout
x € Z/pZ, P(x) = b. Or par hypothese, P(a) = 0, donc b = 0. On en déduit que P = 0
ce qui est faux. Ainsi, deg(P) > 1. Notons n = deg(P). Ainsi, il existe ao,...,a, € Z

tels que P(X) = Zaka.

k=0
Soit x € Z/pZ. P(z) = P(x) — P(a) = Y ax (2" — o), donc d’apres la formule de
n k-1 =
Bernoulli, P(z) = Za_k(x —a) Z ghak=1=h,
Il existe c € Z telkc:pze a = ¢ Ahl:oors7 pour tout = € Z/pZ, P(x) = (v — a)Q(x), ot
QX) = 2”: ag ¥ AR XT @ est bien un élément de Z[X]
k=1 h=0



et deg(Q) <n —1=deg(P)— 1.

5°) o Soit k € N. Notons R(k) 'assertion suivante, que 1’on se propose de démontrer
par récurrence : soit P € Z[X] tel que P # 0 et tel qu'il existe k racines de P modulo

p notées oy, . .., qy, deux a deux distinctes. Alors il existe ) € Z[X] tel que, pour tout
k

x € Z/pZ, P(z) = Q() H(a: — ), avec k + deg(Q) < deg(P).

=1
En particulier, deg(P) > k.
o Lorsque k = 0, la propriété est évidente en prenant Q = P. P # 0, donc P # 0
donc deg(P) > 0.
o Soit k € N. On suppose R(k).
soit P € Z[X] tel que P # 0 et tel qu’il existe k + 1 racines de P modulo p notées

aq, ..., a1, deux a deux distinctes. D’apres R(k), il existe Q € Z[X] tel que, pour
k

tout = € Z/pZ, P(x) = Q(x) H(x — ), avec k + deg(Q) < deg(P).
i=1

D’apres cette derniere égalité, si Q@ = 0, alors P = 0, ce qui est faux. Ainsi, Q # 0.
De plus, en remplacant x par a1 dans la derniere égalité, on obtient que

k
0 = Plagy1) = @(akH)H(akH — «;), or Z/pZ est integre et pour tout i € N,

i=1
Q1 — o # 0, donc Q(agy1) = 0. Ainsi, ., est une racine modulo p de Q et Q # 0.
On peut donc appliquer la question précédente a @ : deg(Q) > 1 et il existe H € _Z[X ]

tel que deg(H) < deg(Q) — 1 et tel que, pour tout x € Z/pZ, Q(x) = (v — 1) H (7).
k+1

Ainsi, pour tout x € Z/pZ, P(x) = H(x) H(x — ),
i=1
avec k4 1+ deg(H) < k + deg(Q) < deg(P).
Si H =0, alors H = 0, puis d’apres la derniere égalité, P = 0, ce qui est faux. Ainsi,
H # 0, donc deg(P) > deg(H) +k+ 1> k+ 1. Ceci démontre R(k + 1).
o D’apres le principe de récurrence, R(k) est vraie pour tout k € N.
En particulier, si P € Z[X] avec P # 0 et si P posséde au moins k racines modulo p,
alors deg(P) > k.

Partie II : Puissances n-iémes dans Z/pZ

6°) D’apres le cours, ((Z/pZ)*, x) est un groupe.

Montrons que S en est un sous-groupe.

1" =1¢€ S, donc S est non vide.

Soit z,y € S. Il existe a,b € (Z/pZ)* tels que x = a™ et y = b™.
Alors xzy™t = a"b™" = (ab™')" € S, ce qui conclut.

7°) o Soit x,y,z € (Z/pZ)*.
x 'z =1€ 8, donc R z, ce qui prouve que R est réflexive.



Six Ry, alors y 'z = (z7y)"! € S, car S est un groupe et 7'y € S. Ainsi, R est
symétrique.

Supposons que ¥ Ry et y R z. Alors x7'2 = (z7'y)(y~'2) € S, car S est stable pour
le produit. Ainsi, R est transitive.

On a montré que R est bien une relation d’équivalence.

o Soit a € (Z/pZ)*. Pour tout y € (Z/pZ)*,

aRy<= (3hesS, aly=h)< (F3h e S, y=ah) <y € aS,

donc {aS / a € (Z/pZ)*} est 'ensemble des classes d’équivalence de R. D’apres le
cours, c’est une partition de (Z/pZ)*.

8°) Lorsque s € S, notons Ry = {x € (Z/pZ)* | x™ = s}.

Soit s € S. Il existe h € Z tel que s = h. Posons P(X) = X" — h.

n € N*, donc P(0) = —h, or s # 0, donc P(0) # 0. Ainsi, P # 0, or deg(P) = n et R,

est égal a ’ensemble des racines de P modulo p, donc d’apres la question 5, |R,| < n.

Soit 5,5 € S tels que R, N Ry # (). Alors il existe z € R;,N Ry. On a s = 2" = &.

Ainsi, lorsque s,s' € S avec s # s, R;N Ry = ().

De plus, lorsque x € (Z/pZ)*, il est clair que z € R,n, donc |_| Ry = (Z/pZ)*. Ainsi,
seS

en passant aux cardinaux, :

p-1=| R

ses ses seS
9°) Notons P ={aS / a € (Z/pZ)*} et k = |P].
On a vu que P est une partition de (Z/pZ)*,

-1
= Z |Rs| < Zn = n|S|. Ceci démontre que |S| > b=
n

donc en passant aux cardinaux, p — 1 = E |c|.

ceP
Soit ¢ € P. Il existe a € (Z/pZ)* tel que ¢ = aS.

f @y — (Z/pZ)
r o ax

réciproque est x — a'x, or aS = f(S), donc |c| = |5].

On en déduit que p — 1 = |9 Zl = |S|k.

ceP

Notons . f est clairement une bijection dont la bijection

p—1
S

-1

Ainsi, k = , or d’apres la question précédente, n > p| g

, donc k = |P| < n.

Partie III : Théoréme de Schur

10°) Soit C' un ensemble de cardinal n et soit d une application de (Z/pZ)* dans C.
Notons N’ (a la place de N) I'entier fourni par le théoreme de Ramsey. On peut imposer
N'>2.

Posons V' = (Z/pZ)*. On munit V' d’un ordre arbitraire total noté <, ce qui est possible
car V' est fini. On notera < l'ordre strict associé.

Pour tout i,j € V avec i < j, posons c¢({i,j}) = d(i — j). Ainsi, ¢ est un coloriage de
K (V) dans C.



Posons N = N’ + 1 et supposons que p > N. Alors |V| =p—1> N’, donc d’apres le
théoreme de Ramsey, il existe i, j,k € V', deux a deux distincts, tels que

c({z,5}) = c({i, k}) = ({7, k}).

Quitte a permuter 4, j, k, on peut supposer que ¢ < j < k.

Alors, d(i —j) =d(j — k) = d(i — k).

Posons z =i—j,y=j—ketz=i—k. Alorsd(z) =d(y) =d(z) et z +y = z.

11°) Notons a nouveau N entier de la question précédente et supposons que p > N.
D’apres la question 9, il existe un ensemble C' de cardinal n tel que P C C.

Pour tout a € (Z/pZ)*, posons d(a) = aS. Ainsi d est une application de (Z/pZ)*
dans C, donc d’apres la question précédente, il existe z',y', 2" € (Z/pZ)* tels que
d')=d(y)=d(Z) et 2’ +y = 2.

Il existe a € (Z/pZ)* tel que d(z') = d(y') = d(2') = aS.

2 €x'S =d(z') =aS, donc il existe x € Z \ pZ tel que =’ = aZ".

De méme, il existe y, 2z € Z \ pZ tels que ¢y = ay" et 2/ = az".

Dans Z/pZ, on a donc aT" + ay"™ = az", or a € (Z/pZ)* et Z/pZ est integre, donc
" 4y = 2" Ainsi, 2" 4+ y" = 2" [p].

De plus, z,y,z € Z \ pZ, donc x, y et z sont tous les trois non congrus a 0 modulo p.

Second probleme :
Inverses généralisés d’applications linéaires

Partie I : préliminaires

1°) <>Soitx€E.E:F—i—G,doncilexistefEFethGtelsquex:f—i—g.

Alors, par hypothese, il existe aq,...,a, € K tels que f = ZozleZ et g = Z Q;€;,

i=p+1
n

donc x = E a;e;, ce qui prouve que (eq,...,e,) est une famille génératrice de E.
i=1

o Soit aq,...,q, € K tels que Zan—O Posons f = z:ozzeZ et g = Z ;6;.

i=p+1
Alors f € F, g€ G et f+g—0 Orlasomme F + G est dlrecte doncf—pg—O
Cependant (eq, ..., e,) et (€pt1,...,e,) sont libres, donc pour tout i € N,,, a; = 0. Ceci
prouve que (e, ...,e,) est une famille libre de F.
En conclusion, (ey,...,e,) est une base de E.

¢ La dimension d'un espace vectoriel étant égale au nombre d’éléments de 1'une de
ses bases, on a dim(F) = p, dim(G) =n — p et dim(F) = n,
donc dim(FE) = dim(F) 4+ dim(G).



2°) Soit x € E (e1,...,€e,) étant une famille génératrice de E, il existe a,...,a, € K

tels quex—ZozZeZ Alorsx—Zozlez—i- Z a6, € F+ G, done E = F + G.

i=1 =1 i=p+1
n

P
Soit x € F'N G. Alors, il existe aq,...,a, € K tels que x = Zaiei = Z (—a)e;.
i=1 i=p+1

Alors Zaiei =z —x=0,or (e,...,e,) est libre, donc pour tout i € N,,, a; = 0.

Ainsi, ¢ = 0, ce qui prouve que FNG = {0}.
On a donc montré que £ = F @ G.

3°) o Pour tout z € H, u(z) € Im(u), donc Papplication ul} H ) est bien définie. Pour

Im(u)
cette question, on pose v = uly

Soit € H tel que v(z) = 0. Alors u(x) = 0, donc = € Ker(u) N H = {0}, car la somme
H + Ker(u) est directe. Ainsi, Ker(v) = {0}, donc v est injective.

Soit y € Im(u). Il existe x € E tel que y = u(z). De plus, Ker(u) ® H = E, donc il
existe h € H et k € Ker(u) tel que z = h + k. Alors y = u(x) = u(h) = v(h). Ceci
prouve que v est surjective.

D’apres le cours, par restriction et corestriction d’une application linéaire, v reste
linéaire. On a donc montré que v est un isomorphisme de H sur Im(u).

¢ On en déduit que dim(H) = dim(Im(u)) = rg(u), de plus d’apreés la question
précédente, dim(H) + dim(Ker(u)) = dim(E), donc dim(E) = rg(u) + dim(Ker(u)).

4°) o Notons F' = {x € E / p(z) = x}.

Six € F, alors © = p(x) € Im(p), donc F' C Im(p).

Soit z € Im(p). Il existe y € E tel que x = p(y). Alors p(z) = p*(y), or par hypothese,
p? = p, donc p(x) = p(y) = z. Ainsi x € F, ce qui prouve que Im(p) C F.

On a montré par double inclusion que Im(p) = {z € F / p(z) = z}.

o Soit z € Im(p) N Ker(p). Alors d’apres le point précédent, x = p(z) = 0, donc
Im(p) N Ker(p) = {0}, ce qui prouve que la somme Im(p) + Ker(p) est directe.

Soit x € E. p(xz — p(z)) = p(x) — p*(z) = 0, donc = — p(x) € Ker(p).

Ainsi, x = p(x) + (x — p(z)) € Im(p) & Ker(p). Ceci prouve que E = Im(p) & Ker(p).

Partie II : g-inverses

5°) o Soit v € L(F, E). v est un g-inverse de 0 si et seulement si 0 = 0, donc tout
élément de L(F, E) est un g-inverse de 0.

o Supposons que u est un isomorphisme. Soit v € L(F, F).

Supposons que v est un g-inverse de u. Alors uvu = u, donc en multipliant cette égalité
respectivement & gauche et & droite par v~!, on obtient que vu = Idg et uwv = Idp.
Ainsi, v = u~ L.

Réciproquement, si v = u™ !, il est clair que wvu = wu.



Ainsi, lorsque u est un isomorphisme, il possede un unique g-inverse, égal a son inverse.
Ainsi la notion de g-inverse généralise bien la notion d’inverse.

6.a) Par associativité de la composition, ¢* = (uv)(uv) = (uvvu)v = uv = ¢, donc q est
un projecteur. De méme, p? = vuvu = vu = p, donc p est un projecteur.

6.b) ¢ Soit = € Im(q). Alors d’apres la question 4, z = ¢(z) = u(v(z)) € Im(u).
Réciproquement, si z € Im(u), il existe y € F tel que = = u(y).

Alors q(z) = uvu(y) = u(y) = x, donc = € Im(q).

Ainsi, on a montré que Im(q) = Im(u).

o Soit x € Ker(u). Alors p(x) = v(u(z)) = v(0) = 0, donc = € Ker(p).
Réciproquement, soit z € Ker(p). Alors u(z) = wou(z) = u(p(z)) =0,

donc z € Ker(u). Ainsi, on a montré que Ker(p) = Ker(u).

6.c) p € L(F), donc d’apres la formule du rang,

rg(p) = dim(E) — dim(Ker(p)) = dim(E) — dim(Ker(u)) = rg(u).

De plus, Im(q) = Im(u), donc rg(u) = rg(q). Ainsi, rg(p) = rg(q) = rg(u).

Si z € Im(p), alors z = p(x) = vu(z) = v(u(z)) € Im(v), donc Im(p) C Im(v), puis en
passant aux dimensions, rg(p) < rg(v), ce qui conclut.

6.d) ¢ Posons E; = Im(p). p étant un projecteur, d’apres la question 4,

E = E; @ Ker(p) = £y @ Ker(u).
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Alors d’apres la question 3, la quantité <ullé?(u)> est bien définie.

o Soit y € Im(u). Alors v(y) € v(Im(u)) = v(u(E)) = Im(vu) = Im(p) = E;. Ainsi, la
quantité v[ﬁ(u) est également bien définie.

Posons a = U|E(u) et b= U|1Enll(u)- Il reste a montrer que ab = Idp,w) et que ba = Idg,,
c’est-a-dire que, pour tout x € E) et y € Im(u), ba(x) =z et ab(y) = y.

o Soit x € Ey. ba(x) = vu(x) = p(z) = = car Ey = Im(p) et p est un projecteur.

Soit y € Im(u). ab(y) = wv(y) = q(y), or y € Im(q) et ¢ est un projecteur, donc
q(y) =y, puis ab(y) = y, ce qui conclut.

7°) o Soit v e L(F,E).

Notons (C) la condition suivante : il existe un sous-espace vectoriel ) de E vérifiant
E = E, ® Ker(u), v(Im(u)) C E; et v\ﬁ(u) = <u E(u)>

La question précédente montre que si v est un g-inverse de u, alors (C) est vraie.
Réciproquement, supposons que (C') est vraie et montrons que v est un g-inverse de u.
Soit x € E. Posons y = u(x). Alors y € Im(u), donc v(y) € Ej.

Ainsi, uv(y) = u]?ll(") o v|ﬁ(u) (y) = Idim@ (y) = v, or y = u(x), donc wvu(z) = u(x),
pour tout z € E. Ceci prouve que uvu = u, ce qui conclut : on a montré que v est un
g-inverse si et seulement si (C') est vérifiée.

o Notons r = rg(u) et n = dim(F£). Alors d’apres la formule du rang,

dim(Ker(u)) = n—r. Ainsi, d’apres le cours, il existe une base (€,41, ..., e,) de Ker(u).
Toujours d’apres le cours, on peut compléter cette famille libre en une base de E, notée
(é1,...,e,). Posons E; = Vect(eq, ..., e.). Alors d’apres la question 2, £y @Ker(u) = E.



o On effectue une construction similaire dans F' : il existe une base (fi,..., f.) de
Im(u), que 'on complete en une base (f1,..., f,) de F, ou p = dim(F).
Alors, en posant G' = Vect(f,41,..., fp), on a G & Im(u) = F.
o Soit s un entier compris entre rg(u) = r et min(dim(£), dim(F")) = min(n, p).
“1
Pour tout ¢ € N,, f; € Im(u), donc on peut poser v(f;) = <u\§j‘(“>> (f:)-
Pour tout ¢ € {r+1,...,s}, posons v(f;) =e; et
pour tout ¢ € {s+ 1,...,p}, posons v(f;) = 0. On a ainsi défini les images par v des

vecteurs de la base (f1,..., f,) de F', donc ces conditions définissent une application
v e L(F,E).
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Par construction, v|’: (u) €5t bien défini et coincide avec (u| B (“)> sur les vecteurs de

la base (fi,...,f.) de Im(u), donc v|ﬁ(u) - <u Igz(@) 1' Ainsi, la condition (C) est
réalisée, ce qui prouve que v est un g-inverse de u.
o Posons H = Vect(e41,...,¢65). H C Ker(u), donc H N E; C Ker(u) N E; = {0}.
Ainsi H et E; sont en somme directe et on peut poser £/ = E; & H.
v\ﬁ(u) est un isomorphisme de Im(u) dans Ey, donc (v(f1),...,v(f;)) est une base de
E;. De plus (eq41,...,€s) est libre en tant que sous-famille d'une famille libre, donc
c’est une base de H. Alors d’apres la question 1, (v(f1),...,v(f.), €rt1,-..,€s) est une
base de E'.
o v(F) =wv(Vect(fi,..., fp)), donc d’apres le cours,
U(F) :VeCt(U(fl)v"'vv(fp))

= Vect(v(f1),...,v(fr),€rs1,.-,€5,0,...,0)

= Vect(v(f1),...,v(fr), €rq1,...,65) = E'.
Ainsi, rg(v) = dim(v(F)) = dim(£’) = s.
On a donc montré qu’il existe un g-inverse de rang s.
o r=rg(u) < pcarlm(u) C F et d’apres la formule du rang, r = n—dim(Ker(u)) < n,
donc 7 < min(p,n). Ainsi, il existe au moins un entier compris entre rg(u) = r et
min(dim(E), dim(F)) = min(n, p). Alors ce qui précede montre que u possede bien au
moins un g-inverse.

8.a) Soit v € L(F, E). Notons (F) I’équation uvu = u, d’inconnue v.

Notons ? L(F, E)/ — L(/E, F)
vo— w'u

Pour tout v',v"” € L(F, E), pour tout a € K, il est clair que u(av'+v")u = auv'u+uv"u,

car u est linéaire. Ceci montre que ¢ est une application linéaire, donc (E) est une

équation linéaire. Alors,

(E) <= p(v) = p(vg) <= p(v —19) =0 <= v — 1y € Ker(yp).

Ceci montre que I'ensemble des g-inverses de u est v9 + A, ot A = Ker(p) est bien un

sous-espace vectoriel de L(F, E). On a ’A ={we L(F,E) /| uwu = 0}‘ .

8.b) ¢ Soit w € L(F, E).

. Alors (B) <= ¢(v) = u.




<~ (Vy € Im(u), w(y) € Ker(u))
<— w(Im(u)) C Ker(u).
En particulier, lorsque w € A, la quantité w[?nfzg)‘) est bien définie. On peut donc poser

Ker(u
p(w) = wlp.

= ap(w)(z) + p(w')(z) =
C’est vrai pour tout z € Im(u), donc p(aw + w') = ap(w) + ¢(w'), ce qui prouve que
@ est linéaire.
o Soit w € L(Im(u), Ker(u)). Notons a nouveau (fy,..., f,) une base de Im(u) et
(€r41,- -, €,) une base de Ker(u). On les complete en une base (f1,..., f,) de F et une
base (eq,...,e,) de E.
pour tout i € N,., posons w(f;) = w(f;) et pour tout i € {r+1,...,p}, posons w(f;) = 0.
Ceci définit une unique application w € L(F, E).
De plus, w(Im(u)) = w(Vect(fi,...,f.)) = Vect(w(f1),...,w(f)) C Ker(u), donc
d’apres ce qui précede, w € A.

De plus, ¢(w) et w coincident par construction sur (fi,..., f.) qui est une base de
Im(u), donc ¢(w) = w. Ceci prouve que ¢ est surjective.
8.c)

o Soit w € A. w € Ker(p) <= (Vo € Im(u), w(z) =0) < w(Im(u)) = {0}.
Reprenons les notations du 7.b. Pour tout w € Ker(yp), posons ¥(w) = (w(frt1), ..., w(fp)).
Ainsi, ¥ est une application de Ker(yp) dans EP~". Elle est clairement linéaire.
Soit g = (¢r41,---,9p) € EP77. Soit w € Ker(yp).
Alors V(w) =g<=[(Vie N,, w(f;)) =0)et Viec{r+1,....,p}, w(fi)=g)l
D’apres le cours, ceci définit une unique application linéaire w de F' dans F, car
(f1,-..,fp) est une base de F. De plus cette application w est bien dans A, donc
U est une bijection. C’est donc un isomorphisme.
o On en déduit que dim(Ker(y)) = dim(EP~") = n(p —r).
Alors, d’apres la formule du rang,
dim(A) = dim(Ker(y)) + dim(Im(p))

=n(p—r) + dim(L(Im(u), Ker(u))

=n(p—r)+rn—r)

=np —r2.

dim(A) = dim(E)dim(F) — rg(u)?| .

En conclusion,

9°) o Supposons que (£) possede au moins une solution = € E.

Alors b = u(x) = wou(z) = uv(u(z)) = wv(b).

o Réciproquement, supposons que uv(b) = b. Soit x € E.

(&) <= u(z) = b=uv(b) <= u(r—v(b)) = 0 <= z—v(b) € Ker(u). Ainsi I’ensemble
S des solutions de I’équation (&) est v(b) + Ker(u).



Ce dernier ensemble est non vide, car il contient v(b), donc on a montré que (£) possede
au moins une solution si et seulement si b = (uv)(b).

De plus, d’apres la question 6.b, Ker(u) = Ker(p).

Soit x € Ker(p). Alors © = x — p(z) € {(Idg — p)(2) / z € E}.

Réciproquement, s'il existe z € F tel que z = (Idg—p)(2), alors p(x) = p(z)—p?(z) = 0,
car p est un projecteur, donc x € Ker(p).

Ceci démontre que Ker(u) = Ker(p) = {(Idg — p)(z) / z € E}, or p = vu, donc
S ={v(b) + (Idg —vu)(z) / z € E}, ce qui conclut.



