DM 31 : Autour des idéaux

Dans tout ce probleme, A désigne un anneau, dont les lois sont selon 1'usage notées
"+7 et 7.7, On note 04 et 14 les éléments neutres pour + et ..
Lorsque I est une partie de A, on dit que I est un idéal a droite de A si et seulement si
— [ est non vide;
— pourtout z,y e l,z+yel;
— pourtout i € [ et a € A, ia € I.
Lorsque A est commutatif, la notion d’idéal a droite correspond & la notion usuelle
d’idéal, étudiée en cours.
Lorsque A est un anneau quelconque, la notion d’idéal a droite ne fait pas partie du
cours et toute propriété relative a cette notion devra étre démontrée.

Partie I : Idéaux a droite

1°) Montrer qu'une intersection de plusieurs idéaux a droite de A, méme en quantité
infinie, est un idéal a droite.
2°) On suppose que (I,),en est une suite d’idéaux a droite de A, croissante au sens

de I'inclusion. Montrer que U I,, est un idéal a droite de A.
neN

3°) Soit B une partie quelconque de A.
On pose 1d(B) {Zbaz/nENetVzeNn,[b EBetaleA]}

Montrer que Id(B) est le plus petit idéal a droite de A contenant B.
On dira que Id(B) est I'idéal a droite engendré par B.

En particulier, lorsque B est fini, en notant B = {by,...,b,},
onald({b,...,b,}) = {Z ba;/ Vi € N,, a; € A} (on ne demande pas de le démontrer).
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Par la suite, cet ensemble sera également noté by A + by A+ - + b, A.

En particulier, pour tout b € A, Id({b}) ={ba / a € A} = bA.



Partie IT : Idéaux a droite de L(F)

On suppose que K est un corps et que F est un K-espace vectoriel de dimension finie.
On posera n = dim(F).

On rappelle que L(E) est une K-algebre. En particulier, L(F) est un anneau pour
I’addition et la composition.

Pour tout sous-espace vectoriel F' de E, on pose Ir = {u € L(F) / Im(u) C F}.

4°) Montrer que les idéaux a droite de L(E) sont des sous-espaces vectoriels de L(E).

5°) Pour tout sous-espace vectoriel F' de E, montrer que I est un idéal a droite de
L(E).

Lorsque K est un ensemble quelconque, on note £ I'ensemble des familles (zj)rex
d’éléments de E telles que {k € K / x; # 0g} est fini. Ainsi, £/ est 'ensemble des
familles presque nulles de vecteurs de E.

Si de plus (Fy)rex est une famille de sous-espaces vectoriels de F, on note

ZFk = {Zxk / (Tp)kex € E®) ot Vk € K.z, € Fk} Il s’agit du plus petit
keK keK

sous-espace vectoriel de E contenant U F}. (on ne demande pas de le démontrer).
keK

Lorsque I est un idéal a droite de L(F), on pose F; = Z Im(u).
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6°) Lorsque [ est un idéal a droite de L(E), montrer qu’il existe p € Net vy, ..., v, € [
p
tels que Fy = Z Im(wvg).
k=1

7°) Lorsque F est un sous-espace vectoriel de £, montrer que F' = F{y,).

8°) Lorsque I est un idéal a droite de L(E), montrer que I C I(p).

9°) Soit I un idéal a droite de L(E). On sait d’apres la question 6 qu'il existe p € N
p

et vy,...,v, € I tels que F; = Zlm(vk). Notons (ey,...,e,) une base de E.
k=1
Soit u € I(FI)-
Montrer qu'il existe une famille (x; ) 1<j<n de vecteurs de E telle que, pour tout 7 € N,,,
1<k<p
p
u(ej) = ka(x]k) En déduire que u = v o ¢, ou v est 'application de EP dans F

k=1

p
définie par v(xy,...,x,) = Z v (zy), pour tout (z1,...,x,) € EP, et ot ¢ est 'unique
k=1
application linéaire de £ dans EP telle que, pour tout j € N,,, p(e;) = (x1,...,%jp).

En déduire que I = I(5,).
Ceci établit que les idéaux a droite de L(E) sont exactement les Ip, ou F' est un
sous-espace vectoriel quelconque de E.



10°) Montrer que les idéaux a droite de L(FE) sont exactement les Id({p}),
oup € L(E).

Partie III : Arithmétique sur un anneau principal

Pour toute la suite de ce probléme, on suppose que A est un anneau integre (donc
commutatif). On notera U(A) I'ensemble des éléments inversibles de A.

Lorsque a,b € A, on dit que a divise b et on note alb si et seulement si il existe k € A
tel que b = ka. On dit aussi que a est un diviseur de b et que b est un multiple de a.
On dit que a et b sont associés si et seulement si a divise b et b divise a.

11°) Soit a,b € A. On reprend la notation présentée en fin de premiere partie.
Montrer que alb si et seulement si aA D bA.

12°) Soit a,b € A.
Montrer que a et b sont associés si et seulement si il existe u € U(A) tel que a = ub.
Montrer que la relation ”étre associé a” est une relation d’équivalence sur A.

On fixe n € N avec n > 1. On pose Z[iy/n] = {a +iby/n [/ a,b € Z}.

13°) Montrer que Z[iy/n] est un sous-anneau de C.

14°) Déterminer les éléments inversibles de Z[iy/n].

Lorsque a € A, on dit que a est irréductible dans A si et seulement si a n’est pas

inversible et si pour tout u,v € A, a = uwwv = (u € U(A) ou v € U(A)).

15°) On suppose que p est un élément irréductible de A.

Montrer que tout élément associé a p est aussi irréductible.

16°) Quels sont les éléments irréductibles de Z 7

17°) Montrer que 2 + iv5, 2 —iv/5 et 3 sont irréductibles dans Z[zx/g]

Lorsque a,b € A, on dit que a et b sont premiers entre eux si et seulement si les seuls
diviseurs communs de a et b sont les éléments inversibles.

18°) Soit p,q € A. On suppose que p et ¢ sont irréductibles et que p et ¢ ne sont pas
associés. Montrer que p et ¢ sont premiers entre eux.

On rappelle qu'un idéal I de A est principal si et seulement si il existe b € A tel que
I = 1d({b}) = bA. On rappelle également que l’anneau integre A est principal si et
seulement si tous ses idéaux sont principaux.



19°) Jusqu’a la fin de cette partie, on suppose que A est principal.

a) Soit a,b € A. Montrer que les propriétés suivantes sont équivalentes :
— (1) : a et b sont premiers entre eux;
— (2) : Id({a,b}) = A;
— (3) : il existe u,v € A tel que ua + vb = 14 (identité de Bezout).
b) Soit a,b,c € A tels que a est premier avec b et avec c.
Montrer que a est premier avec bc.

c) Soit a,b,c € A tels que albe et a est premier avec b. Montrer que alc.

Partie IV : Anneaux noethériens

Lorsque I est un idéal de A, on dit que [ est de type fini si et seulement si il existe une
partie B de A telle que I = 1d(B) et telle que B est finie.

On dit que A est un anneau noethérien si et seulement si tous ses idéaux sont de type
fini.

20°) Quel résultat du cours permet d’affirmer que Z est un anneau noethérien ?

21°) Montrer que les propriétés suivantes sont équivalentes :

— (1) : A est noethérien;

— (2) : Toute suite croissante d’idéaux est stationnaire, ¢’est-a-dire plus précisément
que, pour toute suite (I,,)neny d’idéaux de A, croissante au sens de I'inclusion, il
existe N € N tel que, pour tout n > N, I, = Iy.

— (3) : Tout ensemble non vide d’idéaux de A possede au moins un élément maxi-
mal au sens de l'inclusion.

22°) Pour tout idéal I de Z[iy/n], on pose do(I) = I NZ et

di(I)={b€Z/3Ja€Z, a+ibynel}.

a) Lorsque I est un idéal de Z[iy/n], montrer que do(I) et dy(I) sont des idéaux de Z
et que do(I) C di(I).

b) Soit I et J deux idéaux de Z[iy/n] tels que I C J, do(I) = do(J) et di(I) = dy(J).
Montrer que [ = J.

c) Montrer que Z[i\/n] est noethérien.

23°) On suppose que A est noethérien. Montrer que tout élément non nul de A se

décompose comme un produit d’éléments irréductibles de A, ¢’est-a-dire plus précisément

que, pour tout a € A\ {04}, il existe u € U(A), r € N et des éléments irréductibles
T

P1,---,pr de A tels que a = UH]%- Indication : On pourra utiliser ’ensemble des
i=1
idéaux principaux aA tels que a € A\ {0} et tels que a ne peut pas s’écrire sous la

forme u H pi,ouu € U(A), r € Net py,...,p, sont des éléments irréductibles de A.
i=1



24°) On suppose que A est principal.
D’apres la question 15, 'axiome du choix garantit I’existence d’un ensemble P d’éléments
irréductibles de A tel que, pour tout g € A, si g est irréductible, il est associé a un
unique élément de P (on ne demande pas de démontrer cette affirmation).
Montrer que pour tout a € A\{0}, il existe une unique famille (v, ),ep d’entiers naturels,
presque nulle (c’est-a-dire que {p € P / v, # 0} est fini), et un unique u € U(A) tels
que a = u H pUr.
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25°) Montrer que Z[iy/5] n’est pas principal.



