
DM 31 : Autour des idéaux

Dans tout ce problème, A désigne un anneau, dont les lois sont selon l’usage notées
”+” et ”.”. On note 0A et 1A les éléments neutres pour + et ..
Lorsque I est une partie de A, on dit que I est un idéal à droite de A si et seulement si

— I est non vide ;
— pour tout x, y ∈ I, x+ y ∈ I ;
— pour tout i ∈ I et a ∈ A, ia ∈ I.

Lorsque A est commutatif, la notion d’idéal à droite correspond à la notion usuelle
d’idéal, étudiée en cours.
Lorsque A est un anneau quelconque, la notion d’idéal à droite ne fait pas partie du
cours et toute propriété relative à cette notion devra être démontrée.

Partie I : Idéaux à droite

1◦) Montrer qu’une intersection de plusieurs idéaux à droite de A, même en quantité
infinie, est un idéal à droite.

2◦) On suppose que (In)n∈N est une suite d’idéaux à droite de A, croissante au sens

de l’inclusion. Montrer que
⋃
n∈N

In est un idéal à droite de A.

3◦) Soit B une partie quelconque de A.

On pose Id(B) =
{ n∑

i=1

biai / n ∈ N et ∀i ∈ Nn, [bi ∈ B et ai ∈ A]
}
.

Montrer que Id(B) est le plus petit idéal à droite de A contenant B.
On dira que Id(B) est l’idéal à droite engendré par B.

En particulier, lorsque B est fini, en notant B = {b1, . . . , bp},

on a Id({b1, . . . , bp}) = {
p∑

i=1

biai/ ∀i ∈ Np, ai ∈ A} (on ne demande pas de le démontrer).

Par la suite, cet ensemble sera également noté b1A+ b2A+ · · ·+ bpA.
En particulier, pour tout b ∈ A, Id({b}) = {ba / a ∈ A} = bA.
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Partie II : Idéaux à droite de L(E)

On suppose que K est un corps et que E est un K-espace vectoriel de dimension finie.
On posera n = dim(E).
On rappelle que L(E) est une K-algèbre. En particulier, L(E) est un anneau pour
l’addition et la composition.
Pour tout sous-espace vectoriel F de E, on pose IF = {u ∈ L(E) / Im(u) ⊂ F}.
4◦) Montrer que les idéaux à droite de L(E) sont des sous-espaces vectoriels de L(E).

5◦) Pour tout sous-espace vectoriel F de E, montrer que IF est un idéal à droite de
L(E).

Lorsque K est un ensemble quelconque, on note E(K) l’ensemble des familles (xk)k∈K
d’éléments de E telles que {k ∈ K / xk ̸= 0E} est fini. Ainsi, E(K) est l’ensemble des
familles presque nulles de vecteurs de E.
Si de plus (Fk)k∈K est une famille de sous-espaces vectoriels de E, on note∑
k∈K

Fk =
{∑

k∈K

xk / (xk)k∈K ∈ E(K) et ∀k ∈ K, xk ∈ Fk

}
. Il s’agit du plus petit

sous-espace vectoriel de E contenant
⋃
k∈K

Fk (on ne demande pas de le démontrer).

Lorsque I est un idéal à droite de L(E), on pose FI =
∑
u∈I

Im(u).

6◦) Lorsque I est un idéal à droite de L(E), montrer qu’il existe p ∈ N et v1, . . . , vp ∈ I

tels que FI =

p∑
k=1

Im(vk).

7◦) Lorsque F est un sous-espace vectoriel de E, montrer que F = F(IF ).

8◦) Lorsque I est un idéal à droite de L(E), montrer que I ⊂ I(FI).

9◦) Soit I un idéal à droite de L(E). On sait d’après la question 6 qu’il existe p ∈ N

et v1, . . . , vp ∈ I tels que FI =

p∑
k=1

Im(vk). Notons (e1, . . . , en) une base de E.

Soit u ∈ I(FI).
Montrer qu’il existe une famille (xj,k) 1≤j≤n

1≤k≤p
de vecteurs de E telle que, pour tout j ∈ Nn,

u(ej) =

p∑
k=1

vk(xj,k). En déduire que u = v ◦ φ, où v est l’application de Ep dans E

définie par v(x1, . . . , xp) =

p∑
k=1

vk(xk), pour tout (x1, . . . , xp) ∈ Ep, et où φ est l’unique

application linéaire de E dans Ep telle que, pour tout j ∈ Nn, φ(ej) = (xj,1, . . . , xj,p).
En déduire que I = I(FI).

Ceci établit que les idéaux à droite de L(E) sont exactement les IF , où F est un
sous-espace vectoriel quelconque de E.
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10◦) Montrer que les idéaux à droite de L(E) sont exactement les Id({p}),
où p ∈ L(E).

Partie III : Arithmétique sur un anneau principal

Pour toute la suite de ce problème, on suppose que A est un anneau intègre (donc
commutatif). On notera U(A) l’ensemble des éléments inversibles de A.

Lorsque a, b ∈ A, on dit que a divise b et on note a|b si et seulement si il existe k ∈ A
tel que b = ka. On dit aussi que a est un diviseur de b et que b est un multiple de a.
On dit que a et b sont associés si et seulement si a divise b et b divise a.

11◦) Soit a, b ∈ A. On reprend la notation présentée en fin de première partie.
Montrer que a|b si et seulement si aA ⊃ bA.

12◦) Soit a, b ∈ A.
Montrer que a et b sont associés si et seulement si il existe u ∈ U(A) tel que a = ub.
Montrer que la relation ”être associé à” est une relation d’équivalence sur A.

On fixe n ∈ N avec n ≥ 1. On pose Z[i
√
n] = {a+ ib

√
n / a, b ∈ Z}.

13◦) Montrer que Z[i
√
n] est un sous-anneau de C.

14◦) Déterminer les éléments inversibles de Z[i
√
n].

Lorsque a ∈ A, on dit que a est irréductible dans A si et seulement si a n’est pas
inversible et si pour tout u, v ∈ A, a = uv =⇒ (u ∈ U(A) ou v ∈ U(A)).

15◦) On suppose que p est un élément irréductible de A.
Montrer que tout élément associé à p est aussi irréductible.

16◦) Quels sont les éléments irréductibles de Z ?

17◦) Montrer que 2 + i
√
5, 2− i

√
5 et 3 sont irréductibles dans Z[i

√
5].

Lorsque a, b ∈ A, on dit que a et b sont premiers entre eux si et seulement si les seuls
diviseurs communs de a et b sont les éléments inversibles.

18◦) Soit p, q ∈ A. On suppose que p et q sont irréductibles et que p et q ne sont pas
associés. Montrer que p et q sont premiers entre eux.

On rappelle qu’un idéal I de A est principal si et seulement si il existe b ∈ A tel que
I = Id({b}) = bA. On rappelle également que l’anneau intègre A est principal si et
seulement si tous ses idéaux sont principaux.
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19◦) Jusqu’à la fin de cette partie, on suppose que A est principal.

a) Soit a, b ∈ A. Montrer que les propriétés suivantes sont équivalentes :
— (1) : a et b sont premiers entre eux ;
— (2) : Id({a, b}) = A ;
— (3) : il existe u, v ∈ A tel que ua+ vb = 1A (identité de Bezout).

b) Soit a, b, c ∈ A tels que a est premier avec b et avec c.
Montrer que a est premier avec bc.

c) Soit a, b, c ∈ A tels que a|bc et a est premier avec b. Montrer que a|c.

Partie IV : Anneaux noethériens

Lorsque I est un idéal de A, on dit que I est de type fini si et seulement si il existe une
partie B de A telle que I = Id(B) et telle que B est finie.
On dit que A est un anneau noethérien si et seulement si tous ses idéaux sont de type
fini.

20◦) Quel résultat du cours permet d’affirmer que Z est un anneau noethérien ?

21◦) Montrer que les propriétés suivantes sont équivalentes :
— (1) : A est noethérien ;
— (2) : Toute suite croissante d’idéaux est stationnaire, c’est-à-dire plus précisément

que, pour toute suite (In)n∈N d’idéaux de A, croissante au sens de l’inclusion, il
existe N ∈ N tel que, pour tout n ≥ N , In = IN .

— (3) : Tout ensemble non vide d’idéaux de A possède au moins un élément maxi-
mal au sens de l’inclusion.

22◦) Pour tout idéal I de Z[i
√
n], on pose d0(I) = I ∩ Z et

d1(I) = {b ∈ Z / ∃a ∈ Z, a+ ib
√
n ∈ I}.

a) Lorsque I est un idéal de Z[i
√
n], montrer que d0(I) et d1(I) sont des idéaux de Z

et que d0(I) ⊂ d1(I).

b) Soit I et J deux idéaux de Z[i
√
n] tels que I ⊂ J , d0(I) = d0(J) et d1(I) = d1(J).

Montrer que I = J .

c) Montrer que Z[i
√
n] est noethérien.

23◦) On suppose que A est noethérien. Montrer que tout élément non nul de A se
décompose comme un produit d’éléments irréductibles deA, c’est-à-dire plus précisément
que, pour tout a ∈ A \ {0A}, il existe u ∈ U(A), r ∈ N et des éléments irréductibles

p1, . . . , pr de A tels que a = u

r∏
i=1

pi. Indication : On pourra utiliser l’ensemble des

idéaux principaux aA tels que a ∈ A \ {0} et tels que a ne peut pas s’écrire sous la

forme u
r∏

i=1

pi, où u ∈ U(A), r ∈ N et p1, . . . , pr sont des éléments irréductibles de A.
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24◦) On suppose que A est principal.
D’après la question 15, l’axiome du choix garantit l’existence d’un ensemble P d’éléments
irréductibles de A tel que, pour tout q ∈ A, si q est irréductible, il est associé à un
unique élément de P (on ne demande pas de démontrer cette affirmation).
Montrer que pour tout a ∈ A\{0}, il existe une unique famille (vp)p∈P d’entiers naturels,
presque nulle (c’est-à-dire que {p ∈ P / vp ̸= 0} est fini), et un unique u ∈ U(A) tels

que a = u
∏
p∈P

pvp .

25◦) Montrer que Z[i
√
5] n’est pas principal.
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