
DM 31 : un corrigé

Partie I : Idéaux à droite

1◦) Soit K un ensemble quelconque non vide et soit (Ik)k∈K une famille d’idéaux à

droite de A. Posons I =
⋂
k∈K

Ik. Il s’agit de montrer que I est un idéal à droite de A.

⋄ Soit k ∈ K. Ik est non vide, donc il existe x ∈ Ik. −1A ∈ A et Ik est un idéal, donc
x.(−1A) ∈ Ik. Ainsi, −x ∈ Ik, puis 0A = x+(−x) ∈ Ik. On en déduit que 0A ∈ I, donc
I est non vide.
⋄ Soit x, y ∈ I et a ∈ I. Soit k ∈ K. Alors x, y ∈ Ik, or Ik est un idéal à droite, donc
x+ y ∈ Ik et xa ∈ Ik. C’est vrai pour tout k ∈ K, donc x+ y ∈ I et xa ∈ I.
Ceci démontre que I est bien un idéal à droite de A.

2◦) Posons I =
⋃
n∈N

In. I0 est non vide, donc I est également non vide.

Soit x, y ∈ I et a ∈ I. Il existe p, q ∈ N tels que x ∈ Ip et y ∈ Iq.
Sans perte de généralité, on peut supposer que q ≤ p. Alors Iq ⊂ Ip, donc x, y ∈ Ip.
Or Ip est un idéal à droite de A, donc x+ y ∈ Ip ⊂ I et xa ∈ Ip ⊂ I.
Ceci démontre que I est bien un idéal à droite de A.

3◦) ⋄ Commençons par montrer que Id(B) est un idéal à droite de A.
En prenant n = 0, on voit que la somme vide, c’est-à-dire 0, est un élément de Id(B),
même lorsque B = ∅, donc Id(B) ̸= ∅.

Soit x, y ∈ Id(B) et a ∈ A. Il existe n,m ∈ N tels que x =
n∑

i=1

biai et y =
m∑
i=1

bi+nai+n,

où b1, . . . , bn+m ∈ B et a1, . . . , an+m ∈ A.

Alors x+ y =
n+m∑
i=1

biai ∈ Id(B) et xa =
n∑

i=1

bi(aia) ∈ Id(B).

Ainsi, Id(B) est bien un idéal à droite de A.

⋄ Pour tout b1 ∈ B, b1 =
1∑

i=1

bi.(1A), donc b1 ∈ Id(B). Ainsi, Id(B) est un idéal à

droite contenant B.
⋄ Soit I un idéal à droite de A contenant B. Soit n ∈ N, soit b1, . . . , bn ∈ B et
a1, . . . , an ∈ A. I est un idéal, donc pour tout i ∈ Nn, biai ∈ I. De plus, I est stable
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pour l’addition, donc par récurrence, on peut montrer que
n∑

i=1

biai ∈ I.

En effet, pour tout p ∈ Nn, notons R(p) l’assertion :

p∑
i=1

biai ∈ I.

On a déjà établi R(1). Soit p ∈ {1, . . . , n − 1} tel que R(p). Alors

p∑
i=1

biai ∈ I et

bp+1ap+1 ∈ I, donc par stabilité de I pour l’addition,
p+1∑
i=1

biai =
( p∑

i=1

biai

)
+ bp+1ap+1 ∈ I, ce qui prouve R(p+ 1).

D’après le principe de récurrence, R(p) est vraie pour tout p ∈ Nn, donc en particulier,
on a bien R(n). Ceci démontre que Id(B) ⊂ I, ce qu’il fallait démontrer.

Partie II : Idéaux à droite de L(E)

4◦) Soit I un idéal à droite de L(E). Alors I est non vide et I est stable pour l’addition.
Soit u ∈ I et α ∈ K. Alors αu = u ◦ (αIdE) ∈ I. Ainsi, I est un sous-espace vectoriel
de L(E).

5◦) Soit F un sous-espace vectoriel de E.
Im(0L(E)) = {0} ⊂ F , donc 0L(E) ∈ IF . Ainsi, IF ̸= ∅.
Soit u, v ∈ IF et a ∈ L(E).
Soit y ∈ Im(u+ v). Il existe x ∈ E tel que y = (u+ v)(x) = u(x) + v(x).
Or u(x) ∈ Im(u) ⊂ F et de même, v(x) ∈ F . F est un sous-espace vectoriel de E, donc
y ∈ F . Ainsi Im(u+ v) ⊂ F , donc u+ v ∈ IF .
Soit y ∈ Im(ua). Il existe x ∈ E tel que y = ua(x) = u(a(x)) ∈ Im(u) ⊂ F , donc
Im(ua) ⊂ F et ua ∈ I.
Ainsi, IF est bien un idéal à droite de L(E).

6◦) Soit I un idéal à droite de L(E). D’après la question 4, I est un sous-espace
vectoriel de L(E), mais L(E) est de dimension finie, donc il existe une base (v1, . . . , vp)
de I, où p ∈ N.
⋄ Pour tout k ∈ Np, vk ∈ I, donc

⋃
1≤i≤p

Im(vk) ⊂
⋃
u∈I

Im(u), or
∑
u∈I

Im(u) est un sous-

espace vectoriel contenant
⋃
u∈I

Im(u), donc il contient
⋃

1≤i≤p

Im(vk), mais

p∑
k=1

Im(vk) est

le plus petit sous-espace vectoriel de E contenant
⋃

1≤i≤p

Im(vk),

donc

p∑
k=1

Im(vk) ⊂
∑
u∈I

Im(u).
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⋄ Réciproquement, soit u ∈ I. Il existe α1, . . . , αp ∈ K tels que u =

p∑
i=1

αivi. Alors

pour tout x ∈ E, u(x) =

p∑
i=1

αivi(x) ∈
p∑

i=1

Im(vi), donc Im(u) ⊂
p∑

k=1

Im(vk). Ainsi,

p∑
k=1

Im(vk) est un sous-espace vectoriel de E qui contient
⋃
u∈I

Im(u), donc il contient

∑
u∈I

Im(u). On a montré que FI =

p∑
k=1

Im(vk).

7◦) Soit F est un sous-espace vectoriel de E.

Soit x ∈ FIF =
∑
u∈IF

Im(u).

Il existe (xu) ∈ E(IF ) telle que x =
∑
u∈IF

xu et, pour tout u ∈ IF , xu ∈ Im(u).

Pour tout u ∈ IF , Im(u) ⊂ F , donc xu ∈ F .

Or F est un sous-espace vectoriel, donc x =
∑
u∈IF

xu ∈ F . Ceci démontre que FIF ⊂ F .

Réciproquement, soit x ∈ F . Si x = 0, posons u = 0 : x = u(0) ∈ Im(u), or u = 0 ∈ IF ,

donc x ∈
∑
v∈IF

Im(v) = FIF . Supposons maintenant que x ̸= 0. On peut alors compléter

la famille (x) en une base (x, e2, . . . , en) de E. D’après le cours, il existe u ∈ L(E) tel
que u(x) = x et, pour tout i ∈ {2, . . . , n}, u(ei) = 0. Alors Im(u) = Vect(x) ⊂ F , donc
u ∈ IF . De plus x = u(x) ∈ Im(u), donc x ∈ FIF . Ceci démontre que F ⊂ FIF , ce qui
conclut.

8◦) On suppose que I est un idéal à droite de L(E). Soit u ∈ I.

Im(u) ⊂
∑
v∈I

Im(v) = FI , donc u ∈ IFI
. On a montré que I ⊂ IFI

.

9◦) ⋄ Soit j ∈ Nn. u(ej) ∈ Im(u), or u ∈ IFI
, donc Im(u) ⊂ FI =

p∑
k=1

Im(vk). Ainsi, il

existe xj,1, . . . , xj,p ∈ E tels que u(ej) =

p∑
k=1

vk(xj,k), ce qu’il fallait montrer.

⋄ Soit j ∈ Nn. v ◦ φ(ej) = v(xj,1, . . . , xj,p) =

p∑
k=1

vk(xj,k) = u(ej).

On vérifie facilement que v est une application linéaire, c’est-à-dire que, pour tout
x = (x1, . . . , xp) ∈ Ep et y = (y1, . . . , yp) ∈ Ep, pour tout α ∈ K,
v(αx+y) = αv(x)+v(y). Ainsi, u et v◦φ sont deux applications linéaires qui cöıncident
sur la base (e1, . . . , en), donc elles sont égales.
⋄ Pour tout x ∈ E, posons φ(x) = (φ1(x), . . . , φp(x)), où pour tout i ∈ Np, φi(x) ∈ E.
Soit x, y ∈ E et α ∈ K. φ(αx+ y) = αφ(x) + φ(y), donc en passant aux composantes,
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on en déduit que φ1, . . . , φp sont des applications linéaires de E dans E. Ainsi, pour
tout k ∈ Np, φk ∈ L(E).

De plus, pour tout x ∈ E, u(x) = v(φ1(x), . . . , φp(x)) =

p∑
k=1

vk(φk(x)),

donc u =

p∑
k=1

vk ◦ φk. Or pour tout k ∈ Np, vk ∈ I et I est un idéal à droite, donc

pour tout k ∈ Np, vk ◦φk ∈ I, puis par stabilité de I pour l’addition, on en déduit que
u ∈ I. C’est vrai pour tout u ∈ IFI

, donc IFI
⊂ I, puis d’après la question précédente,

IFI
= I.

10◦) Par construction, pour tout p ∈ L(E), Id({p}) = {pv / v ∈ L(E)} est un idéal
à droite de L(E). Réciproquement, soit I un idéal à droite de L(E).
D’après les questions précédentes, il existe un sous-espace vectoriel F tel que
I = IF = {u ∈ L(E) / Im(u) ⊂ F}.
Notons (e1, . . . , em) une base de F , que l’on complète en une base de E,
notée e = (e1, . . . , en).
Notons p l’unique élément de L(E) tel que, pour tout i ∈ Nm, p(ei) = ei et pour tout
i ∈ {m+ 1, . . . , n}, p(ei) = 0 (p est un projecteur sur F ).

Lorsque x ∈ F , il existe α1, . . . , αp ∈ Kp tels que x =

p∑
i=1

αiei,

donc p(x) =

p∑
i=1

αip(ei) = x.

Soit u ∈ IF . Soit x ∈ E. Alors u(x) ∈ Im(u), donc u(x) ∈ F . Alors d’après ce qui
précède, p(u(x)) = u(x). C’est vrai pour tout x ∈ E, donc u = pu ∈ Id({p}). Ceci
démontre que I ⊂ Id({p}).
Réciproquement, soit u ∈ Id({p}). Il existe v ∈ L(E) tel que u = pv. Soit x ∈ Im(u).

Il existe y ∈ E tel que x = u(y) = p(v(y)). Posons v(y) =
n∑

i=1

βiei.

Alors x =
n∑

i=1

βip(ei) =

p∑
i=1

βiei ∈ F . Ainsi, Im(u) ⊂ F et u ∈ IF . Ceci démontre que

Id({p}) ⊂ IF , donc I = Id({p}), ce qui conclut.

Partie III : Arithmétique sur un anneau principal

11◦) Supposons que a|b. Il existe k ∈ A tel que b = ka. Soit x ∈ bA. Il existe h ∈ A
tel que x = bh. Alors x = kah = a(kh) ∈ aA, donc bA ⊂ aA.
Réciproquement, supposons que bA ⊂ aA. b = b.1A ∈ bA, donc b ∈ aA, donc il existe
k ∈ A tel que b = ka. Ainsi, a|b.
12◦) ⋄ S’il existe u ∈ U(A) tel que a = ub, alors b = u−1a, donc a|b et b|a, ce qui
prouve que a et b sont associés.
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Réciproquement, si a et b sont associés, il existe k, h ∈ A tels que b = ka et a = hb.
Alors b = khb, donc b(1A − kh) = 0.
Si b = 0A, alors a = hb = 0A, puis a = 0A = 0A.1A = b.1A et 1A ∈ U(A), ce qu’il fallait
démontrer.
Si b ̸= 0A, l’anneau A étant intègre, 1A − hk = 0A, donc hk = 1A. Ainsi, a = hb avec
h ∈ U(A) : on conclut également dans ce cas.
⋄ Notons R la relation ”être associé à”. Soit a, b, c ∈ A.
On a a = a.1A, donc a R a. Ainsi, R est réflexive.
Si a R b, il existe u ∈ U(A) tel que a = ub. Alors b = u−1a, donc b R a. Ainsi, R est
symétrique.
Si a R b et b R c, il existe u, v ∈ U(A) tels que a = ub et b = vc. Alors a = uvc,
or d’après le cours, (U(A), .) est un groupe, donc uv ∈ U(A) et a R c. Ainsi R est
transitive.
Ceci démontre que R est une relation d’équivalence.

13◦) Clairement 1 ∈ Z[i
√
n].

Soit x, y ∈ Z[i
√
n]. Il existe a, b, c, d ∈ Z tels que x = a+ ib

√
n et y = c+ id

√
n.

Alors x−y = (a−c)+i(b−d)
√
n ∈ Z[i

√
n] et xy = (ac−nbd)+i(bc+ad)

√
n ∈ Z[i

√
n].

Ainsi, Z[i
√
n] est un sous-anneau de C.

14◦) Soit x un élément inversible de Z[i
√
n]. Alors x ̸= 0 et il existe a, b ∈ Z tel que

x = a+ib
√
n ainsi que a′, b′ ∈ Z tels que 1

x
= a′+ib′

√
n. Alors 1 = (a+ib

√
n)(a′+ib′

√
n),

donc en passant au module au carré, 1 = (a2+nb2)(a′2+nb′2). Or a2+nb2 et a′2+nb′2

sont dans N, donc d’après le cours, a2 + nb2 = 1.
⋄ Premier cas : on suppose que n ≥ 2. Alors, si b ̸= 0, 1 = a2+nb2 ≥ n > 1, ce qui est
faux, donc b = 0 puis a = ±1. Ainsi, x = ±1. Réciproquement, 1 et −1 sont inversibles
dans Z[i

√
n], donc dans ce cas, U(Z[i

√
n]) = {−1, 1} .

⋄ Second cas : on suppose que n = 1. Si a ̸= 0 et b ̸= 0, alors 1 = a2 + b2 ≥ 2 ce
qui est faux. Donc a = 0 et b = ±1 ou b = 0 et a = ±1. Ainsi x ∈ {1,−1, i,−i}.
Réciproquement, il est clair que 1,−1, i et −i sont inversibles dans Z[i],
donc U(Z[i]) = {1,−1, i,−i} .

15◦) Soit q un élément associé à p. Il existe u ∈ U(A) tel que q = up.
Si q est inversible, alors p = u−1q est également inversible (toujours car (U(A), .) est
un groupe), ce qui est faux, donc q n’est pas inversible.
Soit a, b ∈ A tels que q = ab. Alors p = (u−1a)b, or p est irréductible, donc b ∈ U(A)
ou u−1a ∈ U(A) auquel cas a ∈ U(A). Ceci prouve que q est irréductible.

16◦) ⋄ Soit x ∈ Z. Supposons que x est irréductible. Posons n = |x| ∈ N.
x est n sont associés, donc d’après la question précédente, n est irréductible.
D’après le cours, U(Z) = {1,−1}.
On peut écrire 0 = uv avec u = v = 0. Alors u /∈ U(Z) et v /∈ U(Z). Ainsi, 0 n’est pas
irréductible. On en déduit que n ̸= 0. De plus, n n’est pas inversible, donc n ≥ 2.
Soit d ∈ N un diviseur de n. Il existe d′ ∈ N tel que n = dd′. n est irréductible, donc
d = 1 ou d′ = 1. Ainsi, d = 1 ou d = n, donc les seuls diviseurs dans N de n sont 1 et
n, ce qui prouve que n est premier.
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Ceci démontre que l’ensemble des éléments irréductibles de Z est inclus dans P∪ (−P).
⋄ Réciproquement, supposons que x ∈ P ∪ (−P). Posons à nouveau n = |x|. Alors
n ∈ P, donc n n’est pas inversible.
Soit u, v ∈ Z tels que n = uv. Alors n = |u||v|, donc |u| et |v| sont des diviseurs dans
N de n. Or les seuls diviseurs de n sont 1 et n, donc |u| = 1 ou |v| = 1. Ainsi, n est
irréductible, or x est associé à n, donc x est irréductible.
En conclusion, l’ensemble des éléments irréductibles de Z est P ∪ (−P) .

17◦) Soit x ∈ {2 + i
√
5, 2− i

√
5, 3}. Ainsi, |x|2 = 9.

D’après la question 14, x n’est pas inversible dans Z[i
√
5].

Soit u, v ∈ Z[i
√
5] tels que x = uv. Alors 9 = |u|2|v|2, or |u|2 et |v|2 sont dans N, donc

|u|2 et |v|2 sont des diviseurs dans N de 9, ils appartiennent à {1, 3, 9}.
Supposons que |u|2 = 3. Posons u = a+ ib

√
5, avec a, b ∈ Z. Alors 3 = a2 + 5b2.

Si b ̸= 0, alors 3 ≥ 5b2 ≥ 5 ce qui est faux, donc b = 0, puis a2 = 3. Ainsi, 1 < a2 < 4,
donc en passant à la racine carrée, 1 < |a| < 2. C’est impossible car |a| ∈ N.
Ainsi, |u|2 ̸= 3. De même, |v|2 ̸= 3.
Ceci démontre que |u|2 et |v|2 sont dans {1, 9} avec 9 = |u|2|v|2.
On en déduit que |u| = 1 ou |v| = 1. Alors, comme en question 14 (premier cas), on
obtient que u ∈ {−1, 1} ou v ∈ {−1, 1}. Ainsi x est bien irréductible.

18◦) Supposons que p et q ne sont pas premiers entre eux. Alors ils admettent un
diviseur commun d non inversible. Il existe d′, d′′ ∈ A tels que p = dd′ et q = dd′′. Or p
et q sont irréductibles, donc d′ et d′′ sont inversibles. Alors q = p(d′−1d′′) est associé à
p, ce qui est faux. Ainsi, p et q sont premiers entre eux.

19◦) a) ⋄ (1) =⇒ (2) : Supposons que a et b sont premiers entre eux.
Id({a, b}) est un idéal et A est principal,
donc il existe d ∈ A tel que aA+ bA = Id({a, b}) = dA.
aA ⊂ (aA + bA), donc aA ⊂ dA, donc d’après la question 11, d|a. De même, d divise
b, or a et b sont premiers entre eux, donc d est inversible. Alors, pour tout x ∈ A,
x = d(d−1x) ∈ dA, donc A = dA = Id({a, b}).
⋄ (2) =⇒ (3) : Supposons que Id({a, b}) = A.
Alors 1A ∈ A = aA+ bA, donc il existe u, v ∈ A tels que 1A = au+ bv.
⋄ (3) =⇒ (1) : Supposons qu’il existe u, v ∈ A tels que ua+ vb = 1A.
Soit d un diviseur commun de a et b. Il existe d′, d′′ ∈ A tels que a = dd′ et b = dd′′.
Alors 1A = d(ud′ + vd′′), donc d est inversible. Ainsi, a et b sont premiers entre eux.

19◦) b) D’après (3), il existe u, v, u′, v′ ∈ A tels que ua+ vb = 1A = u′a+ v′c.
En prenant le produit de ces deux égalités, on obtient :
1A = (ua+ vb)(u′a+ v′c) = (vv′)bc+ a(uu′a+ uv′c+ vbu′),
donc a et bc sont premiers entre eux.

19◦) c) a divise bc, donc d’après la question 11, (bc)A ⊂ aA.
a divise également ac, donc (ac)A ⊂ aA. Ainsi, [(bc)A+ (ac)A] ⊂ aA.
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Or (bc)A+ (ac)A = {bcu+ acv /u, v ∈ A} = {cx / x ∈ bA+ aA}. De plus a et b sont
premiers entre eux, donc d’après (2), bA + aA = A, donc (bc)A + (ac)A = cA, ce qui
prouve que cA ⊂ aA, c’est-à-dire que a divise c. Il s’agit du lemme de Gauss.

Partie IV : Anneaux noethériens

20◦) D’après le cours, Z est principal, c’est-à-dire que chacun de ses idéaux est en-
gendré par un élément dont a fortiori est de type fini. Ainsi Z est bien un anneau
noethérien.

21◦) ⋄ (1) =⇒ (2) : Supposons que A est un anneau noethérien.

Soit (In)n∈N une suite croissante d’idéaux de A. Posons I =
⋃
n∈N

In. D’après la ques-

tion 2, I est un idéal, or A est noethérien, donc il existe b1, . . . , bp ∈ A tel que
I = Id({b1, . . . , bp}).
Pour tout k ∈ Np, bk ∈ I, donc il existe nk ∈ N tel que bk ∈ Ink

.
Posons N = max

1≤i≤p
ni. La suite (In) étant croissante, pour tout k ∈ Nn, bk ∈ IN . Ainsi,

{b1, . . . , bp} ⊂ IN , or IN est un idéal, donc I ⊂ IN .
Soit n ≥ N . Alors In ⊂ I ⊂ IN . De plus, n ≥ N , donc IN ⊂ In. Ainsi IN = In.
⋄ (2) =⇒ (3) : Soit I un ensemble non vide d’idéaux de A. Supposons qu’il ne possède
aucun élément maximal.
I est non vide, donc il existe I0 ∈ I.
I0 n’est pas maximal dans I, donc il existe I1 ∈ I tel que I0 ⊂ I1 et I0 ̸= I1.
Supposons construite une suite finie (I0, . . . , Ip) strictement croissante d’éléments de
I. Ip n’est pas maximal dans I, donc il existe Ip+1 ∈ I tel que Ip ⊂ Ip+1 et Ip ̸= Ip+1.
On construit ainsi par récurrence une suite strictement croissante (In)n∈N d’idéaux de
A, ce qui contredit (2). Ainsi, l’ensemble I possède bien un élément maximal.
⋄ (3) =⇒ (1) : On suppose que tout ensemble non vide d’idéaux de A possède au
moins un élément maximal au sens de l’inclusion. Soit I un idéal de A.
Notons I l’ensemble des idéaux de A de type fini qui sont inclus dans I.
{0} est un idéal de A, il est de type fini car {0} = Id({0}), or {0} ⊂ I, donc I est non
vide. Il possède donc un élément maximal que l’on note J . Par construction, J ⊂ I et
il existe b1, . . . , bp ∈ I tels que J = Id({b1, . . . , bp}).
Supposons que J ̸= I. Alors il existe a ∈ I tel que a /∈ J . PosonsK = Id({b1, . . . , bp, a}).
K est un idéal de A inclus dans I, de type fini, donc K ∈ I. K contient J , a ∈ K et
a /∈ J , donc K contient strictement J ce qui contredit la maximalité de J .
Ainsi, I = J est bien de type fini.

22◦) a) On suppose que I est un idéal de Z[i
√
n].

⋄ d0(I) est un groupe additif en tant qu’intersection de sous-groupes de C. De plus,
pour tout x ∈ I ∩ Z, pour tout k ∈ Z, kx ∈ Z ∩ I, car I est un idéal de Z[i

√
n], lequel

contient Z. Ainsi, d0(I) est un idéal de Z.
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⋄ Soit b, c ∈ d1(I) et k ∈ Z. Il existe a, a′ ∈ Z tels que a+ ib
√
n ∈ I et a′ + ic

√
n ∈ I.

Alors (a+ a′) + i(b+ b′)
√
n ∈ I, donc b+ b′ ∈ d1(I).

De plus, ka+ i(kb)
√
n = k(a+ ib

√
n) ∈ I, donc kb ∈ d1(I).

Ceci prouve que d1(I) est un idéal de Z.
⋄ Soit k ∈ d0(I) = I ∩ Z. i

√
n ∈ Z[i

√
n] et I est un idéal, donc ki

√
n ∈ I, ce qui

prouve que k ∈ d1(I). Ainsi, d0(I) ⊂ d1(I).

22◦) b) Soit x ∈ J . Posons x = a+ ib
√
n, avec a, b ∈ Z. Alors b ∈ d1(J) = d1(I), donc

il existe a′ ∈ Z tel que a′ + ib
√
n ∈ I.

I ⊂ J , donc a′+ib
√
n ∈ J , puis a−a′ = (a+ib

√
n)−(a′+ib

√
n) ∈ J∩Z = d0(J) = d0(I).

On en déduit que x = (a′ + i
√
n) + (a− a′) ∈ I, donc J ⊂ I. Or I ⊂ J , donc I = J .

22◦) c) Soit (Ik)k∈N une suite croissante d’idéaux de Z[i
√
n].

Pour tout k ∈ N, Ik ⊂ Ik+1, donc on vérifie que d0(Ik) ⊂ d0(Ik+1) et d1(Ik) ⊂ d1(Ik+1).
Ainsi (d0(Ik))k∈N et (d1(Ik))k∈N sont deux suites croissantes d’idéaux de Z, or Z est
anneau noethérien, donc il existe N0, N1 ∈ N tels que, pour tout k ≥ N0,
d0(Ik) = d0(IN0) et pour tout k ≥ N1, d1(Ik) = d1(IN1).
Posons N = max(N0, N1). Soit k ∈ N avec k ≥ N . On sait que Ik ⊂ Ik+1,
d0(Ik) = d0(IN0) = d0(Ik+1) et d1(Ik) = d1(IN1) = d1(Ik+1), donc d’après la question
précédente, Ik = Ik+1.
Ainsi, la suite (Ik)k∈N est stationnaire, ce qui prouve que Z[i

√
n] est noethérien.

23◦) Lorsque a ∈ A, notons P (a) la propriété suivante : a est non nul et a ne peut

pas s’écrire sous la forme u
r∏

i=1

pi, où u ∈ U(A), r ∈ N et p1, . . . , pr sont des éléments

irréductibles de A.
Posons I l’ensemble des idéaux I de A tels qu’il existe a ∈ A vérifiant I = aA et P (a).
Supposons que I est non vide.
A étant noethérien, d’après la question 21, I possède un élément maximal, que l’on
notera J .
Par définition de I, Il existe a ∈ A tel que P (a) et J = aA.

Si a était inversible, on pourrait écrire a = a
0∏

i=1

pi (produit vide), ce qui est faux.

Si a était irréductible, on pourrait écrire a = 1A

1∏
i=1

pi en posant pi = a, ce qui est faux.

Donc il existe u, v ∈ A \ U(A) tels que a = uv.
u divise a, donc aA ⊂ uA. Supposons que aA = uA. Alors u et a sont associés, donc il
existe λ ∈ U(A) tel que a = λu. On en déduit que (λ − v)u = 0A, or A est intègre et
u ̸= 0A (car a ̸= 0A), donc v = λ ∈ U(A), ce qui est faux.
Ainsi uA contient strictement aA. Or aA est maximal dans I, donc uA /∈ I.

Il existe donc α ∈ U(A), r ∈ N, p1, . . . , pr irréductibles dans A tels que u = α
r∏

i=1

pi.
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De même, il existe β ∈ U(A), s ∈ N, pr+1, . . . , pr+s irréductibles tels que v = β
r+s∏

i=r+1

pi.

On en déduit que a = uv = (αβ)
r+s∏
i=1

pi, ce qui contredit la propriété P (a).

Ainsi I est vide. Soit alors a ∈ A \ {0A}. aA /∈ I, donc il existe u ∈ U(A), r ∈ N et

des éléments irréductibles p1, . . . , pr de A tels que a = u
r∏

i=1

pi.

24◦) A étant principal, il est noethérien, donc la partie ”existence” de la propriété est
établie par la question précédente. Il reste à prouver l’unicité. Soit a ∈ A \ {0A}.
On suppose qu’il existe deux familles (vp)p∈P et (wp)p∈P d’entiers naturels, presque

nulles, et u, v ∈ U(A) tels que (1) : a = u
∏
p∈P

pvp = v
∏
p∈P

pwp .

Soit q ∈ P . Supposons que vq ̸= wq.
Sans perte de généralité, on peut supposer que vq > wq.
A étant intègre, on peut simplifier l’égalité (1) par qwq (qui est bien non nul), donc

v
∏
p∈P
p̸=q

pwp = uqvq−wq
∏
p∈P
p̸=q

pvp .

vp − wq ≥ 1, donc q divise v
∏
p∈P
p̸=q

pwp .

Lorsque p ∈ P avec p ̸= q, par construction de P , p et q ne sont pas associés, donc
d’après la question 18, p et q sont premiers entre eux. Alors, d’après la question 19.b,
étendue par récurrence à un produit fini d’éléments premiers avec a, on en déduit que

q est premier avec
∏
p∈P
p̸=q

pwp , donc d’après le lemme de Gauss, démontré en question 19.c,

q divise v ∈ U(A). Ainsi, il existe r ∈ A tel que v = qr. Alors q(rv−1) = 1, donc q est
inversible, ce qui est faux car q est irréductible.
Ainsi, pour tout q ∈ P , vq = wq, ce qui prouve l’unicité.

25◦) (2+ i
√
5)(2− i

√
5) = 22− (i

√
5)2 = 9 = 32, donc d’après la question 17, 9 admet

dans Z[i
√
5] deux décompositions différentes en produit d’éléments irréductibles.

La propriété d’unicité n’étant pas vérifiée, Z[i
√
5] n’est pas principal.
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