DM 31 : un corrigé

Partie I : Idéaux a droite

1°) Soit K un ensemble quelconque non vide et soit (Ij)gerx une famille d'idéaux a

droite de A. Posons [ = ﬂ I;.. 11 s’agit de montrer que I est un idéal a droite de A.

keK
o Soit k € K. I;, est non vide, donc il existe z € [},. —14 € A et I}, est un idéal, donc

x.(—14) € I}. Ainsi, —z € I, puis 04 = x4 (—z) € I. On en déduit que 04 € I, donc
I est non vide.

o Soit z,y € [ et a € I. Soit k € K. Alors z,y € I, or I} est un idéal a droite, donc
x4y € I et xza € I. Clest vrai pour tout k € K, donc x +y € I et za € I.

Ceci démontre que I est bien un idéal a droite de A.

2°) Posons [ = U I,,. Iy est non vide, donc I est également non vide.

neN
Soit z,y € [ et a € I. Il existe p,q € N tels que z € I, et y € I,

Sans perte de généralité, on peut supposer que ¢ < p. Alors I, C I,,, donc =,y € I,.
Or I, est un idéal a droite de A, donc x +y € I, C [ et za € I, C I.
Ceci démontre que I est bien un idéal a droite de A.

3°) ¢ Commencons par montrer que Id(B) est un idéal a droite de A.
En prenant n = 0, on voit que la somme vide, c’est-a-dire 0, est un élément de Id(B),
méme lorsque B = (), donc 1d(B) # 0.

n m
Soit x,y € 1d(B) et a € A. 1l existe n,m € N tels que x = Z ba; et y = Zbi+nai+n,
i=1 i=1
ouby,...,bpim € Betay,...,a,im € A.

n+m n
Alors z +y = Z ba; € 1d(B) et xa = Zbi(aia) € Id(B).
i=1 1=1
Ainsi, Id(B) est bien un idéal a droite de A.
1
o Pour tout by € B, by = »_b;.(14), donc by € Id(B). Ainsi, Id(B) est un idéal &
i=1
droite contenant B.
o Soit I un idéal a droite de A contenant B. Soit n € N, soit by,...,b, € B et
ai,...,a, € A. I est un idéal, donc pour tout 7 € N,,, b;a; € I. De plus, I est stable



n

pour 'addition, donc par récurrence, on peut montrer que Z bia; € I.
i=1

p
En effet, pour tout p € N,,, notons R(p) 'assertion : Z bia; € 1.
i=1

P

On a déja établi R(1). Soit p € {1,...,n — 1} tel que R(p). Alors Zbiai €l et
i=1

bp+1ap+1 € I, donc par stabilité de I pour 'addition,

P+l

p
Zb,ai = (Z biai> + bpr1a,41 € I, ce qui prouve R(p + 1).
i=1 i=1

D’apres le pri;lcipe de récurrence, R(p) est vraie pour tout p € N,,, donc en particulier,
on a bien R(n). Ceci démontre que Id(B) C I, ce qu'il fallait démontrer.

Partie II : Idéaux a droite de L(F)

4°) Soit I un idéal a droite de L(E). Alors I est non vide et I est stable pour I’addition.
Soit u € I et € K. Alors au = uwo (aldg) € I. Ainsi, I est un sous-espace vectoriel
de L(E).

5°) Soit F' un sous-espace vectoriel de E.

Im(0pg)) = {0} C F, donc Opg) € Ip. Ainsi, Ir # 0.

Soit u,v € I et a € L(FE).

Soit y € Im(u + v). Il existe z € E tel que y = (u+ v)(x) = u(x) + v(x).

Or u(z) € Im(u) C F et de méme, v(z) € F. I est un sous-espace vectoriel de E, donc
y € F. Ainsi Im(u +v) C F, donc u+ v € Ip.

Soit y € Im(ua). 1l existe z € E tel que y = wa(z) = u(a(z)) € Im(u) C F, donc
Im(ua) C F et ua € 1.

Ainsi, Ir est bien un idéal a droite de L(E).

6°) Soit I un idéal a droite de L(FE). D’apres la question 4, I est un sous-espace

vectoriel de L(E), mais L(E) est de dimension finie, donc il existe une base (v1, ..., v,)

de I, ou p € N.

o Pour tout £ € Ny, v, € I, donc U Im(vg) C U Im(u), or Zlm(u) est un sous-
1<i<p uel uel

P
espace vectoriel contenant U Im(u), donc il contient U Im(vy), mais Z Im(vy) est
uel 1<i<p k=1

le plus petit sous-espace vectoriel de E contenant U Im(vy),
1<i<p

donc Z Im(vg) C Z Im(u).
k=1

uel



p
¢ Réciproquement, soit u € I. Il existe ay,...,q, € K tels que u = Zaivi. Alors
i=1

p p p
pour tout = € E, u(z) = Zaivi(x) € Zlm(vi), donc Im(u) C Zlm(vk). Ainsi,
i=1 i=1 k=1
p

Zlm(vk) est un sous-espace vectoriel de E qui contient U Im(u), donc il contient

k=1 uel
P

Z Im(u). On a montré que Fy = Z Im(vy,).

uel k=1

7°) Soit F' est un sous-espace vectoriel de E.
Soit z € Fy, = » _ Im(u).
u€lp
Il existe (z,) € EU) telle que z = Z x, et, pour tout u € Ip, x, € Im(u).
uelp
Pour tout v € I, Im(u) C F, donc z,, € F.
Or F' est un sous-espace vectoriel, donc = = Z z, € F. Ceci démontre que Fj, C F.
'I.LGIF
Réciproquement, soit z € F. Six = 0, posons u = 0 : 2 = u(0) € Im(u), or u =0 € I,
donc z € Z Im(v) = FJ,. Supposons maintenant que x # 0. On peut alors compléter

vElR
la famille (x) en une base (z,es,...,e,) de E. D’apres le cours, il existe u € L(E) tel

que u(z) = z et, pour tout i € {2,...,n}, u(e;) = 0. Alors Im(u) = Vect(z) C F, donc
u € Ip. De plus z = u(x) € Im(u), donc « € Fy,. Ceci démontre que F' C Fp,., ce qui
conclut.

8°) On suppose que [ est un idéal a droite de L(E). Soit u € I.

Im(u) C Zlm(v) = Fy, donc u € Ip,. On a montré que I C Ip,.
vel

p
9°) o Soit j € N,,. u(e;) € Im(u), or u € Ip,, donc Im(u) C Fj = Zlm(vk). Ainsi, il

k=1
p

existe x;1,...,2;, € E tels que u(e;) = Z vg(zj k), ce qu'il fallait montrer.
k=1

p
o Soit j € N, vop(e;) =v(xj1,...,Tjp) = ka(xm) = u(e;).
k=1

On vérifie facilement que v est une application linéaire, c¢’est-a-dire que, pour tout
r=(z1,...,2,) € EP et y = (v1,...,yp) € EP, pour tout a € K,

v(azr+y) = av(x)+v(y). Ainsi, u et voy sont deux applications linéaires qui coincident
sur la base (ey,...,e,), donc elles sont égales.

o Pour tout x € E, posons ¢(z) = (¢1(x),...,¢,(x)), ou pour tout i € N, p;(z) € E.
Soit z,y € E et a € K. p(ax +y) = ap(x) + ¢(y), donc en passant aux composantes,



on en déduit que ¢, ..., p, sont des applications linéaires de £ dans E. Ainsi, pour
tout k € N, o € L(E).

p
De plus, pour tout = € E, u(x) = v(p1(x),...,pp(z)) = ka(gok(x)),
k=1

p
donc u = ka o ¢g. Or pour tout £ € N,, v, € I et I est un idéal a droite, donc

k=1
pour tout k € N,,, v, 0 € I, puis par stabilité de I pour I'addition, on en déduit que

u € 1. C’est vrai pour tout v € Ip,, donc Iy, C I, puis d’apres la question précédente,
Ip, =1

10°) Par construction, pour tout p € L(E), Id({p}) = {pv / v € L(E)} est un idéal
a droite de L(F). Réciproquement, soit I un idéal a droite de L(FE).

D’apres les questions précédentes, il existe un sous-espace vectoriel F' tel que
[=1Ip={ucL(E)/Imu) C F}.

Notons (e, ..., ey,) une base de F', que 'on complete en une base de F,

notée e = (eq,...,ey,).

Notons p I'unique élément de L(E) tel que, pour tout ¢ € N,,, p(e;) = e; et pour tout
ie{m+1,....,n}, p(e;) =0 (p est un projecteur sur F').

p
Lorsque x € F', il existe a1, ..., q, € K? tels que v = Z ;e;,
i=1

p
donc p(x) = Z a;p(e;) = x.
i=1

Soit u € Ip. Soit € E. Alors u(z) € Im(u), donc u(z) € F. Alors d’apres ce qui
précede, p(u(z)) = u(z). C'est vrai pour tout z € F, donc v = pu € 1d({p}). Ceci
démontre que I C Id({p}).

Réciproquement, soit u € Id({p}). Il existe v € L(F) tel que u = pv. Soit x € Im(u).

Il existe y € E tel que z = u(y) = p(v(y)). Posons v(y) = Z Bie;.
i=1

n p
Alors x = Zﬁip(ei) = Zﬁiei € F. Ainsi, Im(u) C F et u € Ip. Ceci démontre que
; —

i=1 %
Id({p}) C Ip, donc I =1d({p}), ce qui conclut.

Partie III : Arithmétique sur un anneau principal

11°) Supposons que alb. 1l existe k € A tel que b = ka. Soit x € bA. 1l existe h € A
tel que x = bh. Alors x = kah = a(kh) € aA, donc bA C aA.

Réciproquement, supposons que bA C aA. b = b.1, € bA, donc b € aA, donc il existe
k € A tel que b = ka. Ainsi, alb.

12°) o S'il existe u € U(A) tel que a = ub, alors b = u~'a, donc alb et bla, ce qui
prouve que a et b sont associés.



Réciproquement, si a et b sont associés, il existe k,h € A tels que b = ka et a = hb.
Alors b = khb, donc b(14 — kh) = 0.

Sib=04,alorsa=hb=04,puisa=04 =04.14 =b.1y et 14 € U(A), ce qu'il fallait
démontrer.

Si b # 04, anneau A étant integre, 14 — hk = 04, donc hk = 14. Ainsi, a = hb avec
h € U(A) : on conclut également dans ce cas.

¢ Notons R la relation ”étre associé a”. Soit a, b, c € A.

On a a =a.l,, donc a R a. Ainsi, R est réflexive.

Sia R b, il existe u € U(A) tel que a = ub. Alors b = u~'a, donc b R a. Ainsi, R est
symétrique.

Sia RbetbR c, il existe u,v € U(A) tels que a = ub et b = vc. Alors a = wvc,
or d’apres le cours, (U(A),.) est un groupe, donc uv € U(A) et a R c. Ainsi R est
transitive.

Ceci démontre que R est une relation d’équivalence.

13°) Clairement 1 € Z[iy/n].

Soit x,y € Zli/n]. 1l existe a,b, ¢,d € Z tels que = a + iby/n et y = ¢+ idy/n.
Alors z—y = (a—c)+i(b—d)\/n € Z[i\/n] et xy = (ac—nbd)+i(bc+ad)\/n € Z[i\/n].
Ainsi, Z[i\/n] est un sous-anneau de C.

14°) Soit z un élément inversible de Z[iy/n]. Alors x # 0 et il existe a,b € Z tel que
x = a+iby/n ainsi que @/, b’ € Z tels que 1 = a’+ib'\/n. Alors 1 = (a+iby/n)(a'+ib'\/n),
donc en passant au module au carré, 1 = (a? +nb®)(a’* +nb’®). Or a®+nb? et a’* +nb’
sont dans N, donc d’apres le cours, a? 4+ nb* = 1.

o Premier cas : on suppose que n > 2. Alors, sib# 0, 1 = a®>+nb* > n > 1, ce qui est
faux, donc b = 0 puis a = £1. Ainsi, v = +1. Réciproquement, 1 et —1 sont inversibles
dans Z[i/n], donc dans ce cas, |U(Z[iy/n]) = {—1, 1}‘ :

o Second cas : on suppose que n = 1. Sia # 0 et b # 0, alors 1 = a? +1*> > 2 ce
qui est faux. Donc a = 0 et b = £1 ou b = 0 et @ = 1. Ainsi z € {1,—1,7,—i}.
Réciproquement, il est clair que 1, —1,4 et —¢ sont inversibles dans Z[i],

donc |U(Z[i]) = {1,-1,i,—i}|.

15°) Soit ¢ un élément associé a p. Il existe u € U(A) tel que ¢ = up.

Si g est inversible, alors p = u !¢ est également inversible (toujours car (U(A),.) est
un groupe), ce qui est faux, donc g n’est pas inversible.

Soit a,b € A tels que ¢ = ab. Alors p = (u=ta)b, or p est irréductible, donc b € U(A)
ou u'a € U(A) auquel cas a € U(A). Ceci prouve que ¢ est irréductible.

16°) o Soit z € Z. Supposons que z est irréductible. Posons n = |z| € N.

x est n sont associés, donc d’apres la question précédente, n est irréductible.

D’apres le cours, U(Z) = {1, —1}.

On peut écrire 0 = uv avec u = v = 0. Alors u ¢ U(Z) et v ¢ U(Z). Ainsi, 0 n’est pas
irréductible. On en déduit que n # 0. De plus, n n’est pas inversible, donc n > 2.

Soit d € N un diviseur de n. Il existe d' € N tel que n = dd'. n est irréductible, donc
d=1oud =1. Ainsi, d = 1 ou d = n, donc les seuls diviseurs dans N de n sont 1 et
n, ce qui prouve que n est premier.



Ceci démontre que l'ensemble des éléments irréductibles de Z est inclus dans PU (—P).
o Réciproquement, supposons que z € P U (—P). Posons a nouveau n = |x|. Alors
n € P, donc n n’est pas inversible.

Soit u,v € Z tels que n = uv. Alors n = |u||v|, donc |u| et |v| sont des diviseurs dans
N de n. Or les seuls diviseurs de n sont 1 et n, donc |u| = 1 ou |v| = 1. Ainsi, n est
irréductible, or = est associé a n, donc x est irréductible.

En conclusion, ll’ensemble des éléments irréductibles de Z est P U (—IF’)‘ .

17°) Soit x € {2+ /5,2 —iv/5,3}. Ainsi, 2|2 = 9.

D’apres la question 14, 2 n’est pas inversible dans Z[iv/5].

Soit u,v € Z[iv/5] tels que = uv. Alors 9 = |u|?|v|?, or |u|? et |v|?> sont dans N, donc
|u|? et |v|? sont des diviseurs dans N de 9, ils appartiennent & {1, 3,9}.

Supposons que |u|? = 3. Posons u = a + iby/5, avec a,b € Z. Alors 3 = a® + 5b°.

Si b # 0, alors 3 > 5b% > 5 ce qui est faux, donc b = 0, puis a? = 3. Ainsi, 1 < a? < 4,
donc en passant a la racine carrée, 1 < |a| < 2. C’est impossible car |a| € N.

Ainsi, |u|? # 3. De méme, |v|? # 3.

Ceci démontre que |u|? et |v|* sont dans {1,9} avec 9 = |u|?|v
On en déduit que |u| = 1 ou |v| = 1. Alors, comme en question 14 (premier cas), on
obtient que u € {—1,1} ou v € {—1,1}. Ainsi x est bien irréductible.

%,

18°) Supposons que p et ¢ ne sont pas premiers entre eux. Alors ils admettent un
diviseur commun d non inversible. Il existe d’, d” € A tels que p = dd’ et ¢ = dd". Or p
et ¢ sont irréductibles, donc d’ et d” sont inversibles. Alors ¢ = p(d'~'d") est associé &
p, ce qui est faux. Ainsi, p et ¢ sont premiers entre eux.

19°) a) ¢ (1) = (2) : Supposons que a et b sont premiers entre eux.

Id({a,b}) est un idéal et A est principal,

donc il existe d € A tel que aA + bA = 1d({a,b}) = dA.

aA C (aA+ bA), donc aA C dA, donc d’apres la question 11, d|a. De méme, d divise
b, or a et b sont premiers entre eux, donc d est inversible. Alors, pour tout z € A,
r=d(d'z) € dA, donc A = dA =1d({a,b}).

o (2) = (3) : Supposons que Id({a,b}) = A.

Alors 14, € A =aA + bA, donc il existe u,v € A tels que 14, = au + bv.

o (3) = (1) : Supposons qu'il existe u,v € A tels que ua + vb = 14.

Soit d un diviseur commun de a et b. Il existe d’,d” € A tels que a = dd' et b = dd".
Alors 14 = d(ud' 4+ vd"), donc d est inversible. Ainsi, a et b sont premiers entre eux.

19°) b) D’apres (3), il existe u,v,u',v" € A tels que ua +vb =14 = v'a+v'c.
En prenant le produit de ces deux égalités, on obtient :

14 = (ua + vb)(v'a+v'c) = (vv')be + a(uv'a + wv'c + vbu'),

donc a et bc sont premiers entre eux.

19°) c) a divise bc, donc d’apres la question 11, (be)A C aA.
a divise également ac, donc (ac)A C aA. Ainsi, [(bc)A + (ac)A] C aA.



Or (bc)A + (ac)A = {bcu + acv Ju,v € A} = {cx |/ © € bA+ aA}. De plus a et b sont
premiers entre eux, donc d’apres (2), bA + aA = A, donc (bc)A + (ac)A = cA, ce qui
prouve que cA C aA, c’est-a-dire que a divise c. Il s’agit du lemme de Gauss.

Partie IV : Anneaux noethériens

20°) D’apres le cours, Z est principal, c’est-a-dire que chacun de ses idéaux est en-
gendré par un élément dont a fortiori est de type fini. Ainsi Z est bien un anneau
noethérien.

21°) © (1) = (2) : Supposons que A est un anneau noethérien.

Soit (I,)nen une suite croissante d’idéaux de A. Posons [ = U I,,. D’apres la ques-

neN
tion 2, I est un idéal, or A est noethérien, donc il existe by,...,b, € A tel que

I'=1d({b1,...,by}).
Pour tout k € N, b;, € I, donc il existe n, € N tel que b, € I, .

Posons N = max n;. La suite ([,) étant croissante, pour tout k € N,,, by € Iy. Ainsi,
<i<p

{b1,...,b,} C Iy, or Iy est un idéal, donc I C Iy.

Soit n > N. Alors I,, C I C Iy. De plus, n > N, donc Iy C I,,. Ainsi Iy = I,.

o (2) = (3) : Soit Z un ensemble non vide d’idéaux de A. Supposons qu’il ne possede
aucun élément maximal.

7 est non vide, donc il existe Iy € Z.

Iy n’est pas maximal dans Z, donc il existe I; € Z tel que Iy C I et Iy # 1.
Supposons construite une suite finie (ly, ..., I,) strictement croissante d’éléments de
7. I, n’est pas maximal dans Z, donc il existe 1,11 € Z tel que I, C I,y et I, # I,11.
On construit ainsi par récurrence une suite strictement croissante (I,,),eny d’idéaux de
A, ce qui contredit (2). Ainsi, I’ensemble Z posséde bien un élément maximal.

o (3) = (1) : On suppose que tout ensemble non vide d’idéaux de A possede au
moins un élément maximal au sens de I'inclusion. Soit I un idéal de A.

Notons Z I'ensemble des idéaux de A de type fini qui sont inclus dans I.

{0} est un idéal de A, il est de type fini car {0} = Id({0}), or {0} C I, donc Z est non
vide. Il possede donc un élément maximal que I'on note J. Par construction, J C I et
il existe by,...,b, € I tels que J = Id({by,...,b,}).

Supposons que J # I. Alorsil existe a € I tel que a ¢ J. Posons K = Id({b1, ..., by, a}).
K est un idéal de A inclus dans I, de type fini, donc K € Z. K contient J, a € K et
a ¢ J, donc K contient strictement J ce qui contredit la maximalité de J.

Ainsi, I = J est bien de type fini.

22°) a) On suppose que I est un idéal de Z[i/n].

o do(I) est un groupe additif en tant qu’intersection de sous-groupes de C. De plus,
pour tout z € I NZ, pour tout k € Z, kx € ZN I, car I est un idéal de Z[iy/n], lequel
contient Z. Ainsi, do(I) est un idéal de Z.



o Soit b,c € di(I) et k € Z. 1l existe a,a’ € Z tels que a+iby/n € I et o’ +icy/n € 1.
Alors (a+d') +i(b+V)y/n €I, donc b+ b € dy(I).

De plus, ka + i(kb)y/n = k(a + iby/n) € I, donc kb € dy(1).

Ceci prouve que dq(I) est un idéal de Z.

o Soit k € do(I) = INZ. iy/n € Z[iy/n] et I est un idéal, donc kiy/n € I, ce qui
prouve que k € di(I). Ainsi, do(I) C di(I).

22°) b) Soit « € J. Posons x = a+ iby/n, avec a,b € Z. Alors b € dy(J) = dy(I), donc
il existe @’ € Z tel que a’ + iby/n € 1.

I C J,donc a’'+iby/n € J, puis a—a’ = (a+iby/n)—(a’+iby/n) € JNZ = do(J) = do(I).
On en déduit que x = (¢’ +iy/n)+ (a —a’) € I, donc J C I. Or I C J, donc I = J.

22°) c¢) Soit (Ix)ken une suite croissante d’idéaux de Z[iy/n].

Pour tout k € N, I} C Ij41, donc on vérifie que do(Ix) C do(Ix+1) et di(Ix) C di(Lgs1)-
Ainsi (do(Ix))ken et (di(Ix))ren sont deux suites croissantes d’idéaux de Z, or Z est
anneau noethérien, donc il existe Ny, N; € N tels que, pour tout k£ > Ny,

do(]k> = dO(]No) et pour tout k Z Nl, dl(]k) = dl(]Nl)-

Posons N = max(Ny, N7). Soit k € N avec k > N. On sait que I}, C Ij4q,

do(I) = do(In,) = do(Ig41) et di(I) = di(In,) = d1(Ip41), donc d’apreés la question
précédente, I, = Ij.q.

Ainsi, la suite (Ix)ren est stationnaire, ce qui prouve que Z[iy/n] est noethérien.

23°) Lorsque a € A, notons P(a) la propriété suivante : a est non nul et a ne peut
T

pas s’écrire sous la forme qui, ounu € U(A), r € Net py,...,p, sont des éléments
irréductibles de A. -
Posons Z I'ensemble des idéaux I de A tels qu’il existe a € A vérifiant [ = aA et P(a).
Supposons que Z est non vide.
A étant noethérien, d’apres la question 21, 7 possede un élément maximal, que 1'on
notera .J.
Par définition de Z, Il existe a € A tel que P(a) et J = aA.

0

Si a était inversible, on pourrait écrire a = a H pi (produit vide), ce qui est faux.

i=1
1

Si a était irréductible, on pourrait écrire a = 14 H p; en posant p; = a, ce qui est faux.
i=1

Donc il existe u,v € A\ U(A) tels que a = uv.

u divise a, donc aA C uA. Supposons que aA = uA. Alors u et a sont associés, donc il

existe A € U(A) tel que a = Au. On en déduit que (A — v)u = 04, or A est integre et

u# 04 (car a # 04), donc v = X € U(A), ce qui est faux.

Ainsi uA contient strictement aA. Or aA est maximal dans Z, donc uA ¢ 7.

Il existe donc o € U(A), r € N, py,...,p, irréductibles dans A tels que u = aHp,-.
i=1



r+s
De méme, il existe § € U(A), s €N, py1,. .., pras irréductibles tels que v = H D;.

i=r+1
r+s

On en déduit que a = uwv = (af) H pi, ce qui contredit la propriété P(a).
i=1
Ainsi Z est vide. Soit alors a € A\ {04}. aA ¢ Z, donc il existe u € U(A), r € N et

des éléments irréductibles pq,...,p, de A tels que a = u H Di-
i=1

24°) A étant principal, il est noethérien, donc la partie ”existence” de la propriété est
établie par la question précédente. Il reste a prouver l'unicité. Soit a € A\ {04}.
On suppose qu'il existe deux familles (v,),ep et (w,),ep d’entiers naturels, presque
nulles, et u,v € U(A) tels que (1) : a=wu Hp”” =0 Hp“’p.

pEP pEP
Soit ¢ € P. Supposons que v, # w,.
Sans perte de généralité, on peut supposer que v, > wj.
A étant integre, on peut simplifier I’égalité (1) par ¢*¢ (qui est bien non nul), donc

v H pwp — uqvq*wq H p”p.

pEP pEP
PF#q PF#q
. w
v, —wy > 1, donc ¢ divise v Hp P,
pPEP
PFq

Lorsque p € P avec p # ¢, par construction de P, p et ¢ ne sont pas associés, donc
d’apres la question 18, p et ¢ sont premiers entre eux. Alors, d’apres la question 19.b,
étendue par récurrence a un produit fini d’éléments premiers avec a, on en déduit que
q est premier avec H p*?, donc d’apres le lemme de Gauss, démontré en question 19.c,

pEP
P#q

q divise v € U(A). Ainsi, il existe r € A tel que v = gr. Alors g(rv™') = 1, donc ¢ est
inversible, ce qui est faux car ¢ est irréductible.

Ainsi, pour tout ¢ € P, v, = w,, ce qui prouve 'unicité.

25°) (2+iv5)(2—iv5) = 22— (iv/5)? = 9 = 32, donc d’apres la question 17, 9 admet
dans Z[iv/5] deux décompositions différentes en produit d’éléments irréductibles.

La propriété d’unicité n’étant pas vérifiée, Z[iv/5] n’est pas principal.



