DM 32
Une construction de RR.

Il s’agit d’un sujet supplémentaire pour votre travail personnel.
Il n’est pas a rendre.
Un corrigé sera fourni le mercredi 4 février 2026.

— Les ensembles de nombres N, Z et Q sont supposés connus, avec leurs additions,
multplications et relations d’ordre usuels. En particulier, la notion de valeur
absolue dans Q est connue, avec son inégalité triangulaire.

— Au contraire, I'ensemble R des réels n’est pas supposé connu. En effet, 'objectif
de ce probleme est de construire R a partir de Q. En particulier, la théorie des
séries de réels n’est pas utilisable.

Partie I : Non complétude de Q

Si (Un)nen € QY, on dit que (u,) est une suite de Cauchy si et seulement si

VeeQ), ANeN, Vp> N, Vg> N, |u, —uy| <ce.

1°)  Soit (u,) une suite de Cauchy de rationnels. Montrer que cette suite est bornée,
c’est-a~dire qu'il existe M € Q tel que, pour tout n € N, |u,| < M.
2°) Montrer que 1’ensemble des suites de Cauchy de QY est un Q-espace vectoriel.

Soit (u,) € QY et £ € Q. On dit que u,, tend vers ¢ lorsque n tend vers +o0o, et on note

u, — ¢ (dans Q) si et seulement si
n—+o0o

VeeQ;, ANeN, Vn> N, |u, — (| <ce.

1
3°)  Montrer que — — 0 (dans Q).
n n——+oo

4°)  Soit (u,) € QVet £ € Q.
Si uy, —+> ¢ (dans Q), montrer que (u,) est une suite de Cauchy de Q.
n——+0oo

Si (u,) € QY on dit que la suite (u,) de rationnels est convergente dans Q si et

seulement si il existe £ € Q tel que u, — ¢ (dans Q). On note alors £ = lim w,,.
n—-+o0o n— 00
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5°) a) Montrer que I'ensemble C des suites convergentes de rationnels est

un Q-espace vectoriel.

b) Pour tout (u,)nen € C, on pose f((up)nen) = lm wu,.
n——+0o0

Montrer que f est une forme linéaire.

c) Si (u,) et (v,) sont deux suites de QV, on convient que
(un) < (vp) <= [Vn e N, u, <v,.

Montrer que 'on définit ainsi un ordre partiel sur Q.
Montrer que f est croissante de C dans Q lorsque 'on munit C de la restriction de cet
ordre a C.

~ (=1
R

Pour tout n € N, posons s,, =
k=0

6°) Montrer que (s,) est une suite de Cauchy.

Afin de montrer que (s,,) ne converge pas dans Q, on raisonne par I’absurde. On suppose
a
donc qu'il existe a € Z et b € N* tel que s,, — 5 dans Q.

n—-+00
a
7°) Montrer que, pour tout n € N, 0 < 59,11 < 7 < Sop.

8°) En multipliant ces inégalités par (2n)!b, obtenir une contradiction et conclure.

Partie II : définition du corps des réels

On note S I'ensemble des suites de Cauchy de Q.

Lorsque (uy), (v,) € S, on pose (uy,) X (v,) = (upvy).

9°) Montrer que 'on vient de définir une loi interne sur S.

En déduire que S est une Q-algebre commutative.
On pose I = {(u,) € QY / u, - 0 (dans Q)}.
n——+0o0

10°) Montrer que I est un idéal et un sous-espace vectoriel de S.

11°) Soit A une Q-algebre commutative et J une partie de A.
On suppose que J est un idéal ainsi qu'un sous-espace vectoriel de A.
Pour tout a,b € A, on convient que a Rb<=b—a € J.

a) Montrer que R est une relation d’équivalence sur A.
Pour tout a € A, préciser la classe d’équivalence de a, que ’on notera a.

On note A/J l'ensemble des classes d’équivalence de R.
Pour tout a,b € A et « € Q, on convient quea+b=a+b, axb=a X bet a.a =a.a.

b) Montrer que A/J muni de ces trois lois est une Q-algebre commutative.

En particulier, S/ est une Q-algebre commutative.



Pour toute la suite, on pose R = S§/I.
Les éléments de R seront appelés des réels.

12°) Soit (z,,) € S. On suppose que la suite (z,,) ne converge pas vers 0 dans Q.
a) Montrer quil existe o € Q% et ng € N tels que, pour tout n > ng, a < |z,

b) On définit la suite (y,) de rationnels en convenant que :

1
pour tout n < ng, y, = 0 et pour tout n > ng, y, = —.

Montrer que (y,) € S. !

13°) Montrer que R est un corps.

Pour tout x € Q, on note j(x) la classe d’équivalence de la suite constante égale a x.
14°) Montrer que j est un morphisme injectif de Q-algebres de Q dans R.

Pour la suite, on identifie Q et j(Q). Plus précisément, on identifie le rationnel z avec
le réel j(z), c’est-a~dire que 1'on accepte d’écrire x = j(x). Ainsi, Q est une partie de
R et méme un sous-corps de R (on ne demande pas de le démontrer).

Partie III : ’ordre naturel sur R

Soit € R. Il existe donc (z,,) € S tel que x = (x,,). On convient que x est strictement
positif si et seulement si il existe o € Q7 et ng € N tels que, pour tout n > ng, , > a.

15°) Montrer que cette définition est correcte.

Soit x,y € R. On convient que x < y si et seulement si z = y ou bien y — x est un réel
strictement positif.

16°) Montrer que 'on définit ainsi une relation d’ordre sur R.
17°) Montrer que j est une application croissante de Q dans R.

Ainsi, apres identification de Q avec j(Q), l'ordre que I'on vient de définir sur R pro-
longe 'ordre naturel sur Q.

18°)  Soit (z,) € Set ¢ : N — N une application strictement croissante.
Montrer que (z4()) € S et que (z,) = (Ty@m))-

19°) Soit x € R.
On suppose que x et —x ne sont pas strictement positifs. Montrer que x est nul.
En déduire que 'ordre que I'on a construit sur R est total.

20°)  a) Montrer que, pour tout z,y,z E R,z <y=—=ax+ 2 < y+ 2.
b) Montrer que, pour tout z,y € R, (x > 0) A (y > 0) = zy > 0.

On en déduit facilement, et on ne demande pas de le démontrer, que la relation < sur R
vérifie les propriétés usuelles relativement a 1’addition, la soustraction, la multiplication
et la division.



21°) Montrer que Q est dense dans R, c’est-a-dire que, pour tout z,y € R avec
x <y, il existe a € Q tel que x < a < y.

22°) Pour tout € R, montrer qu’il existe un unique entier relatif, que I’on notera
|z] tel que |z| <z < |z]+ 1.

Remarque : cette propriété est bien str supposée connue lorsque x € Q.

23°) Montrer que R est archimédien, c¢’est-a-dire que,

pour tout x,y € R avec x > 0 et y > 0, il existe n € N tel que nz > y.



