
DM 32
Une construction de R.

Il s’agit d’un sujet supplémentaire pour votre travail personnel.
Il n’est pas à rendre.
Un corrigé sera fourni le mercredi 4 février 2026.

— Les ensembles de nombres N, Z et Q sont supposés connus, avec leurs additions,
multplications et relations d’ordre usuels. En particulier, la notion de valeur
absolue dans Q est connue, avec son inégalité triangulaire.

— Au contraire, l’ensemble R des réels n’est pas supposé connu. En effet, l’objectif
de ce problème est de construire R à partir de Q. En particulier, la théorie des
séries de réels n’est pas utilisable.

Partie I : Non complétude de Q
Si (un)n∈N ∈ QN, on dit que (un) est une suite de Cauchy si et seulement si

∀ε ∈ Q∗
+, ∃N ∈ N, ∀p ≥ N, ∀q ≥ N, |up − uq| ≤ ε.

1◦) Soit (un) une suite de Cauchy de rationnels. Montrer que cette suite est bornée,
c’est-à-dire qu’il existe M ∈ Q tel que, pour tout n ∈ N, |un| ≤ M .

2◦) Montrer que l’ensemble des suites de Cauchy de QN est un Q-espace vectoriel.

Soit (un) ∈ QN et ℓ ∈ Q. On dit que un tend vers ℓ lorsque n tend vers +∞, et on note
un −→

n→+∞
ℓ (dans Q) si et seulement si

∀ε ∈ Q∗
+, ∃N ∈ N, ∀n ≥ N, |un − ℓ| ≤ ε.

3◦) Montrer que
1

n
−→

n→+∞
0 (dans Q).

4◦) Soit (un) ∈ QN et ℓ ∈ Q.
Si un −→

n→+∞
ℓ (dans Q), montrer que (un) est une suite de Cauchy de QN.

Si (un) ∈ QN, on dit que la suite (un) de rationnels est convergente dans Q si et
seulement si il existe ℓ ∈ Q tel que un −→

n→+∞
ℓ (dans Q). On note alors ℓ = lim

n→+∞
un.
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5◦) a) Montrer que l’ensemble C des suites convergentes de rationnels est
un Q-espace vectoriel.

b) Pour tout (un)n∈N ∈ C, on pose f((un)n∈N) = lim
n→+∞

un.

Montrer que f est une forme linéaire.

c) Si (un) et (vn) sont deux suites de QN, on convient que

(un) ≤ (vn) ⇐⇒ [∀n ∈ N, un ≤ vn].

Montrer que l’on définit ainsi un ordre partiel sur QN.
Montrer que f est croissante de C dans Q lorsque l’on munit C de la restriction de cet
ordre à C.

Pour tout n ∈ N, posons sn =
n∑

k=0

(−1)k

k!
.

6◦) Montrer que (sn) est une suite de Cauchy.

Afin de montrer que (sn) ne converge pas dansQ, on raisonne par l’absurde. On suppose

donc qu’il existe a ∈ Z et b ∈ N∗ tel que sn −→
n→+∞

a

b
dans Q.

7◦) Montrer que, pour tout n ∈ N, 0 ≤ s2n+1 ≤
a

b
≤ s2n.

8◦) En multipliant ces inégalités par (2n)!b, obtenir une contradiction et conclure.

Partie II : définition du corps des réels

On note S l’ensemble des suites de Cauchy de QN.
Lorsque (un), (vn) ∈ S, on pose (un)× (vn) = (unvn).

9◦) Montrer que l’on vient de définir une loi interne sur S.
En déduire que S est une Q-algèbre commutative.

On pose I = {(un) ∈ QN / un −→
n→+∞

0 (dans Q)}.

10◦) Montrer que I est un idéal et un sous-espace vectoriel de S.

11◦) Soit A une Q-algèbre commutative et J une partie de A.
On suppose que J est un idéal ainsi qu’un sous-espace vectoriel de A.
Pour tout a, b ∈ A, on convient que a R b ⇐⇒ b− a ∈ J .

a) Montrer que R est une relation d’équivalence sur A.
Pour tout a ∈ A, préciser la classe d’équivalence de a, que l’on notera a.

On note A/J l’ensemble des classes d’équivalence de R.
Pour tout a, b ∈ A et α ∈ Q, on convient que a+ b = a+ b, a× b = a× b et α.a = α.a.

b) Montrer que A/J muni de ces trois lois est une Q-algèbre commutative.

En particulier, S/I est une Q-algèbre commutative.
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Pour toute la suite, on pose R = S/I.

Les éléments de R seront appelés des réels.

12◦) Soit (xn) ∈ S. On suppose que la suite (xn) ne converge pas vers 0 dans Q.
a) Montrer qu’il existe α ∈ Q∗

+ et n0 ∈ N tels que, pour tout n ≥ n0, α ≤ |xn|.
b) On définit la suite (yn) de rationnels en convenant que :

pour tout n < n0, yn = 0 et pour tout n ≥ n0, yn =
1

xn

.

Montrer que (yn) ∈ S.

13◦) Montrer que R est un corps.

Pour tout x ∈ Q, on note j(x) la classe d’équivalence de la suite constante égale à x.

14◦) Montrer que j est un morphisme injectif de Q-algèbres de Q dans R.

Pour la suite, on identifie Q et j(Q). Plus précisément, on identifie le rationnel x avec
le réel j(x), c’est-à-dire que l’on accepte d’écrire x = j(x). Ainsi, Q est une partie de
R et même un sous-corps de R (on ne demande pas de le démontrer).

Partie III : l’ordre naturel sur R
Soit x ∈ R. Il existe donc (xn) ∈ S tel que x = (xn). On convient que x est strictement
positif si et seulement si il existe α ∈ Q∗

+ et n0 ∈ N tels que, pour tout n ≥ n0, xn ≥ α.

15◦) Montrer que cette définition est correcte.

Soit x, y ∈ R. On convient que x ≤ y si et seulement si x = y ou bien y− x est un réel
strictement positif.

16◦) Montrer que l’on définit ainsi une relation d’ordre sur R.

17◦) Montrer que j est une application croissante de Q dans R.

Ainsi, après identification de Q avec j(Q), l’ordre que l’on vient de définir sur R pro-
longe l’ordre naturel sur Q.

18◦) Soit (xn) ∈ S et φ : N −→ N une application strictement croissante.
Montrer que (xφ(n)) ∈ S et que (xn) = (xφ(n)).

19◦) Soit x ∈ R.
On suppose que x et −x ne sont pas strictement positifs. Montrer que x est nul.
En déduire que l’ordre que l’on a construit sur R est total.

20◦) a) Montrer que, pour tout x, y, z ∈ R, x ≤ y =⇒ x+ z ≤ y + z.
b) Montrer que, pour tout x, y ∈ R, (x ≥ 0) ∧ (y ≥ 0) =⇒ xy ≥ 0.

On en déduit facilement, et on ne demande pas de le démontrer, que la relation ≤ sur R
vérifie les propriétés usuelles relativement à l’addition, la soustraction, la multiplication
et la division.
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21◦) Montrer que Q est dense dans R, c’est-à-dire que, pour tout x, y ∈ R avec
x < y, il existe α ∈ Q tel que x < α < y.

22◦) Pour tout x ∈ R, montrer qu’il existe un unique entier relatif, que l’on notera
⌊x⌋ tel que ⌊x⌋ ≤ x < ⌊x⌋+ 1.
Remarque : cette propriété est bien sûr supposée connue lorsque x ∈ Q.

23◦) Montrer que R est archimédien, c’est-à-dire que,
pour tout x, y ∈ R avec x > 0 et y > 0, il existe n ∈ N tel que nx > y.
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