
Concours Centrale - Supélec 2009

Épreuve : MATHÉMATIQUES I Filière PSI

Partie I - Réorganisation des termes d’une série
semi-convergente

On se donne un réel x. On note, pour n ∈ N∗, un =
(−1)n

n
et on se propose de

construire une bijection s de N∗ dans N∗ telle que
∞

∑
n=1

us(n) = x.

I.A - On définit simultanément par récurrence trois suites d’entiers naturels (pn)n>0,
(qn)n>0 et (sn)n>1 et une suite (Sn)n>0 de réels de la manière suivante :

• p0 = q0 = 0, S0 = 0
• pour tout n ∈ N, si Sn > x alors :

qn+1 = 1 + qn, pn+1 = pn, sn+1 = 2qn+1 − 1
sinon : qn+1 = qn, pn+1 = 1 + pn, sn+1 = 2pn+1

Dans les deux cas : Sn+1 = Sn + usn+1

On aura intérêt à comprendre la construction précédente sous forme algorithmique.
I.A.1) Écrire une fonction suite qui prend en argument x et l’entier n et qui ren-
voie l’affichage de la liste (ou tableau si l’on préfère) [s1, s2, . . . , sn].
I.A.2) En modifiant la fonction précédente de façon à ce qu’elle retourne le dessin
simultané de la liste des points de coordonnées (n, Sn)n670 et de la droite horizon-
tale d’ordonnée x (on ne demande pas d’écrire cette nouvelle fonction), on obtient
pour x = −1, n = 70 le dessin suivant :
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Que constate-t-on pour la suite (Sn)n∈N ? Expliquer le principe de l’algorithme.

Calculatrices autorisées

Définitions et notations

On rappelle le résultat suivant : Toute partie X non vide de N possède un plus petit
élément noté min X.

On rappelle les points suivants de Maple :

• La liste contenant l’unique élément a est notée [a].
• Le couple (a, b) sera représenté par la liste [a, b].
• Pour ajouter l’élément x (qui peut être un couple) en queue de la liste

L on invoque : L := [op(L), x]

Et pour Mathematica :

• La liste contenant l’unique élément a est notée {a}.
• Le couple (a, b) sera représenté par la liste {a,b}.
• Pour ajouter l’élément x (qui peut être un couple) en queue de la liste

L on invoque : L=Append[L,x]

On dira qu’une série à termes réels est semi-convergente si elle converge sans
converger absolument.

On dira qu’une suite (an)n∈N à valeurs complexes vérifie la propriété (P1) si pour
toute suite complexe (un)n∈N bornée, la série ∑ an un converge.

On dira qu’une suite (an)n∈N à valeurs réelles vérifie la propriété (P2) si pour
toute suite réelle (un)n∈N, la convergence de la série ∑ un entraîne celle de la série

∑ an un.

L’objectif du problème est d’étudier, en particulier à l’aide de méthodes algorith-
miques, des propriétés et des contre-exemples de la théorie des suites et des séries
et de caractériser simplement les suites qui vérifient (P1) ou (P2).
Les parties I et II sont indépendantes.
Les correcteurs tiendront compte de la présentation, particulièrement de la position
correcte des indices.
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MATHÉMATIQUES I Filière PSI

I.E.2) Donner un développement analogue pour
n

∑
k=1

1
2k − 1

en fonction de γ.

I.E.3)
a) Justifier, pour tout naturel n tel que pn > 1 et qn > 1, l’égalité :

Sn =
pn

∑
k=1

1
2k

−
qn

∑
k=1

1
2k − 1

·

b) En déduire que :

Sn =
1
2

ln
(

pn

n − pn

)
− ln 2 + o(1).

c) En déduire un équivalent simple de pn et de qn.
d) Déterminer la limite de :

|us(1)|+ |us(2)|+ · · ·+ |us(n)|
|u1|+ |u2|+ · · ·+ |un|

quand n → +∞.

Partie II - Suites vérifiant (P1) et (P2)

II.A - Montrer qu’une suite complexe (an)n∈N telle que la série ∑ an converge ab-
solument vérifie (P1).

II.B - Soit (an)n∈N une suite réelle telle que la série ∑ |an+1 − an| converge.
II.B.1) Prouver que la suite (an)n∈N possède une limite.
II.B.2) Soit (un)n∈N une suite réelle telle que la série ∑ un converge.
On note Un = u0 + u1 + · · ·+ un. Prouver, pour tout entier naturel N, la relation :

N

∑
n=0

anun =
N−1

∑
n=0

(an − an+1)Un + aNUN .

En déduire que la suite (an)n∈N vérifie (P2).

II.C - Soit (an)n∈N une suite de nombres complexes telle que la série ∑ |an| diverge.
Construire une suite (un)n∈N de nombres complexes de module 1 telle que la série
∑ an un diverge. Caractériser les suites complexes (an)n∈N vérifiant (P1).

I.B - On pose dorénavant, pour tout n ∈ N, s(n) = sn.
Prouver, pour n > 1, les propriétés suivantes :

{s(1), s(2), . . . , s(n)} = {2, 4, . . . , 2pn} ∪ {1, 3, . . . , 2qn − 1}
pn + qn = n
Sn = us(1) + · · ·+ us(n)

En déduire que s est injective.

I.C -
I.C.1) Démontrer qu’une suite d’entiers convergente est constante à partir d’un
certain rang.
I.C.2) On se propose de démontrer que la suite (pn)n∈N croît vers +∞.
a) On suppose dans un premier temps que cette suite est majorée.
Utiliser le I.C.1) pour démontrer qu’il existe un entier n0 tel que pour n > n0,

Sn > x et Sn = Sn0 −
n−1

∑
k=n0

1
2qn0 + 2k − 2n0 + 1

·

En déduire une contradiction.
b) Déduire du raisonnement précédent que la suite (pn)n∈N diverge vers +∞.
I.C.3) Justifier rapidemment que (qn) tend vers +∞.
I.C.4) Déduire de ce qui précède que s est une bijection de N∗ sur lui-même.

I.D -
I.D.1) Démontrer que, pour tout entier n > 0, on a :

|Sn+1 − x| 6 |Sn − x| ou |Sn+1 − x| 6 |us(n+1)|
I.D.2) En déduire que pour tout naturel N, il existe un entier n > N tel que

|Sn+1 − x| 6 |us(n+1)|
I.D.3) Justifier l’existence d’un entier n0 tel que pour n > n0, pn > 1 et qn > 1.
I.D.4) Soit n > n0. On note vn = max

(
|Sn − x|, |u2pn+1 |, |u2qn+1−1|

)
.

Démontrer que (vn)n>n0 est décroissante. En déduire qu’elle converge vers 0.
I.D.5) Démontrer que (Sn) converge vers x et conclure.

I.E -
I.E.1) Démontrer l’existence d’une constante γ > 0 telle que :

n

∑
k=1

1
k

= ln n + γ + o(1) quand n → +∞.
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MATHÉMATIQUES I Filière PSI

b) Soit k > 3 un indice tel que nk − 2 > nk−1. Prouver l’inégalité :

k − 1 6 Ank−1 6 k − 1 +
1

2k−1 nk
En déduire que nk+1 − 2 > nk.

c) Calculer explicitement la différence Ank+1−1 − Ank−1 en fonction de k, nk et nk+1.
En déduire, pour k > 3, l’ inégalité :

1
2k ln

(
nk+1 + 1
nk + 1

)
6 Ank+1−1 − Ank−1 6

1
2k ln

(
nk+1
nk

)
·

d) Déduire des deux questions précédentes, pour k > 3, l’ inégalité :

2k − 2
nk

6 ln
(

nk+1
nk

)
6 2k +

1
nk+1

− ln
(

1 +
1

nk+1

)
+ ln

(
1 +

1
nk

)
·

e) En utilisant une série convenable, étudier la convergence de la suite de terme
général (ln nk − 2k) ; puis prouver l’existence d’une constante C > 0 telle que :

nk ∼
k→+∞

C exp
(

2k
)

.

en déduire que : Ank
∼

k→+∞

ln(ln nk)
ln 2

·

puis que : An ∼
n→+∞

ln(ln n)
ln 2

·

Que peut-on penser de l’exécution de la fonction indexer ?

II.E - Soit (an)n∈N une suite de réels quelconques telle que, pour toute suite (εn)n∈N
de réels tendant vers 0, la série ∑ εn an converge.

a) Prouver que la série ∑ εn |an| converge.

b) En déduire que la série ∑ |an| converge.

II.F - Soit maintenant (an)n∈N une suite de réels telle que, pour toute suite (xn)n∈N,

la convergence de la série ∑ xn entraîne la convergence de la série ∑ an xn.
II.F.1) Prouver que la suite (an)n∈N est bornée.
II.F.2) Soit (εn)n∈N une suite réelle de limite nulle. Prouver la convergence de la

série ∑ εn (an+1 − an).

II.F.3) Prouver que la série ∑ |an+1 − an| converge.
II.F.4) Caractériser les suites vérifiant (P2).

• • • FIN • • •

II.D - Soit (an)n∈N une suite de réels positifs telle que la série ∑ an diverge. On
se propose de construire une suite (εn)n∈N tendant vers 0 telle que la série ∑ an εn
diverge. Pour cela on définit par récurrence trois suites (pn)n∈N, (εn)n∈N et (An)n∈N
comme suit :

• p0 = 0, ε0 = 1, A0 = a0.

• Pour n > 1 :

{
pn = 1 + pn−1 et εn =

εn−1

2
si An−1 > pn−1

pn = pn−1 et εn = εn−1 sinon

Dans tous les cas : An = An−1 + an εn.
II.D.1) Dans cette question seulement on suppose que a0 = 1 et, pour tout n > 1,

an =
9

4(n + 1)
.

Déterminer les 6 premiers termes des suites (pn)n∈N, (εn)n∈N et (An)n∈N.
Ecrire une procédure exemple qui prend en argument l’entier n et retourne la liste :

• en Maple : [[0, p0, ε0, A0], [1, p1, ε1, A1], . . . , [n, pn, εn, An]]
• en Mathematica :

{
{0, p0, ε0, A0}, {1, p1, ε1, A1}, . . . , {n, pn, εn, An}

}
II.D.2)
a) Démontrer que pour tout naturel N, il existe un entier n > N tel que :

pn = 1 + pn−1 (on pourra raisonner par l’absurde).
En déduire qu’on peut définir une suite (nk)k∈N strictement croissante d’entiers
par : {

n0 = 0
nk+1 = min {n ∈ N / n > nk et pn = 1 + pn−1} pour k > 0

.

b) Dans le cas général, calculer pnk , εnk .

Prouver que la suite (εn)n∈N tend vers 0 et que la série ∑ εn an diverge.

c) Déterminer n1,n2 et n3 pour l’exemple de la question III.B.1).

II.D.3) Dans cette question seulement on suppose que : ∀n ∈ N, an =
1

n + 1
·

a) Écrire une fonction indexer qui prend en argument l’entier n et qui retourne :
• en Maple, la liste

[
[0, n0], [1, n1], . . . , [q, nq]

]
• en Mathematica la liste

{
{0, n0}, {1, n1}, . . . , {q, nq}

}
où q est le plus grand des entiers k tel que nk 6 n. Par exemple l’appel de indexer(10000)
retourne :[

[0, 0], [1, 1], [2, 2], [3, 51]
] (

resp.
{
{0, 0}, {1, 1}, {2, 2}, {3, 51}

})
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