
DM 34 : Calculs de sommes de séries

On rappelle que, lorsque n et k sont deux entiers tels que 0 ≤ k ≤ n,

(
n

k

)
désigne le

nombre de parties de {1, . . . , n} possédant k éléments.

Dans tout ce problème, a = (an)n∈N désigne une suite de complexes.
On lui associe la suite a∗ = (a∗n)n∈N définie par :

∀n ∈ N, a∗n =
1

2n

n∑
k=0

(
n

k

)
ak.

L’objet des parties I à III est de comparer les propriétés des séries
∑
n≥0

an et
∑
n≥0

a∗n.

Les parties IV et V s’intéressent à des séries entières.

Partie I : deux exemples.

1◦) Cas d’une suite constante : Soit α ∈ C.
On suppose que pour tout n ∈ N, an = α.
Déterminer les natures des séries

∑
an et

∑
a∗n.

2◦) Cas d’une suite géométrique : Soit z ∈ C.
On suppose que pour tout n ∈ N, an = zn.

— Préciser en fonction de z les natures des séries
∑

an et
∑

a∗n et, en cas de
convergence, calculer leurs sommes.

— La convergence de
∑

a∗n implique-t-elle celle de
∑

an ?
— La convergence de

∑
an implique-t-elle celle de

∑
a∗n ?

— Lorsque z = eiθ avec θ ∈ R, en cas de convergence, calculer les parties réelles et

imaginaires de
+∞∑
n=0

a∗n.

Partie II : Comparaison entre (an) et (a∗n).

3◦) Pour tout k ∈ N, montrer que
1

2n

(
n

k

)
−→

n→+∞
0.
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4◦) On suppose que an tend vers 0 lorsque n tend vers +∞.
— Quel résultat du cours permet d’affirmer qu’il existe M ∈ R∗

+ tel que, pour tout
n ∈ N, |an| ≤ M ?

— Montrer que, pour tout ε ∈ R∗
+, il existe N ∈ N tel que, pour tout n ≥ N ,

|a∗n| ≤
M

2n

N−1∑
k=0

(
n

k

)
+

1

2n

n∑
k=N

(
n

k

)
ε

2
.

— En déduire que a∗n tend vers 0 lorsque n tend vers +∞.

5◦) Soit ℓ ∈ C. On suppose que an tend vers ℓ lorsque n tend vers +∞.
Quelle est la limite de a∗n lorsque n tend vers +∞ ?

6◦) La convergence de la suite (an) est-elle équivalente à la convergence de la suite
(a∗n) ?

Partie III : Comparaison entre
∑

an et
∑

a∗n.

Pour tout n ∈ N, on pose Sn =
n∑

k=0

ak et Tn =
n∑

k=0

a∗k.

7◦) Montrer que, pour tout n ∈ N, Tn =
1

2n

n∑
k=0

(
n+ 1

k + 1

)
Sk.

8◦) On suppose que la série
∑

an est convergente. Montrer que la série
∑

a∗n est

convergente et exprimer la somme
+∞∑
n=0

a∗n en fonction de la somme
+∞∑
n=0

an.

Partie IV : Rayon de convergence d’une série entière.

La série entière associée à la suite (an) est l’application z 7−→
∑

anz
n, de C dans

l’ensemble des séries de complexes.

9◦) Soit ρ ∈ R∗
+ tel que la suite (anρ

n)n∈N est bornée.
Montrer que, pour tout z ∈ C tel que |z| < ρ, la série

∑
anz

n est convergente.

On note A l’ensemble des ρ ∈ R+ tel que la suite (anρ
n) est bornée.

On pose R = sup(A) avec R ∈ R+ ∪ {+∞}.

10◦) Soit z ∈ C.
Lorsque |z| < R, montrer que

∑
anz

n est absolument convergente.
Lorsque |z| > R, montrer que la suite (anz

n) n’est pas bornée.

11◦) Montrer qu’il existe un unique R ∈ R+ ∪ {+∞} tel que, pour tout z ∈ C, si
|z| < R alors

∑
anz

n converge et si |z| > R alors
∑

anz
n diverge.

On dit que R est le rayon de convergence de la série entière
∑

anz
n.
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12◦) On suppose qu’il existe N ∈ N tel que pour tout n ≥ N , an ̸= 0.

On suppose également qu’il existe ℓ ∈ R+ ∪ {+∞} tel que
∣∣∣an+1

an

∣∣∣ −→
n→+∞

ℓ.

Montrer que le rayon de convergence de la série entière
∑

anz
n est égal à 1

ℓ
en convenant

que 1
+∞ = 0 et que 1

0
= +∞.

13◦) Déterminer les rayons de convergence des séries entières
∑

zn et
∑ zn

(n+ 1)!
.

Pour toute la suite de ce problème, on pose, pour tout n ∈ N, σn =
n∑

k=1

1

k
.

En particulier, σ0 = 0.

14◦) Montrer qu’il existe γ ∈ R tel que, lorsque n tend vers +∞, σn = lnn+γ+o(1).

En déduire la valeur de
+∞∑
n=1

(−1)n−1

n
.

15◦) Déterminer les rayons de convergence des séries entières
∑ σnz

n

n!
et

∑
σnz

n.

Partie V : Exemples d’études de séries entières

Lorsque
∑

anz
n est une série entière de rayon de convergence R avec 0 < R ≤ +∞,

on admettra que l’application t 7−→
+∞∑
n=0

ant
n est de classe C∞ sur l’intervalle ]−R,R[

et que, pour tout p ∈ N, pour tout t ∈]−R,R[,
dp

dtp

( +∞∑
n=0

ant
n
)
=

+∞∑
n=0

dp

dtp
(ant

n).

On admettra également que pour tout x ∈]−R,R[,

∫ x

0

( +∞∑
n=0

ant
n
)
dt =

+∞∑
n=0

(∫ x

0

ant
n dt

)
.

16◦) Avec ces notations, on suppose que R > 0

et on pose h(x) =
+∞∑
n=0

anx
n pour tout x ∈]−R,R[.

Pour tout n ∈ N, exprimer h(n)(0) en fonction de an.

Pour x réel, lorsque cela a du sens, on pose :

f(x) =
∞∑
n=0

xn

(n+ 1)!
, g(x) =

∞∑
n=0

σnx
n

n!
et ϕ(x) =

∞∑
n=0

σnx
n.

17◦) Pour tout x ∈ R, calculer f(x).

3



18◦) Pour tout x ∈ R, on pose F (x) =

∫ x

0

e−tf(t) dt.

Déterminer une suite (bn)n∈N de complexes telle que, pour tout x ∈ R, F (x) =
+∞∑
n=0

bnx
n.

19◦) Exprimer g′ − g en fonction de f .
En déduire que, pour tout x ∈ R, g(x) = exF (x).

En déduire que, pour tout n ∈ N, σn =
n∑

k=1

(
n

k

)
(−1)k−1

k
.

20◦) Préciser l’ensemble de définition de la fonction ϕ, que l’on notera Dϕ.

Étudier les variations de ϕ sur R+ ∩ Dϕ.

21◦) À l’aide de la partie III, calculer ϕ(1
2
).
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