Programme de colle - semaine 6 - semaine du 10 novembre

Le cours doit être parfaitement su.

Complément de calcul intégral

- 1) Préliminaire sur les dérivées et primitives d'une fonction d'une variable réelle à valeurs dans C
- 2) Techniques de calcul intégral :
- Intégration par parties et changement de variables. NB : écrit au programme officiel . "Pour les applications pratiques, on ne demande pas de rappeler les hypothèses de régularité".
- Utilisation des symétries ou des périodes pour un calcul d'intégrales.
- Primitives des fonctions rationnelles du type $1/(x^2 + px + q)$ où p et q réels.
- Primitives d'une fonction d'expression $1/(x-z_0)$ où $z_0 \in \mathbb{C}$.
- Méthode pour le calcul des primitives des polynômes en sin et cos.
- Rappel des techniques d'encadrement pour les intégrales.

QUESTIONS DE COURS:

- 1. Existence et calcul pour $x \in [-1, 1]$ de $F(x) = \int_0^x \sqrt{1 t^2} dt$
- 2. Existence et calcul de $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\mathrm{d}t}{\sin t}$ (on donne le changement de variable $x = \tan(t/2)$).
- 3. Existence et calcul de $\int_0^1 \frac{\mathrm{d}x}{(1+x^2)^2}$. Indication : changement de variable $x = \tan(\theta)$ ou IPP en partant de $\int_0^1 \frac{\mathrm{d}x}{1+x^2}$.
- 4. Primitives de $f: x \mapsto \frac{1}{x^2 + 5x 6}$ en précisant les intervalles où elles sont valables (ou un exemple similaire au choix du colleur)
- 5. Existence et calcul de $\int_0^1 \frac{x}{x^2 x + 1} dx$.
- 6. Primitives de $f: x \mapsto 1/(x-z)$ où $z \in \mathbb{C}$ fixé, en distinguant $z \in \mathbb{R}$ et $z \in \mathbb{C} \setminus \mathbb{R}$.
- 7. Transformée de Laplace. Si $p \in \mathbb{C}$ vérifie Re p > 0, montrer que $\lim_{A \to +\infty} \int_0^A \cos(x) e^{-px} dx$ existe dans \mathbb{R} en calculant sa valeur (on note $\int_0^{+\infty} \cos(x) e^{-px} dx$ cette limite finie). On utilisera

$$\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right)$$

ou une double intégration par parties.

- 8. Exo Si $f \in \mathcal{C}^0([a,b])$, on note $u_n = \int_0^1 f(t) \sin(nt) dt$.
 - (a) Montrer que la suite est bornée.
 - (b) Si on suppose f est de classe C^1 sur [a, b] montrer que $\lim u_n = 0$.
- 9. On note $I_n = \int_0^1 \frac{x^n}{1+x} dx$.
 - (a) Montrer que la suite $(I_n)_n$ est bien définie, qu'elle est monotone et convergente vers 0.
 - (b) À l'aide d'une IPP, montrer que $I_n \sim \frac{1}{2n}$. Note au colleurs, on vient de commencer le cours sur les équivalents, la notation \sim doit être connue, mais aucun exercice sur les équivalents dans cette colle, les élèves doivent simplement démontrer que nI_n tend vers 1/2...
- 10. Intégrales de Wallis Pour $n \in \mathbb{N}$, on définit $W_n = \int_0^{\pi/2} \sin^n t dt$. À l'aide d'une intégration par parties, montrer que $W_{n+2} = \frac{n+1}{n+2} W_n$. Calculer W_0 et W_1 et en déduire l'expression de W_{2n} et W_{2n+1} en fonction de n.