Chapitre (S2) 5

Parcours de graphes pondérés & **Applications**

Parcours de graphes pondérés... 1 2 Algorithme A*.....

Objectifs

- Connaitre l'algorithme de DIJKSTRA permettant de déterminer un plus court chemin dans un graphe pondéré.
- Comprendre l'intérêt d'introduire dans certains cas un terme d'heuristique dans Dijkstra, et sa conséquence; l'algorithme A*.

L'objet de ce chapitre est de présenter des algorithmes de recherche d'un plus court chemin dans des graphes pondérés, orientés ou non. La notion de parcours de graphes est étroitement liée à cette recherche. Nous avons vu dans le Chapitre (S2) 4 que le parcours en largeur répond partiellement à notre objectif. Partiellement car il ne permet la détermination d'un plus court chemin que dans un graphe non pondéré.

Pour des graphes pondérés, des algorithmes plus efficaces lui sont préférés. L'algorithme de DIJKSTRA est l'un d'eux, qui ne s'appliquent qu'à des graphes à poids positifs pour des raisons qui seront présentées dans une deuxième partie. Enfin, d'autres algorithmes tirent profit de propriétés particulières des graphes pour proposer des solutions parfois aussi efficaces mais pas toujours optimales. Elles introduisent le concept d'heuristique dont une découverte est proposée dans la dernière partie, à travers la présentation de l'*algorithme A**.

Cadre

/ Lycée Michel Montaigne – Bordeaux

Dans ce chapitre, tous les graphes sont codés par un dictionnaire.

PARCOURS DE GRAPHES PONDÉRÉS

Considérons à présent un graphe pondéré, c'est-à-dire dont les arêtes portent une information numérique.

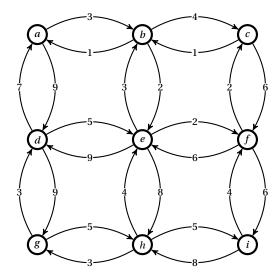


FIGURE 1. – Graphe G₁ orienté et pondéré.

Les poids (ou pondérations) des arcs sont ici des nombres entiers positifs. Des pondérations négatives et non entières sont possibles. Mais conformément au programme, seuls les graphes pondérés avec des poids positifs sont étudiés. Un paragraphe justifiera ce choix. Dans la suite, le poids d'une arête (u, v) est notée p(u,v).

Plus court chemin

• La longueur ou poids d'un chemin dans un graphe pondéré est désormais définie comme la somme des poids de ses arêtes. Sur le graphe G_1 , le chemin γ = (e, d, g, h, i) est de longueur :

$$\delta(\gamma) = p(e,d) + p(d,g) + p(g,h) + p(h,i) = 9 + 9 + 5 + 5 = 28.$$

1. Ou d'un arc dans le cas d'un graphe orienté.

• La définition de la *distance* entre deux sommets n'est pas modifiée : c'est *la lon-gueur d'un² plus court chemin* entre les deux sommets.

$$\mathrm{d}_u[v] = \min_{\gamma \in \Gamma_u(v)} \delta(\gamma).$$

• Un *plus court chemin* entre deux sommets u et v d'un graphe est un chemin d'extrémités u et v dont la longueur $\delta(u, v)$ est égale à sa distance $d_u[v]$.

1.2. Une adaptation de BFS?

Dans un graphe non pondéré, le parcours en largeur permet le calcul des distances entre deux sommets. On peut toutefois interpréter ce calcul comme celui des distances dans un graphe pondéré dont tous les poids valent 1. Se pose alors la question d'adapter le parcours pour calculer les distances dans un graphe pondéré. Mais cette idée se heurte à la nature même du parcours qui visite les sommets voisins d'un sommet, sans se soucier de la valeur du poids de l'arête. Ce qui interdit toute mise en oeuvre directe du parcours en largeur pour calculer les distances.

Toutefois, pour contourner la difficulté précédente, on pourrait transformer tout graphe pondéré avec des *poids entiers positifs* par un graphe dont tous les poids des arêtes seraient 1. Sur chaque arête de poids p, (p-1) sommets seraient ajoutés, toutes les arêtes portant désormais un poids 1. Le parcours en largeur deviendrait alors pertinent. Cette solution, bien que séduisante, présente plusieurs inconvénients. Tout d'abord, ajouter *artificiellement* des sommets rend les parcours moins efficaces puisque leur complexité dépend directement du nombre de sommets. Avec des poids dont les valeurs seraient déraisonnablement élevées, on imagine facilement la faible efficacité de la solution. De plus, le parcours passerait l'essentiel de son temps à visiter des sommets qui, dans le graphe initial, n'existent pas et, finalement, ne présente que peu d'intérêt.

1.3. Algorithme de DIJKSTRA

L'algorithme de DIJKSTRA repose sur le *principe de sous-optimalité* adapté à la recherche d'un plus court chemin.

Remarque 1 (Edsger DIJKSTRA?) Edsger DIJKSTRA (1930 - 2002) est un informaticien néerlendais qui a reçu le prix TURING en 1972 pour ses nombreuses contributions majeures. Adepte des beaux algorithmes, il a largement contribué au développement de la science et de l'art des langages de programmation.

De nombreux aphorismes lui sont attribués, notamment : La recherche d'un plus court chemin d'un graphe n'est jamais celui que l'on croit; il peut surgir de nulle part et la plupart du temps, il n'existe pas ; ou encore : Les progrès ne seront possibles que si nous pouvons réfléchir sur les programmes sans les imaginer comme des morceaux de code exécutable. En 2002, en son honneur, le prix PoDC est renommé prix DIJKSTRA, qui récompense des travaux importants dans le domaine des système distribués.

Proposition 1 | Principe de sous-optimalité -

Soit c un plus court chemin allant d'un sommet u vers un sommet v d'un graphe. Notons $u \stackrel{c}{\sim} v$ un tel plus court chemin.

Alors si c passe par un sommet intermédiaire s, $u \stackrel{c_1}{\sim} s$ et $s \stackrel{c_2}{\sim} v$ sont aussi des plus courts chemins.

Ce résultat affirme que l'optimalité de la solution du *problème* du calcul d'un plus court chemin passe par l'optimalité des solutions des *sous-problèmes* de calculs de plus courts chemins.

Dit autrement, déterminer un plus court chemin entre deux sommets u et v fournit des plus courts chemins entre u et tous les sommets situés sur le chemin aboutissant en v. De tels problèmes peuvent être résolus par des méthodes dites de $programmation dynamique^3$.

Bien qu'elle puisse être omise en première lecture, la démonstration de ce résultat se fait par l'absurde.

Preuve Si G = (S,A) est un graphe pondéré de valuation définie par une fonction p, chaque arc $(v_i,v_j)\in S$ a un poids $p(v_i,v_j)$. Pour tout chemin $\gamma=(x_0,x_1,\ldots,x_k)$ dans G, le poids du chemin est : $\delta(\gamma)=\sum_{i=0}^{k-1}p(x_i,x_{i+1})$. Considérons un *plus court chemin c* du sommet u au sommet v, il vérifie alors $\mathrm{d}_u[v]=\delta(c)$. Soit s un sommet intermédiaire de ce plus court chemin, de sorte que $u\stackrel{c_1}{\hookrightarrow}s\stackrel{c_2}{\hookrightarrow}v$. Supposons par l'absurde qu'il existe un chemin c_1' plus court pour aller de u à $s:\delta(c_1')<\delta(c_1)$. Alors il existe un chemin $u\stackrel{c_1'}{\leadsto}s\stackrel{c_2}{\leadsto}v$ de u à v de poids : $\delta(c_1')+\delta(c_2)<\delta(c_1)+\delta(c_2)=\mathrm{d}_u[v]$, ce qui est absurde car $s\stackrel{c_1}{\leadsto}u\stackrel{c_2}{\leadsto}t$ est un plus court chemin. — Contradiction Le chemin c_1 est donc un plus court chemin de u à $s:\mathrm{d}_u[s]=\delta(c_1)$. La même analyse vaut pour c_2 .

L'algorithme de DIJKSTRA calcule tous les plus courts chemins entre un sommet donné et les autres sommets d'un graphe. Sa mise en oeuvre suit le principe de sous-optimalité en déterminant, de proche en proche, les distances d'un sommet de départ u vers chacun des sommets du graphe. En pratique, un dictionnaire des dis-

^{2.} Noter l'usage du déterminant indéfini *un*. Des chemins différents peuvent relier deux sommets, certains d'entre eux étant de même distance entre les deux sommets.

^{3.} Ce thème sera abordé en deuxième année.

tances d_u est initialisé avec des clés égales aux étiquettes des sommets et des valeurs égales à l'infini, excepté pour le sommet de départ pour lequel la distance est zéro. En Python, il est possible de définir un tel infini par float ("inf"), cet objet étant reconnu par Python comme l'équivalent de l'infini, que ce soit pour des entiers ou des flottants!

Dans la présentation de l'algorithme qui suit, nous reprenons le vocabulaire adopté dans le précédent chapitre : un sommet est soit non découvert, soit découvert, soit visité.

INITIALISATION. Si G = (S, A) est un graphe pondéré par des poids positifs définis par la fonction de pondération p, l'initialisation de l'algorithme consiste en :

$$d_u[u] = 0$$
, et: $\forall v \in S \setminus \{u\}$, $d_u[v] = +\infty$.

ETAPE 1. L'algorithme part du sommet u et le marque comme visité. Les n_1 sommets voisins non visités de u, notés $v_{1,1}, \ldots, v_{1,n_1}$, sont découverts et on procède au *relâchement* de chaque arc $(u, v_{1,i})$, à savoir :

- $\operatorname{sid}_{u}[u] + p(u, v_{1,i}) < \operatorname{d}_{u}[v_{1,i}]$ alors $\operatorname{d}_{u}[v_{1,i}]$ est redéfinie par $\operatorname{d}_{u}[u] + p(u, v_{1,i})$;
- sinon la valeur de $d_{\mu}[v_{1i}]$ reste inchangée.

À l'issue de cette première étape, toutes les distances $d_u[v_{1,i}]$ étant initialement infinies, le dictionnaire d_u devient :

$$d_{u}[u] = 0, \quad \text{et}: \quad \begin{cases} \forall i \in [1, n_{1}], & d_{u}[v_{1,i}] = p(u, v_{1,i}) \\ \forall v \in S \setminus \{u, v_{1}, \dots, v_{1,n_{1}}\}, & d_{u}[v] = +\infty. \end{cases}$$

ETAPE 2. Parmi tous les sommets découverts $\{v_{1,1}, \dots, v_{1,n_1}\}$, l'algorithme identifie ensuite le sommet, noté v_1 , de distance minimale $d_u[v_1]$. Le principe de sousoptimalité assure alors que cette distance est effectivement la plus courte distance entre u et v_1 . Sa valeur dans le tableau ne doit plus évoluer. Le sommet v_1 sert alors de nouveau sommet de départ et est marqué comme visité. Les n₂ sommets voisins non *visités* de v_1 , notés $v_{2,1}, \ldots, v_{2,n_2}$, sont alors *découverts* et on procède au *relâchement* de chaque arc (v_1, v_{2i})

- Si $d_u[v_1] + p(v_1, v_{2,i}) < d_u[v_{2,i}]$ alors $d_u[v_{2,i}]$ est redéfinie par $d_u[v_1] + p(v_1, v_{2,i})$.
- Sinon la valeur de $d_{ii}[v_{2i}]$ reste inchangée.

Ces étapes sont répétées tant que l'ensemble des sommets découverts n'est pas vide. Quand cet ensemble est vide, tous les sommets ont été visités et les valeurs alors contenues dans d_u sont les plus courtes distances de u à chacun des sommets du graphe.

Notion de file de priorité

La présentation précédente de l'algorithme de DIJKSTRA ne précise pas dans quelle structure de données les sommets découverts sont stockés. Il en est de même de l'identification du sommet de distance minimale contenu dans cette structure. Or le choix de cette structure a des conséquences sur les performances de l'algorithme. Si l'algorithme de DIJKSTRA est vu comme une généralisation du parcours en largeur, la file est une solution possible. Mais l'extraction du bon sommet est coûteuse sans parler des éventuelles mises à jour des distances associées aux sommets déjà présents dans la structure.

La structure de données la plus adaptée pour répondre aux besoins de l'algorithme est une file de priorité. Chaque information stockée dans la structure est accompagnée d'une deuxième information appelée sa priorité. L'intérêt essentiel de la structure est de permettre l'extraction et l'ajout d'information en réorganisant dynamiquement la structure pour préserver l'ordre des priorités avec, pour une file de prio*rité* de taille n, une complexité en $O(\log n)$.

Les files de priorités n'étant pas au programme, nous utiliserons un module spécifique qui implémente une telle structure : le module heapq 4 préalablement chargé par:

import heapq

Les fonctions de manipulation de la structure sont les suivantes :

- [Création d'une file de priorité] On déclare d'abord une liste vide hg puis heapq.heapify(hq) transforme hq en une file de priorité. Une liste non vide de taille *n* peut également être transformée en une file de priorité de la même façon. La complexité temporelle de l'opération est O(n).
- [Ajout] L'instruction heapq. heappush (hq, x) ajoute un élément x dans une file de priorité hq. Si hq comporte initialement n éléments, la réorganisation qui peut en découler est de complexité en $O(\log n)$.
- [Extraction] L'instruction heapq.heappop(hq) supprime et renvoie l'élément de priorité minimale de la file de priorité hq. Si la file est vide, un message d'erreur est renvoyé. Là encore, si hq comporte initialement n éléments, en raison d'une

^{4.} Les files de priorité peuvent être implémentées à l'aide de tableaux ayant la propriété de tas (autre structure de données). En anglais, un tas se dit heap et une file de priorité ainsi implémentée est désignée par heap queue.

possible nécessité de réorganiser les données, la complexité de l'opération est en $O(\log n)$.

• [Test file de priorité vide] Le booléen len(hq) == 0 (len(hq) > 0) ou renvoie True si la file de priorité hp est vide, False si elle n'est pas vide. L'opération est de complexité O(1).

Exemple: après le remplissage d'une liste avec des entiers pris au hasard dans l'intervalle [25,75] (ligne 7), puis sa transformation en file de priorité (ligne 11), une boucle (lignes 15 à 17) vide la file de priorité et affiche les éléments dans l'ordre de leur extraction. La colonne de droite ci-dessous présente un exemple d'exécution du code.

Noter que dans cette implémentation, la priorité minimale de l'élément situé en tête de file⁵.

```
>>> import heapq
>>> import numpy as np
>>> a, b = 25, 75
>>> n = 10
>>> hq = [np.random.randint(a,b) for _ in range(n)] # Liste de n \

→ entiers tirés au hasard
>>> ha
[56, 34, 30, 67, 36, 34, 43, 44, 41, 70]
>>> heapq.heapify(hq) # Définition d'une file de priorité hq
>>> hg
[30, 34, 34, 41, 36, 56, 43, 44, 67, 70]
>>> while len(hq) > 0: # # Extraction des entiers de hq
        x = heapq.heappop(hq)
        print(x)
. . .
34
34
36
41
43
44
56
```

5. La réorganisation des données lors de chaque ajout ou extraction n'est pas évidente à comprendre sauf à voir l'organisation sous forme arborescente. Ce sujet n'étant pas au programme, tout lecteur curieux est invité à consulter un ouvrage spécilisé, comme le livre de Cormen, Leiserson, Rivest - Introduction à l'algorithmique, à votre disposition au CDI.

```
70
```

L'intérêt de cette structure pour l'algorithme de DIJKSTRA est de permettre l'identification des sommets de distances minimales; dans l'exemple précédent, chaque sommet a la même priorité (la liste ne comporte pas de couple). Désormais, on souhaite que chaque fois qu'un sommet est découvert, un couple d'informations soit stocké dans une file de priorité. Le premier élément du couple est la valeur de la distance calculée après relâchement d'une arête (v_i, v_i) . Le second élément du couple est l'étiquette v_i du sommet découvert. C'est la première information du couple qui permet la réorganisation des données lors d'un enfilement ou d'un défilement.

Le code ci-dessous illustre cette idée.

```
>>> hg = [(10, 'a'), (5, 'b'), (2, 'c'), (8, 'd')] # liste de \

    couples

>>> hq
[(10, 'a'), (5, 'b'), (2, 'c'), (8, 'd')]
>>> heapq.heapify(hq) # file de priorité
>>> hg
[(2, 'c'), (5, 'b'), (10, 'a'), (8, 'd')]
>>>
>>> heapq.heappush(hq, (1, 'e')) # Ajout du couple {(1, 'e')}

    → dans ha

>>> ha
[(1, 'e'), (2, 'c'), (10, 'a'), (8, 'd'), (5, 'b')]
>>>
>>> while len(hq) > 0: # Extraction des couples de hq
        x = heapq.heappop(hq)
        print(x)
. . .
. . .
(1, 'e')
(2, 'c')
(5, 'b')
(8, 'd')
(10, 'a')
```

Les sommets sont ici défilés, en respectant la règle de priorité de poids; les petits poids en premier.

Remarque 2 Une implémentation par listes (comme pour les files et piles) est aussi possible, mais rédhibitoire en terme de complexité; plus précisément, on pourrait considérer une liste de couples où dans chaque couple on indiquerait le sommet ainsi que son poids. Le soucis majeur de cette représentation consiste en l'étape de recherche du sommet de poids minimal (complexité linéaire, alors que le module présenté ci-dessous donnera une complexité logarithmique).

1.5. Mise en oeuvre Python

Il est à présent possible de mettre en oeuvre l'algorithme de Dijkstra dans le langage Python. Le code est similaire à celui de parcours en largeur. La file est remplacée par une file de priorité qui contient des couples (distance, sommet) comme indiqué ci-dessus. L'étape d'enfilement comporte un calcul lié au relâchement des arêtes. La fonction dijkstra ci-dessous reçoit un graphe g défini sous la forme d'un dictionnaire dont les clés sont les sommets et dont les valeurs sont les listes des arcs d'origine la clé, un arc étant un couple (sommet de destination, poids) et un sommet v_init à partir duquel sont recherchés les plus courts chemins. La fonction renvoie un couple formé du dictionnaire des distances minimales du sommet v_init aux sommets du graphe et du dictionnaire du prédécesseur de sommet u dans un chemin de longueur minimal de v_init à u.

```
def dijkstra(g, v init):
     visited = {x : False for x in q}
                                                        dico des sommets visités
     pred = {x : None for x in g}
                                                        dico des predecesseurs
     dist = {x : float('inf') for x in g}
                                                         dico des distances
     dist[v init] = 0
                                                         vinit est à distance 0 de lui-même
     hq = [(0, v init)]
     heapq.heapify(hq)
                                                        création de la FP
     while len(hq) > 0:
                                                         visite des sommets
          dv, v = heapq.heappop(hq)
                                                        extraction du sommet de prio min
          if not visited[v]:
               visited[v] = True
               for w, dvw in q[v]:
                                                         parcours des voisins non visités de v
                    if not visited[w]:
                         dw = dv + dvw
                                                         relâchement de l'arête (v,w)
                         if dw < dist[w]:</pre>
                              dist[w] = dw
                                                         maj de la distance min
                              pred[w] = v
                                                        maj du prédécesseur
                              heapq.heappush(hq, \
                                   (dw, w))
                                                        ajout dans la FP
```

```
return dist, pred
```

Ci-dessous un exemple de mise en oeuvre avec le dictionnaire g1 associé au graphe de la figure Figure 1.

```
>>> g1 = {
     'a' : [('b', 3), ('d', 9)],
     'b' : [('a', 1), ('c', 4), ('e', 2)],
     'c' : [('b', 1), ('f', 6)],
     'd' : [('a', 7), ('e', 5), ('g', 9)],
     'e' : [('b', 3), ('d', 9), ('f', 2), ('h', 8)],
     'f' : [('c', 2), ('e', 6), ('i', 6)],
     'g' : [('d', 3), ('h', 5)],
     'h' : [('e', 4), ('g', 3), ('i', 5)],
     'i' : [('f', 4), ('h', 8)]}
. . .
>>>
>>> dist, pred = dijkstra(q1, 'a')
>>> dist
{'a': 0, 'b': 3, 'c': 7, 'd': 9, 'e': 5, 'f': 7, 'g': 16, 'h': \
>>> pred
{'a': None, 'b': 'a', 'c': 'b', 'd': 'a', 'e': 'b', 'f': 'e', \
```

1.6. Complexité

Pour un graphe G = (S, A), notons |S| et |A| les nombres de sommets et d'arêtes. La complexité du code dépend largement de celle de la file de priorité. Les opérations à l'ajout ou à l'extraction dans une telle file de priorité sont de complexité au pire en $O(\log n)$ où n est la taille de la file.

On peut donc analyser la complexité temporelle de dijkstra de la façon suivante.

- [Coût de l'initialisation] La construction des trois premiers dictionnaires est de coût O(|S|), à chaque fois en raison de la boucle sur les clés du graphe. La création de la file de priorité est ici en O(1).
- [Coût du parcours] L'algorithme visite chaque arc au plus une fois et chaque visite peut conduire à l'ajout d'un élément dans la file. La file de priorité peut donc contenir jusqu'à |A| éléments. Les opérations d'ajout et d'extraction ayant un coût logarithmique, chaque opération sur la file a donc un coût O ($\log |A|$). Or $|A| \le |S|^2$

de sorte que log|A| = O(log|S|). D'où un coût total O(|A|log|S|) ou encore en $O(|S|^2 \log |S|)$.

Pour plus de détails, le livre de Cormen, Leiserson, Rivest - Introduction à l'algorithmique est disponible au CDI.

Application à la recherche de plus court chemin entre deux sommets

La fonction dijkstra(g, v init) peut-être transformée en une fonction dijkstra path(g,v init,v fin) prend en entrée deux sommets v init et v fin d'un graphe G codé par le dictionnaire g et qui :

- lorsque v_fin n'est pas accessible depuis v_init, affiche un message l'indiquant,
- lorsque v fin est accessible depuis v init, renvoie le triplet (N,d,C) où N est le nombre de sommets qui ont été visités pour détecter un plus court chemin, d est la distance de v_init à v_fin et C est un meilleur chemin, i.e. une liste de sommets, menant de v_init à v_fin.

Notons qu'il n'est pas ici nécessaire de parcourir tout le graphe : on peut s'arrêter dès que l'on trouve v_fin. Ci-dessous l'illustration de la recherche d'un plus court chemin du sommet (2,2) au sommet (4,4):



Notons que l'algorithme visite tous les sommets par ordre de distance croissant depuis v init jusqu'à rencontrer v fin, cela conduit donc à visiter inutilement beaucoup de sommets. Pour l'améliorer, il faudrait "forcer" l'algorithme à prioriser l'étude

des sommets qui "sont dans la bonne direction". Pour cela, et puisque c'est les sommets de priorité minimale qui sont traités en premier, il faudrait dans la file de priorité diminuer la priorité des sommets qui semblent se rapprocher v fin et augmenter celle des sommets qui semblent s'en éloigner. Il faut donc pouvoir quantifier la proximité d'un sommet à v_fin, c'est-à-dire donner une estimation de ce qu'il reste à parcourir. Nous allons le mettre en place avec la notion d'heuristique et l'algorithme A*.

ALGORITHME A*

Informer l'algorithme de DIJKSTRA

L'algorithme de DIJKSTRA peut être utilisé pour déterminer un plus court chemin entre un sommet de départ v_init et un sommet d'arrivée v_fin. Il suffit pour cela soit de lui faire rechercher tous les plus courts chemins issus de v_init, soit d'arrêter la recherche dès que le sommet v fin a été visité. Dans les deux cas, pour construire la solution, l'algorithme explore un grand nombre de sommets dont certains ne semblent pas toujours pertinents au regard du résultat escompté.

Pour illustrer cette idée, considérons la carte de France (Figure 2) en vue de trouver un plus court itinéraire routier de Bordeaux à Strasbourg. Un rapide coup d'oeil nous permet généralement d'identifier les principaux axes routiers utiles. En particulier, sont immédiatemment rejetés tous les itinéraires qui auraient tendance à augmenter la distance à parcourir. Mais comment un algorithme peut-il faire de même? La réponse est simple : il ne peut pas. Tout au moins, pas si on ne lui apporte pas d'information complémentaire. L'algorithme de DIJKSTRA est un exemple d'algorithme non informé. De fait, pour trouver un itinéraire optimal, il va explorer un très grand nombre d'itinéraires parmi lesquels certains ne présenteront aucun intérêt pour répondre à notre besoin. Alors, comment l'informer et l'orienter dans sa recherche?

Notre lecture de la carte nous mène à orienter nos recherche d'itinéraire dans la direction Bordeaux-Strasbourg. Les directions Bordeaux-Nantes, Bordeaux-Toulouse, Bordeaux-Marseille sont d'emblée éliminées du champ d'investigation. Cette attitude peut être partiellement traduite sous forme algorithmique en orientant les recherches: on parle d'algorithme informé. L'algorithme A* 7 appartient à cette catégorie. Dans une certaine mesure, il est une généralisation de l'algorithme de DIJKSTRA

^{7.} Prononcer A étoile en français, A star en anglais.

FIGURE 2. – Carte de France et de ses principaux axes routiers.

qui peut trouver les mêmes solutions optimales que ce dernier, sous réserve que certaines conditions soient satisfaites8.

Principe de A*

L'idée générale de l'algorithme A* est de favoriser les chemins qui mènent plus rapidement vers la solution. Bien évidemment, il n'existe pas un seul moyen de répondre à cet impératif car sinon, cela signifierait qu'on a trouvé la solution optimale qui est justement ce que l'on cherche. Mais on peut orienter les choix de l'algorithme en modifiant dans le code de DIJKSTRA la priorité p_w des sommets w: elle n'est plus simplement sa distance depuis v_init mais sa distance depuis v_init à laquelle on ajoute une estimation $h(w, v_{fin})$ du coût de ce qu'il reste à parcourir de w jusqu'à v_fin: $p_w = d_{v_{\text{init}}}[w] + \mathbf{h}(\mathbf{w}, \mathbf{v_{fin}})$.

La fonction *h* est appelée une *heuristique*, elle permet d'estimer la proximité de deux sommets : h(v, w) est le *coût estimé* du chemin le moins coûteux de v à w. Plusieurs heuristique sont possibles, l'efficacité de l'algorithme A* étant conditionnée au choix d'une heuristique adaptée à la situation.

On trouvera ci-après le code de la fonction a star path(g, v init, v fin, h) où l'heuristique est codée sous la forme d'un dictionnaire (clé : sommets, valeur : heuristique du sommet à v fin).

```
def a star path(g, v init, v fin, h):
                                                                      dico des sommets visités
    visited = {x : False for x in g}
                                                                      dico des prédécesseurs
    pred = {x : None for x in g}
    dist = {x : float('inf') for x in g}
                                                                      dico des dist
    dist[v init] = 0
    hq, N = [(h[v_init], v_init)], 0
                                                                      FP, compteur des sommets vis.
    heapq.heapify(hq)
    while len(hq) > 0 and not visited[v fin]:
         pv, v = heapq.heappop(hq)
                                                                       extraction du sommet de prio min
         if not visited[v]:
             visited[v], N = True, N+1
                                                                       maj du compteur
                                                                      parcours des vois. non visités de v
             for w, dvw in q[v]:
                 if not visited[w]:
                      dw = dist[v]+dvw
                         = dist[v]+dvw+h[w]
                      if dw < dist[w]:</pre>
                          dist[w], pred[w] = dw, v
                                                                       maj de la dist et du pred
                          heapq.heappush(hq, (pw, w))
                                                                      stockage dans la FP
    if not visited[v fin]:
                                                                       cas où vfin n'est pas accessible
         print("Pas de chemin de "+str(v_init)+" à "+str(v_fin))
    else:
                                                                       construction du chemin
           C = [v fin]
           while C[0] != v_init:
               w = pred[C[0]]
```


^{8.} Il n'entre pas dans le cadre de ce cours de développer ce point.

C = [w] + Creturn N, dist[v fin], C

Le code étant très proche de celui de DIJKSTRA, le coût de toutes les opérations y est le même. Seule s'ajoute la prise en compte de l'heuristique dont le coût peut, dans notre cas, être pris comme constant. La complexité de l'algorithme A* est donc toujours en $O(|A|)\log|S|)$ soit en $O(|S|^2\log|S|)$.

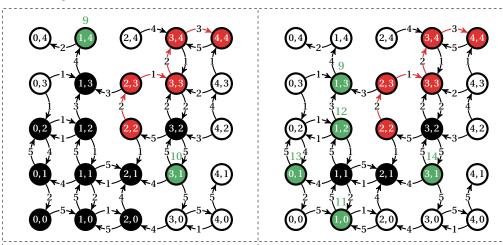
Comparaisons DIJKSTRA/A*

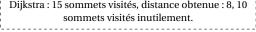
Illustrons le déroulement de DIJKSTRA et de A* sur différents graphes et différentes heuristiques. L'étiquette d'un sommet sera ses coordonnées dans le plan et nous utiliserons comme heuristiques les distances suivantes de \mathbb{R}^2 : soient $u(x_1, y_1), v(x_2, y_2)$

et
$$p \in [1, +\infty]$$
, on pose:
$$\begin{cases} d_p(u, v) = (|x_2 - x_1|^p + |y_2 - y_1|^p)^{\frac{1}{p}} \\ d_{\infty}(u, v) = \max(|x_2 - x_1|, |y_2 - y_1|). \end{cases}$$

Au-dessus des sommets découverts et non-visités (en bleu) est indiqué soit la distance au sommet initial (DIJKSTRA), soit la distance au sommet initial + l'arrondi à l'entier le plus proche de l'heuristique (A*).

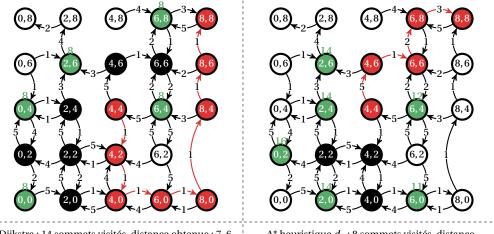
Figure 3 – Exemple 1 : A* converge plus vite vers un aussi bon chemin





A* heuristique d_1 : 8 sommets visités, distance obtenue: 8, 3 sommets visités inutilement.

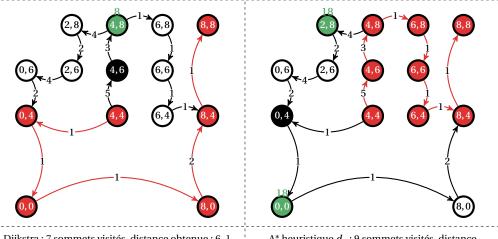
Figure 4 – Exemple 2: A* converge plus vite vers un moins bon chemin



Dijkstra: 14 sommets visités, distance obtenue: 7, 6 sommets visités inutilement.

A* heuristique d_1 : 8 sommets visités, distance obtenue: 11, 3 sommets visités inutilement.

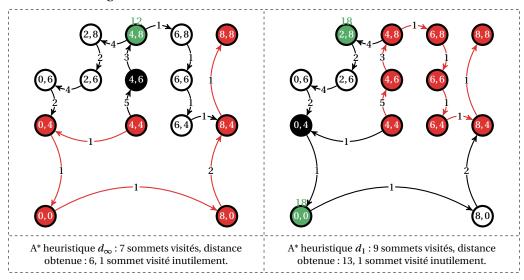
Figure 5 – Exemple 3: A* converge moins vite vers un moins bon chemin...



Dijkstra: 7 sommets visités, distance obtenue: 6, 1 sommet visité inutilement.

A* heuristique d_1 : 9 sommets visités, distance obtenue: 13, 1 sommet visité inutilement.

Figure 6 – Exemple 4 : ... Sauf si on change d'heuristique



Applications

L'algorithme A* présente l'avantage sur celui de DIJKSTRA de réduire considérablement l'exploration d'un graphe, avantage qui permet souvent de trouver une solution plus rapidement, surtout quand les graphes ont des tailles importantes. Cet avantage est d'autant plus important que certains graphes présentent un nombre très élevés de sommets, intertisant parfois leur définition préalable. On doit alors se tourner vers une exploration du graphe qui découvre, au fur et à mesure qu'il les construit, ses sommets lors du parcours.

C'est le cas des graphes où chaque sommet peut être associé à la configuration d'un jeu comme le taquin⁹, l'âne rouge¹⁰ et le Rush-Hour¹¹. Chaque déplacement d'une pièce dans ces jeux peut définir le sommet d'un graphe. Chaque arête entre deux sommets n'existe que si le passage d'une configuration à une autre du jeu est autorisée. Résoudre le jeu revient alors simplement à trouver un plus court chemin entre une configuration initiale et la configuration finale du jeu, généralement connue! Mais la difficulté est clairement la définition du graphe. Le nombre de configurations, parfois extrêmement élevé, ne permet pas sa construction exhaustive. Et même si c'était le cas, le parcours de ce dernier avec l'algorithme de DIJKSTRA ne serait pas raisonnable.

FIGURE 7. – Jeux du taquin, de l'âne rouge (ou Klotski Puzzle) et Rush Hour.

En visitant moins de configurations, l'algorithme A* se révèle alors beaucoup plus efficace. Toutefois, il ne garantit pas toujours que la solution renvoyée soit la meilleure. Elle peut parfois n'être qu'une solution optimale au sens relatif du terme et non au sens absolu. Tout est question d'heuristique. Ajoutons que d'un point de vue algorithmique, la résolution de ces jeux est loin d'être simple! Ainsi, trouver la solution, c'est-à-dire un plus court chemin, à une configuration de taquin $n \times n$ est un problème NP-difficile. Seule la vérification d'une solution entre dans la classe

Parmi les applications, on peut également citer les déplacements sur grille, comme dans les jeux vidéos. La Figure 8 illustre la mise en oeuvre des deux algorithmes pour déterminer un plus court chemin entre un point de départ, situé en bas à gauche de chaque grille, et un point d'arrivée, situé en haut à droite de chaque grille. Citons enfin le domaine de l'Intelligence Artificielle qui fait un très large usage des algorithmes d'exploration.

^{9.} https://fr.wikipedia.org/wiki/Taquin

^{10.} https://en.wikipedia.org/wiki/Klotski

^{11.} https://en.wikipedia.org/wiki/Rush Hour (puzzle)

^{12.} Schématiquement, un problème algorithmique entre dans la classe P s'il existe un algorithme de complexité polynomiale qui le résout. Il entre dans la *classe* NP si on ne peut seulement que vérifier la complexité polynomiale d'une solution candidate. Un problème est dit NP-difficile si tout problème de la classe NP peut s'y ramener via une transformation appelée de réduction polynomiale. Si en outre, le problème lui-même est NP, on le qualifie alors de NP-complet. L'une des questions fondamentales actuelles de l'informatique est de savoir si P et NP sont une seule et même classe de complexité. Plus d'informations sont disponibles à ce sujet sur https://fr.wikipedia.org/wiki/Problème NP-complet.

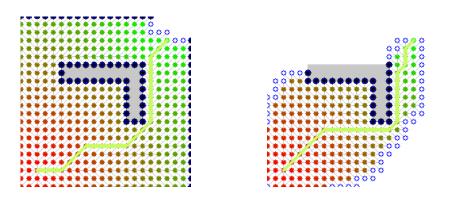


FIGURE 8. – Ensembles des sommets explorés lors du parcours d'une grille avec Dikjstra (à gauche) et A* (à droite).