
/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

1
IT
C
Creative-Commons

20
25
-2
02
6

TP (S1) 4 Algorithmes dichotomiques

1 Premiers pas

2 Recherche dans une liste triée . .

3 Étude du tri par insertion

4 Recherche de la tranche de
somme maximale

Objectifs
• Mettre enplace desméthodes dichoto-

miques, récursivement et impérative-
ment.

• Mettre en évidence le gain en com-
plexité d’un algorithme dichotomique
comparé à un algorithme naïf.

Fichier externe?
OUI TP_Dicho.py (présent(s) dans le répertoire partagé de la classe)

Commencez par récupérer et ouvrir le fichier TP_Dicho.pydisponible dans le réper-
toirepartagéde la classe, il contient le codedes fonctions, généralement à compléter,
qui seront étudiées dans les différents exercices de ceTP. Exécutez-en les lignes 3 à 6
(à faire à chaque ouverture de Pyzo) afin de disposer des bibliothèques nécessaires
aux illustrations graphiques des différents résultats obtenus.

1 PREMIERS PAS

1.1 Principes et premiers exemples

Pour traiter un problème de « taille 𝑛 », on distingue deux approches :

1. l’approche la plus naturelle, dite «naïve », qui consiste généralement à se rame-
ner à un problème de taille 𝑛−1,

2. l’approche dichotomique qui, quand elle est possible, consiste à se ramener à
un ou plusieurs problèmes de taille 𝑛/2.

On illustre ceci sur trois exemples :

• [Exemple A : un petit jeu] Soit 𝑛 ∈ℕ, considérons le jeu classique suivant :

1. Le joueur 1 choisit un entier 𝑝 au hasard entre 0 et 𝑛,
2. le joueur 2 tente de trouver 𝑝 avec le moins d’essais possible : pour cela, à

chaque essai il propose un entier 𝑡 (tentative), et le joueur 1 doit lui dire si
𝑡 est inférieur, supérieur ou égal à 𝑡. On se donne les deux stratégies sui-
vantes pour le second joueur :
2.1) La méthode naïve : le joueur 2 commence avec une première tenta-

tive 𝑡1 = 0, puis tente 𝑡2 = 1 en cas d’échec etc. jusqu’à trouver 𝑝.
2.2) Laméthodedichotomique : le joueur2 commenceavecunepremière

tentative « au milieu entre 0 et 𝑛 » : 𝑡1 = ⌊
0+𝑛
2

⌋ ;
⋄ si 𝑡1 =𝑝, la recherche s’arrête,
⋄ si 𝑡1 < 𝑝 sa tentative suivante 𝑡2 sera « au milieu entre 𝑡1 +1 et
𝑛 » :

𝑡2 = ⌊
𝑡1+1+𝑛

2
⌋,

⋄ sinon sa tentative suivante 𝑡2 sera « au milieu entre 0 et 𝑡1−1 » :

𝑡2 = ⌊
0+𝑡1−1

2
⌋ etc. jusqu’à trouver 𝑝.

On devine bien que la méthode dichotomique permet, sauf coup de chance, de
trouver 𝑝 beaucoup plus rapidement que la naïve. En effet, et dans le pire des
cas, il faudra de l’ordre de𝑛 tentatives (𝑛+1pour être exact) pour trouver𝑝 avec
la méthode naïve, alors qu’il n’en faut que de l’ordre de log2(𝑛) avec la méthode
dichotomique, ce résultat sera démontré formellement au deuxième semestre.
La différence est énorme! Dans le cas où 𝑛 = 2270 = (210)27 ≈ (103)27 = 1081,
c’est-à-dire l’ordre de grandeur du nombre d’atomes de l’Univers, il faudra dans
lepiredes casunnombrede tentatives équivalent aunombred’atomesde l’Uni-
vers pour trouver 𝑝 avec la méthode naïve, tandis qu’il n’en faudra que environ
270 pour le trouver avec la méthode dichotomique.

• [Exemple B : calcul de 𝑥𝑛] Soient 𝑥 ∈ ℝ et 𝑛 ∈ℕ. Pour calculer 𝑥𝑛 il faut :
⋄ par l’approche naïve initialiser une variable à 1 (pour traiter le cas de 𝑥0)

puis la multiplier 𝑛 fois par 𝑥,

/ Lycée Michel Montaigne – Bordeaux 1 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

2
IT
C
Creative-Commons

20
25
-2
02
6

⋄ par l’approche dichotomique, appelée ici l’exponentiation rapide (voir TP
3) utiliser le fait que 𝑥0 = 1 et, pour 𝑛 > 0, la relation de récurrence :

𝑥𝑛 =
⎧
⎨
⎩

(𝑥∗𝑥)n//2 si 𝑛 est pair
(𝑥∗𝑥)n//2 ∗𝑥 si 𝑛 est impair

Là encore, la méthode naïve implique de faire de l’ordre de 𝑛 multiplications
pour obtenir la valeur 𝑥𝑛, tandis qu’il n’en faut que de l’ordre de log2(𝑛) avec
l’exponentiation rapide. Là encore, ce résultat sera démontré formellement au
deuxième semestre.

• [Exemple C : résolution approchée de l’équation 𝑓(𝑥) = 0] Considérons
une fonction 𝑓 continue et ne s’annulant qu’une seule fois sur le segment S =
[𝑎,𝑏], notons alors 𝑥0 l’unique solution de l’équation 𝑓(𝑥) = 0 sur S. Pour obte-
nir un encadrement à ε > 0 près de 𝑥0 on procède par dichotomie :
⋄ Si 𝑏−𝑎 ≤ ϵ alors la liste [a,b] donne un encadrement à ε près de 𝑥0.

⋄ Sinon on note𝑚 le milieu de S :𝑚=
𝑎+𝑏
2

. Il y a alors deux cas de figure :
1. si 𝑓 change de signe entre 𝑎 et𝑚 alors 𝑥0 ∈ [𝑎,𝑚],
2. sinon 𝑥0 ∈ [𝑚,𝑏].

⋄ On itère jusqu’à obtenir un encadrement ε près de 𝑥0.
La longueur du segment dans lequel on cherche 𝑥0 est ainsi divisée par 2
à chaque étape. Le nombre d’étapes nécessaire pour avoir un encadrement

à ε près de 𝑥0 est donc le premier entier 𝑛 pour lequel
𝑏−𝑎
2𝑛

≤ ε soit 𝑛 ≥

log2 (
𝑏 −𝑎
ε

).
Notons qu’ici il n’y a pas d’approche naïve.

1.2 Implémentation récursive

La programmation récursive est particulièrement bien adaptée aux algorithmes di-
chotomiques comme l’illustre l’exercice ci-dessous.

1.2.1 Sans fonction auxiliaire

Exercice 1 Implémentation récursive des exemples B et C [Sol 1]

1. Complétez le code de la fonction expo_rapide_rec et testez cette fonction pour
différentes valeurs de 𝑥 et de 𝑛.

2. Complétez la fonction approx_dicho(f,a,b,e) qui, lorsque 𝑓 est une fonction
continue et s’annulant une unique fois sur le segment [𝑎,𝑏], renvoie sous forme

de liste un encadrement à e près de l’unique solution sur [𝑎,𝑏] de l’équation
𝑓(𝑥) = 0.

Donnez un encadrement à 10−4 près de l’unique solution sur [0,1] de l’équation
𝑔(𝑥) = 0 où 𝑔 ∶ 𝑥 ↦ 𝑥5+𝑥−1.

1.2.2 Avec une fonction auxiliaire Pour coder récursivementuneméthode
dichotomique, il est parfois nécessaire de passer par une fonction auxiliaire.

Prenons le jeu de l’exemple A où l’on souhaite calculer le nombre de tentatives pour
trouver un certain entier 𝑝 selon la méthode dichotomique : pour le coder récursi-
vement, il faut

• passer en paramètre le nombre de tentatives déjà effectuées et renvoyer le
nombre de tentatives lorsque l’on trouve le nombre,

• appeler la fonction récursivement en augmentant le nombre de tentatives de 1
si la tentative échoue, en initialisant le nombre de tentatives déjà effectuées à
0 lors du premier appel. Cependant, cette initialisation ne peut se faire dans le
corps de la fonction récursive : si c’est le cas, ce nombre sera ré-initialisé à 0 à
chaque appel ! Il faut donc coder une fonction dite «maitre » qui se chargera de
cette initialisation.

Exercice 2 Implémentation récursive de l’exemple A [Sol 2] Complétez le code
des fonctions devine_dicho_aux et devine_dicho_rec et testez cette dernière pour
différentes valeurs de 𝑛 et de 𝑝.

1.3 Implémentation impérative

Comme on l’a vu dans le TP (S1) 3, on est limité en programmation récursive par la
taille de la pile d’appels. Il est donc préférable, lorsque c’est possible, de proposer
une programmation impérative de nos algorithmes dichotomiques. La programma-
tion impérative d’un algorithmedichotomique se fait généralement avec une boucle
while : tant que l’on ne rencontre pas le ou les cas d’arrêt, on poursuit l’explora-
tion.

ITCCreative-Commons 2025-2026 2 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

3
IT
C
Creative-Commons

20
25
-2
02
6

Exercice 3 Implémentation impérative des exemples B et C [Sol 3]

1. Complétez le code de la fonction approx. Testez-la et comparez les résultats avec
sa version récursive.

2. Proposer une version impérative de l’algorithme d’exponentiation rapide est plus

difficile. L’idée est la suivante : un entier𝑛 peut s’écrire sous la forme𝑛 =
𝑘
∑
𝑖=0

𝑏𝑖 ⋅2𝑖,

avec 𝑏𝑖 ∈ {0,1} pour tout 0 ⩽ 𝑖 ⩽ 𝑘 et 𝑘 un entier. Alors :

𝑥𝑛 = 𝑥∑
𝑘
𝑖=0𝑏𝑖⋅2

𝑖
=

𝑘
∏
𝑖=0

(𝑥2
𝑖
)
𝑏𝑖 .

Il nous faut donc une variable qui va contenir les 𝑥2
𝑖
, notéeX𝑖 dans la suite et éle-

vée au carré à chaque étape, une autre qui va stocker le résultat (donc le produit),
notéeR𝑖 dans la suite. Les𝑏𝑖 quant à eux se calculeront à l’aide des commandes de
division euclidienne : dans la suite, ce seront successivement les valeurs deN𝑖%2.

Pour implémenter ce principe, on construit donc trois suites finies (N𝑖), (R𝑖) et
(X𝑖) de la façon suivante :

• N0 =𝑛, X0 = 𝑥 et R0 = 1
• tant queN𝑖 > 0,N𝑖+1 =N𝑖//2, X𝑖+1 =X𝑖 ∗X𝑖 et R𝑖+1 =R𝑖 ∗X

N𝑖%2
𝑖 .

On montre alors que :

1. l’algorithme se termine en nombre fini d’étapes. Effet la suite (N𝑖) est par
construction une suite strictement décroissante d’entiers naturels, et une
telle suite admet nécessairement un nombre fini de termes¹. Il existe donc
un entier naturel 𝑘 tel queN𝑘 = 0.

2. En sortie de boucle : R𝑘 = 𝑥𝑛. On montre en effet facilement par récur-
rence que, pour tout 𝑖 ∈ J0,𝑘K,
R𝑖 ∗X

N𝑖
𝑖 = 𝑥𝑛 ; on a bien alors R𝑘 = 𝑥𝑛 puisqueN𝑘 = 0.

Ci-contre un exemple avec 𝑛 = 10 :

𝑖 N𝑖 X𝑖 R𝑖
0 10 𝑥 1
1 5 𝑥2 R0 ∗1 = 1
2 2 𝑥4 R1 ∗X1 = 𝑥2

3 1 𝑥8 R2 ∗1 = 𝑥2

4 0 𝑥16 R3 ∗X3 = 𝑥10

Complétez le code de la fonction expo_rapide, non récursive, qui renvoie la va-
leur de 𝑥𝑛 à l’aide de l’algorithme d’exponentiation rapide. Testez-la et comparez
les résultats avec sa version récursive.

1. On dit queℕmuni de sa relation d’ordre usuelle est un ensemble bien fondé.

2 RECHERCHE DANS UNE LISTE TRIÉE

Notations :
Dans cette partie et dans les suivantes, on appellera tranche d’une liste (ou d’un ta-
bleau) L toute sous-liste de L constituée d’éléments consécutifs de L.

Une tranche sera caractérisée par le couple d’entiers (𝑑,𝑓) où𝑑 est son indice de dé-
but inclus et𝑓 son indice defin exclus, c’est-à-dire L[d:f]. Lorsque𝑑 ≥ 𝑓, la tranche
est donc vide.

Par exemple si L est la liste ['a', 'b', 'c', 'd', 'e', 'f'] alors :

• la tranche (1,4) de L est la liste L[1:4] = ['b', 'c', 'd'],
• la tranche (0,3) de L est la liste L[0:3] = L[:3] = ['a', 'b', 'c'],
• la tranche (3,6) de L est la liste L[3:6] = L[3:] = ['d', 'e', 'f'],
• la tranche (3,4) de L est la liste L[3:4] = ['d'],
• La tranche (3,3) de L est la liste L[3:3] = [].

On s’intéresse ici à la recherche d’un élément noté e dans un tableau ou une liste
L de longueur 𝑛. La première idée, naïve, consiste à tester tous les éléments un par
un jusqu’à trouver e ou jusqu’à épuiser la liste (voir exercice 3 du TP2) ; une telle
approche demandera en moyenne de faire 𝑛/2 comparaisons avant de détecter ou
non l’élément.

2.1 Version récursive

Dans le cas où la liste est triée, on peut appliquer une méthode de recherche dicho-
tomique que l’on détaille ici dans le cas où la liste est triée par ordre croissant :

• [Cas terminal] si la liste est vide. Dans ce cas e n’appartient pas à la liste et
on renvoie False.

• [Cas non terminal] si la liste n’est pas vide.
Notons alors𝑚 l’indice de l’élément central de L : m = n//2, trois cas sont alors
possibles :
1. si L[m] == e, alors e appartient à la liste et on renvoie True,
2. si L[m] > e, alors e est à chercher dans la tranche (0,𝑚) de L,
3. si L[m] < e, alors e est à chercher dans la tranche (𝑚+1,𝑛) de L.

Là encore, cette méthode est bien plus efficace que la naïve puisqu’elle ne deman-
dera en moyenne que log2(𝑛) comparaisons, sa limitation étant de ne s’appliquer
qu’à des listes triées.

/ Lycée Michel Montaigne – Bordeaux 3 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

4
IT
C
Creative-Commons

20
25
-2
02
6

Exercice 4 Implémentation récursive [Sol 4] Complétez le code de la fonction
récursive present_dicho_rec et testez-la.

2.2 Version impérative

Pour implémenter impérativement cet algorithme, on procède ainsi :

• On initialise deux variables 𝑑 et 𝑓 qui représentent la tranche de L dans laquelle
chercher e.

• Tant que la tranche n’est pas vide, on note𝑚 l’indice de l’élément central de la
tranche : m = (d+f)//2, trois cas sont alors possibles :
1. si L[m] == e, alors e appartient à la liste et on interrompt la boucle en

renvoyant True,
2. si L[m] > e, alors on met à jour 𝑑 et 𝑓 pour chercher e dans la tranche

(𝑑,𝑚) de L,
3. si L[m] < e, alors on met à jour 𝑑 et 𝑓 pour chercher e dans la tranche

(𝑚+1,𝑓) de L.
• À l’issue de la boucle, on peut renvoyer False puisque celle-ci ne va à son terme

que si e n’est pas présent dans L.

Exercice 5 Implémentation impérative [Sol 5] Complétez le codede la fonction
present_dicho. Testez-la et comparez-la à sa version récursive.

3 ÉTUDE DU TRI PAR INSERTION

Onappelle tri tout algorithmepermettant de trier par ordre croissant ou décroissant
une collection d’objets, ils seront étudiés plus en détails lors du prochain TP. Nous
allons étudier ici un tri classique, bien connu des joueurs de cartes, permettant de
trier une liste (ou un tableau) L : le tri par insertion.

Nous allons générer une nouvelle liste triée Lt contenant les mêmes éléments que L
sans modifier la liste initiale² de la façon suivante :

1. On initialise Lt avec la liste vide.

2. On parle de tri non en place ou encore d’absence d’effet de bord

2. On parcourt les éléments de L un par un et on les insère correctement dans Lt
de la façon suivante :
2.1) on détermine l’indice p auquel il faut insérer l’élément dans Lt,
2.2) on « coupe » Lt à l’indice p et on insère l’élément entre les deux tranches.

3. On renvoie Lt.

L’algorithme est simple, à condition de savoir déterminer où insérer l’élément. C’est
l’objet des deux prochains exercices, le dernier étant dédié au codage du tri lui-
même.

3.1 Recherche de l’ indice d’insertion

On donne dans le fichier TP_Dicho.py (exercice 6) le code de la fonction positionN

qui renvoie la position d’insertion par uneméthode naïve; comme d’habitude, cette
fonction réalise en moyenne de l’ordre de 𝑛 comparaisons.
On peut améliorer cela via un algorithme dichotomique codée impérativement et
assez proche de ce que l’on a fait dans l’exercice précédent :

• On initialise deux variables 𝑑 et 𝑓 qui représentent la tranche de L dans laquelle
chercher la position d’insertion de e.

• Tant que la tranche n’est pas vide, on note𝑚 l’indice de l’élément central de la
tranche : m = (d+f)//2, deux cas sont alors possibles :
1. si L[m] >= e, alors on met à jour 𝑑 et 𝑓 pour chercher la position d’inser-

tion de e dans la tranche (𝑑,𝑚) de L,
2. si L[m] < e, alors onmet à jour𝑑 et𝑓pour chercher la positiond’insertion

de e dans la tranche (𝑚+1,𝑓) de L.
• À l’issue de la boucle, 𝑑 et 𝑓 ont la même valeur. Cette valeur commune étant

l’indice auquel insérer l’élément.

Encore une fois, cette version dichotomique ne réalisera en moyenne que de l’ordre
de log2(𝑛) comparaisons. On trouvera ci-dessous quelques exemples de recherche
d’un élément e dans la liste L = [1, 2, 2, 2, 3, 4, 5], 𝑖 désignant le nombre de
passages dans la boucle while :

𝑒 = 0 𝑒 = 2 𝑒 = 3 𝑒 = 6
𝑖 𝑑 𝑚 𝑓 𝑑 𝑚 𝑓 𝑑 𝑚 𝑓 𝑑 𝑚 𝑓
0 0 3 7 0 3 7 0 3 7 0 3 7
1 0 1 3 0 1 3 4 5 7 4 5 7
2 0 0 1 0 0 1 4 4 5 6 6 7
3 0 0 0 1 1 1 4 4 4 7 7 7

ITCCreative-Commons 2025-2026 4 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

5
IT
C
Creative-Commons

20
25
-2
02
6

Exercice 6 Recherche d’indice d’insertion dichotomique [Sol 6] Complétez le
code de la fonction positionD qui réalise l’algorithme précédent et testez-la.

3.2 Le tri par insertion

Exercice 7 Tri par insertion [Sol 7]

1. Écrire la fonction triInsN(L:list)->list qui réalise le tri par insertion de
la liste L avec recherche de position d’insertion naïve ainsi que la fonction
triInsD(L:list)->list qui réalise le tri par insertion de la liste L avec re-
cherche de position d’insertion dichotomique.

2. Justifier brièvement que la première fonction fait en moyenne de l’ordre de 𝑛2

comparaisons tandis que la seconde n’en fait que de l’ordre de 𝑛 log2(𝑛).
Exécutez le code, complet, des fonctions genlist et illustre et observez ce
que renvoie illustre(5000). Attention : la fonction illustre ne fonctionne
que si les fonctions de la question précédente ont été correctement codées.

4 RECHERCHE DE LA TRANCHE DE SOMME MAXIMALE

Attaquons-nous à un problème plus difficile : soit L une liste non vide de réels ou
d’entiers relatifs de longueur 𝑛. On appelle « meilleure » tranche de L la tranche
(𝑑,𝑓) de L de somme maximale. Par exemple, la meilleure tranche de la liste Test =

[-2,1,-2,3,1,-3,2,-1,4,-1] est la tranche (3,9) : L[3:9] = [3,1,-3,2,-1,4] et
sa somme, i.e. la somme de ses éléments, vaut 6.

On cherche à coder une fonction m_tranche(L:list) qui renvoie le triplet (𝑠,𝑑,𝑓)
où (𝑑,𝑓) caractérise la meilleure tranche de L et où 𝑠 est sa somme.

La première idée, naïve, serait de parcourir à l’aide de deux boucles for imbriquées
toutes les valeurs possibles de 𝑑 et de 𝑓 pour sélectionner la meilleure tranche. Cela
conduirait à un nombre de calculs de l’ordre de𝑛2 (voir de𝑛3 si on s’y prendmal).

Une approche dichotomique est possible, elle est sans surprise bien plus efficace³
car elle conduit à un nombre de calculs de l’ordre de 𝑛 log2(𝑛) : notons m = n//2

l’indice de l’élément central de L, la meilleure tranche de L se situe :

3. On peut toutefois faire encore mieux : il est possible de trouver la meilleure tranche avec un
nombre de calculs de l’ordre 𝑛 avec des méthodes de programmation dynamique.

1. soit dans la moitié gauche de L, c’est-à-dire L[:m],
2. soit dans la moitié droite de L, c’est-à-dire L[m:],
3. soit est à cheval sur𝑚, c’est-à-dire qu’elle contient les éléments d’indices𝑚−1

et𝑚 de L.

Pour coder la fonction m_tranche par cette approche on va :

1. Coder une fonction non récursive m_tranche_mil(L,d,m,f) qui renvoie le tri-
plet (s,deb,fin) où (deb,fin) caractérise la meilleure tranche de L contenue
dans L[d:f] et à cheval sur𝑚, de somme 𝑠.
Pour ce, on pourra remarquer qu’il suffit de concaténer la meilleure tranche fi-
nissant à𝑚−1 avec la meilleure commençant à𝑚.

2. Coder une fonction récursive auxiliaire m_tranche_aux(L, d, f) qui renvoie
le triplet (s,deb,fin) où (deb,fin) caractérise la meilleure tranche de L

contenue dans L[d:f], de somme 𝑠. Pour ce, on pourra déterminer :
2.1) la meilleure tranche « centrale » grâce à la fonction précédente,
2.2) la meilleure tranche « de la moitié gauche » grâce à un appel récursif,
2.3) la meilleure tranche « de la moitié droite » grâce à un appel récursif.

Puis sélectionner la meilleure des trois.
Notons que le cas terminal est celui d’une liste à un unique élément.

3. Enfin coder la fonction m_tranche(L:list) qui consiste uniquement à un ap-
pel à la fonction précédente correctement initialisée.

Exercice 8 Recherche de la meilleure tranche [Sol 8] Complétez les codes des
trois fonctions détaillées ci-dessus et testez votre fonction m_tranche sur la liste
Test.

Exercice 9 Une application [Sol 9] Soit une liste L des valeurs
boursières journalières d’une action, sa valeur au jour 0 étant sa va-
leur d’introduction sur le marché. Par exemple on donne la liste Cours =

[100,113,110,85,105,102,86,63,81,101,94,106,101,79,94,90,97]. L’ac-
tion est introduite sur le marché au jour 0 à une valeur de 100 euros, elle en vaut 113
à l’issue du jour 1, puis 110 à l’issue du jour 2 etc.

Les questions posées sont : à l’issue de quels jours faut-il acheter puis vendre l’action
pour réaliser le profit maximal? Et que vaut ce profit? Par exemple dans le cas de la
liste Cours, il faut acheter l’action à l’issue du jour 7 (63 euros) puis la revendre à
l’issue du jour 11 (106 euros) pour réaliser le profit maximal (43 euros).

Codez une fonction permettant de répondre à ces questions.

/ Lycée Michel Montaigne – Bordeaux 5 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

6
IT
C
Creative-Commons

20
25
-2
02
6

À retenir
♥

1. Algorithmes dichotomiques classiques : savoir coder l’exponentiation ra-
pide et la recherche dichotomique d’un élément dans une liste triée, récur-
sivement et impérativement.

2. Complexité : travailler par dichotomie permet de passer d’une complexité
linéaire à une complexité logarithmique. C’est un gain très notable en
temps d’exécution en consommation d’énergie.

ITCCreative-Commons 2025-2026 6 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

7
IT
C
Creative-Commons

20
25
-2
02
6

SOLUTIONS DES EXERCICES

Solution 1
1. def expo_rapide_rec(x:float,n:int)->float:

 '''Renvoie la valeur de x^n (récursivement, méthode \

↪ dichotomique)'''

 if n == 0:

 return 1

 else:

 if n%2 == 0:

 return expo_rapide_rec(x*x,n//2)

 else:

 return x*expo_rapide_rec(x*x,n//2)

2. def approx_dicho(f,a:float,b:float,e:float)->list:

 '''Renvoie un encadrement à e près de l'unique sol. de \

↪ f(x)=0 sur [a;b]'''

 if b-a <= e:

 return [a,b]

 else:

 m = (a+b)/2

 if f(a)*f(m) < 0:

 return approx_dicho(f,a,m,e)

 else:

 return approx_dicho(f,m,b,e)

 def g(x):

 return x**5+x-1

>>> approx_dicho(g,0,1,0.0001)

[0.75482177734375, 0.7548828125]

Solution 2
 def devine_dicho_aux(p:int, a:int, b:int, t:int)->int:

 '''Renvoie le nb de tentatives nécessaires pour trouver p \

↪ par dicho. entre a et b, t étant le nombre de tentatives \

↪ déjà effectuées'''

 m = (a+b)//2

 if m == p:

 return t+1

 else:

 if p < m:

 return devine_dicho_aux(p,a,m-1,t+1)

 else:

 return devine_dicho_aux(p,m+1,b,t+1)

 def devine_dicho_rec(p:int, n:int)->int:

 '''Renvoie le nb de tentatives nécessaires pour trouver p \

↪ par dicho entre 0 et n'''

 return devine_dicho_aux(p, 0, n, 0)

Solution 3
1. def approx(f,a:float,b:float,e:float)->list:

 '''Renvoie un encadrement à e près de l'unique sol. de \

↪ f(x)=0 sur [a;b]'''

 i, s = a, b

 while s-i > e:

 m = (i+s)/2

 if f(i)*f(m) < 0:

 s = m

 else:

 i = m

 return [i,s]

Si on teste à présent avec la fonction 𝑔 définie dans un précédent exercice :
>>> approx(g, 0, 1, 0.0001)

[0.75482177734375, 0.7548828125]

>>> approx_dicho(g, 0, 1, 0.0001)

[0.75482177734375, 0.7548828125]

2. def expo_rapide(x:float,n:int)->float:

 '''Renvoie la valeur de x^n'''

 N, X, R = n, x, 1

 while N > 0:

 if N%2 == 1:

 R = R*X

 N, X = N//2, X*X

 return R

Solution 4

/ Lycée Michel Montaigne – Bordeaux 7 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

8
IT
C
Creative-Commons

20
25
-2
02
6

 def present_dicho_rec(e,L:list)->bool:

 '''Renvoie True si e appartient à la liste L supposée \

↪ triée par ordre

 croissant, False sinon'''

 n = len(L)

 if n == 0:

 return False

 else:

 m = n//2

 if L[m] == e:

 return True

 elif L[m] > e:

 return present_dicho_rec(e, L[:m])

 else:

 return present_dicho_rec(e, L[m+1:])

>>> L = [1, 2, 3, 4, 2, 1]

>>> present_dicho_rec(0, L)

False

>>> present_dicho_rec(2, L)

True

Solution 5
 def present_dicho(e,L:list)->bool:

 '''Renvoie True si e appartient à la liste L supposée \

↪ triée par ordre

 croissant, False sinon. Codée impérativement'''

 n = len(L)

 d,f = 0,n

 while d < f:

 m = (d+f)//2

 if L[m] == e:

 return True

 elif L[m] > e:

 f = m

 else:

 d = m+1

 return False

>>> L = [1, 2, 3, 4, 2, 1]

>>> present_dicho(0, L)

False

>>> present_dicho(2, L)

True

Solution 6

 def positionD(e,L:list)->int:

 '''Renvoie la position à laquelle il faut insérer e dans \

↪ la liste L'''

 n = len(L)

 d, f = 0, n

 while d < f:

 m = (d+f)//2

 if L[m] >= e :

 f = m

 else:

 d = m+1

 return d

>>> L = [1, 2, 2, 2, 3, 4, 5]

>>> positionD(3, L)

4

>>> positionN(3, L)

4

>>> positionD(6, L)

7

>>> positionN(6, L)

7

Pour observer et comprendre l’évolution des variables d, f, on peut utiliser ce pro-
gramme.
 def positionD(e,L:list)->int:

 '''Renvoie la position à laquelle il faut insérer e dans \

↪ la liste L'''

 n = len(L)

 d, f = 0, n

 print("d=", d, "f=", f)

 while d < f:

 m = (d+f)//2

 if L[m] >= e:

 f = m

ITCCreative-Commons 2025-2026 8 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

9
IT
C
Creative-Commons

20
25
-2
02
6

 else:

 d = m+1

 print("d=", d, "f=", f)

 return d

>>> L = [1, 2, 2, 2, 3, 4, 5]

>>> positionD(0, L)

d= 0 f= 7

d= 0 f= 3

d= 0 f= 1

d= 0 f= 0

0

>>> positionD(2, L)

d= 0 f= 7

d= 0 f= 3

d= 0 f= 1

d= 1 f= 1

1

>>> positionD(3, L)

d= 0 f= 7

d= 4 f= 7

d= 4 f= 5

d= 4 f= 4

4

>>> positionD(6, L)

d= 0 f= 7

d= 4 f= 7

d= 6 f= 7

d= 7 f= 7

7

Solution 7

1. def triInsN(L:list)->list:

 '''Tri par insertion naïve de la liste L'''

 Lt, n = [], len(L) # on initialise Lt avec la \

↪ liste vide

 for i in range(n): # on parcourt les éléments \

↪ de L

 e = L[i]

 p = positionN(e,Lt) # on repère où les insérer \

↪ dans Lt

 Lt = Lt[:p]+[e]+Lt[p:] # on l'insère dans Lt

 return Lt

 def triInsD(L:list)->list:

 '''Tri par insertion dichotomique de la liste L'''

 Lt, n = [], len(L) # on initialise Lt avec la \

↪ liste vide

 for i in range(n): # on parcourt les éléments \

↪ de L

 e = L[i]

 p = positionD(e,Lt) # on repère où les insérer \

↪ dans Lt

 Lt.insert(p, e) # on l'insère dans Lt avec \

↪ méthode insert cette fois (pour varier un peu)

 return Lt

2. La première fonction fait 𝑛 recherches naïves dans la liste L_t qui a une taille
au plus 𝑛. Ces 𝑛 recherches faisant en moyenne de l’ordre de 𝑛 comparaisons,
le nombre total de comparaisons est bien de l’ordre de 𝑛2.
La deuxième fonction fait 𝑛 recherches dichotomiques dans la liste L_t qui a
une taille au plus 𝑛. Ces 𝑛 recherches faisant en moyenne de l’ordre de log2(𝑛)
comparaisons, le nombre total de comparaisons est biende l’ordre de𝑛 log2(𝑛).
illustre3(5000)

0 1000 2000 3000 4000 5000
taille de la liste

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

te
m
ps

Comparaison des tris naïf et dichotomique

méthode naïve

méthode dichotomique

Solution 8
 def m_tranche_mil(L:list,d:int,m:int,f:int):

 '''Renvoie le triplet (s,deb,fin) où (deb,fin) caractérise \

↪ la meilleure tranche de L contenue dans L[d:f] et à \

↪ cheval sur m et où s est sa somme'''

/ Lycée Michel Montaigne – Bordeaux 9 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

10
IT
C
Creative-Commons

20
25
-2
02
6

 #Recherche de la meilleure tranche de L[d:f] débutant à \

↪ l'indice m

 maxD, fin = L[m], m+1

 S = L[m]

 for i in range(m+1, f):

 S = S+L[i]

 if S > maxD:

 maxD = S

 fin = i+1

 #Recherche de la meilleure tranche de L[d:f] finissant à \

↪ l'indice m-1

 maxG, deb = L[m-1],m-1

 S = L[m-1]

 for i in range(2,m-d+1):

 S = S+L[m-i]

 if S > maxG:

 maxG = S

 deb = m-i

 #Concaténation des deux tranches

 s = maxG+maxD

 return s,deb,fin

 def m_tranche_aux(L:list,d:int,f:int):

 '''Renvoie le triplet (s,deb,fin) où (deb,fin) caractérise \

↪ la meilleure tranche de L contenue dans L[d:f] et où s \

↪ est sa somme'''

 if f-d == 1:

 return L[d], d, f

 else:

 m = (f+d)//2 #m est l'indice central de \

↪ L[d:f]

 Tg = m_tranche_aux(L,d,m) #meilleure tranche de \

↪ L[d:f] à gauche de m(exclus)

 Tc = m_tranche_mil(L,d,m,f) #meilleure tranche de \

↪ L[d:f] à cheval sur m

 Td = m_tranche_aux(L,m,f) #meilleure tranche de \

↪ L[d:f] à droite de m(inclus)

 Lt = [Tg, Tc, Td] #liste de ces trois meilleures \

↪ tranches

 # sélection de la meilleure des trois

 res = Lt[0]

 for i in range(1, 3):

 if Lt[i] > res:

 res = Lt[i]

 return res

 def m_tranche(L:list):

 '''Renvoie le triplet (s,deb,fin) où (deb,fin) caractérise \

↪ la meilleure tranche

 de L et où s est sa somme'''

 return m_tranche_aux(L, 0, len(L))

Solution 9 Pour répondre à la question, il faut chercher la meilleure tranche non
pas de la liste L de départ, mais de celle V de ses variations journalières : V[i] =

L[i]-L[i-1], puis penser à décaler les indices de la tranche.
 def var_jour(L:list)->list:

 '''Renvoie la liste des variations journalières de L'''

 V,n = [0],len(L)

 for i in range(1,n):

 V.append(L[i]-L[i-1])

 return V

 def m_profit(L:list):

 '''Renvoie le triplet (p,a,v) où p est le profit maximal, \

↪ a le jour d'achat

 et v le jour de vente'''

 s,d,f = m_tranche(var_jour(L))

 return (s,d-1,f-1)

ITCCreative-Commons 2025-2026 10 / Lycée Michel Montaigne – Bordeaux

	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:

