ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

TP (S1) 4

Algorithmes dichotomiques

) Objectifs
Premiers pas............oeeeeie ® Mettre en place des méthodes dichoto-
Recherche dans une liste triée.. miques, récursivement et impérative-
ment.

Etude du tri par insertion....... ® Mettre en évidence le gain en com-

plexité d'un algorithme dichotomique
comparé a un algorithme naif.

H WN =

Recherche de la tranche de
somme maximale...............

Fichier externe?
OUI TP Dicho.py (présent(s) dans le répertoire partagé de la classe)

Commencez par récupérer et ouvrir le fichier TP_Dicho. py disponible dans le réper-
toire partagé dela classe, il contient le code des fonctions, généralement a compléter,
qui seront étudiées dans les différents exercices de ce TP. Exécutez-en les lignes 3 a 6
(a faire a chaque ouverture de Pyzo) afin de disposer des bibliotheques nécessaires
aux illustrations graphiques des différents résultats obtenus.

n PREMIERS PAS

n Principes et premiers exemples

Pour traiter un probléme de « taille 72 », on distingue deux approches :

1. approche la plus naturelle, dite « naive », qui consiste généralement a se rame-
ner a un probléme de taille n — 1,

2. lapproche dichotomique qui, quand elle est possible, consiste a se ramener a
un ou plusieurs problemes de taille n /2.

On illustre ceci sur trois exemples :

® [Exemple A : un petit jeu] Soit n € N, considérons le jeu classique suivant :

® [Exemple B: calcul de x"]

1. Lejoueur 1 choisit un entier p au hasard entre 0 et n,
2. lejoueur 2 tente de trouver p avec le moins d’essais possible : pour cela, a
chaque essai il propose un entier ¢ (tentative), et le joueur 1 doit lui dire si
t est inférieur, supérieur ou égal a ¢. On se donne les deux stratégies sui-
vantes pour le second joueur :
21) La méthode naive : le joueur 2 commence avec une premiere tenta-
tive t; = 0, puis tente t, = 1 en cas d’échec efc. jusqu’a trouver p.

2.2) Laméthode dichotomique :le joueur 2 commence avec une premiere
0+ nJ

2

)

tentative « au milieuentre O et n»: t; = [

o sit; = p,larecherche s'arréte,
© si f; < p sa tentative suivante f, sera « au milieu entre ¢, + 1 et

n»:
L+1+n
ty=|——|,
2
© sinon sa tentative suivante f, sera «au milieuentre O et r; — 1 » :
O + tl -]. . s
2= | T efc. jusqu’a trouver p.

On devine bien que la méthode dichotomique permet, sauf coup de chance, de
trouver p beaucoup plus rapidement que la naive. En effet, et dans le pire des
cas, il faudra de I'ordre de n tentatives (n+1 pour étre exact) pour trouver p avec
la méthode naive, alors qu’il n’en faut que de I'ordre de log, () avec la méthode
dichotomique, ce résultat sera démontré formellement au deuxieme semestre.
La différence est énorme! Dans le cas out n = 2270 = (219)?7 = (10*)?” = 10%,
c’est-a-dire 'ordre de grandeur du nombre d’atomes de I'Univers, il faudra dans
le pire des cas un nombre de tentatives équivalent au nombre d’atomes de I'Uni-
vers pour trouver p avec la méthode naive, tandis qu’il n'en faudra que environ
270 pour le trouver avec la méthode dichotomique.

Soient x € R et n € N. Pour calculer x" il faut :

o par l'approche naive initialiser une variable a 1 (pour traiter le cas de x°)

puis la multiplier n fois par x,

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

o par I'approche dichotomique, appelée ici 'exponentiation rapide (voir TP
3) utiliser le fait que x° = 1 et, pour n > 0, la relation de récurrence :

(x * x)n//2

(x*x)V/% % x

n_ si n est pair

B si n est impair
La encore, la méthode naive implique de faire de 'ordre de n multiplications
pour obtenir la valeur x”, tandis qu’il n’en faut que de l'ordre de log,(n) avec
I'exponentiation rapide. La encore, ce résultat sera démontré formellement au
deuxiéme semestre.

® [Exemple C : résolution approchée de I'équation f(x) = 0] Considérons
une fonction f continue et ne s'annulant qu'une seule fois sur le segment S =
[a, b], notons alors x, I'unique solution de I'équation f(x) = 0 sur S. Pour obte-
nir un encadrement a € > 0 pres de x, on procede par dichotomie :

o Sib—a <ealorslaliste [a,b] donne un encadrement a € pres de x,,.

a+b
o Sinon on note m le milieude S: m = ——. Il y a alors deux cas de figure :

1. si f change de signe entre a et m alors x, € [a, m],
2. sinon x, € [m, b].
¢ Onitére jusqu’a obtenir un encadrement € pres de x,,.
La longueur du segment dans lequel on cherche x, est ainsi divisée par 2
a chaque étape. Le nombre d’étapes nécessaire pour avoir un encadrement

—a .
=egsoitn =

Qv

€ pres de x, est donc le premier entier n pour lequel
b-a

log, (
Notons qu’ici il n'y a pas d’approche naive.

m Implémentation récursive

La programmation récursive est particuliecrement bien adaptée aux algorithmes di-
chotomiques comme I'illustre I'exercice ci-dessous.

1.21 Sans fonction auxiliaire
Exercice 1 Implémentation récursive des exemples Bet C [Sol 1]

1. Complétez le code de la fonction expo_rapide rec et testez cette fonction pour
différentes valeurs de x et de n.

2. Complétez la fonction approx_dicho(f,a,b,e) qui, lorsque f est une fonction
continue et s'annulant une unique fois sur le segment [a, b], renvoie sous forme

de liste un encadrement a e pres de I'unique solution sur [a, b] de 'équation

f(x)=0.

Donnez un encadrement & 10™* prés de 'unique solution sur [0, 1] de I'équation
g(x)=0oug:x—x>+x—1.

1.2.2 Avecune fonction auxiliaire Pour coder récursivement une méthode
dichotomique, il est parfois nécessaire de passer par une fonction auxiliaire.

Prenons le jeu de I'exemple A ou I'on souhaite calculer le nombre de tentatives pour
trouver un certain entier p selon la méthode dichotomique : pour le coder récursi-
vement, il faut

® passer en parametre le nombre de tentatives déja effectuées et renvoyer le
nombre de tentatives lorsque I'on trouve le nombre,

® appeler la fonction récursivement en augmentant le nombre de tentatives de 1
si la tentative échoue, en initialisant le nombre de tentatives déja effectuées a
0 lors du premier appel. Cependant, cette initialisation ne peut se faire dans le
corps de la fonction récursive : si c’est le cas, ce nombre sera ré-initialisé a 0 a
chaque appel! Il faut donc coder une fonction dite « maitre » qui se chargera de
cette initialisation.

Exercice 2 Implémentation récursive de lexemple A [sol2] Complétezle code
des fonctions devine dicho auxetdevine dicho rec ettestez cette derniére pour
différentes valeurs de n et de p.

m Implémentation impérative

Comme on I'a vu dans le TP (S1) 3, on est limité en programmation récursive par la
taille de la pile d’appels. Il est donc préférable, lorsque c’est possible, de proposer
une programmation impérative de nos algorithmes dichotomiques. La programma-
tion impérative d'un algorithme dichotomique se fait généralement avec une boucle
while : tant que 'on ne rencontre pas le ou les cas d’arrét, on poursuit 'explora-
tion.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Exercice 3 Implémentation impérative des exemples Bet C [Sol 3]

1. Complétez le code de la fonction approx. Testez-la et comparez les résultats avec
sa version récursive.

2. Proposer une version impérative de I'algorithme d’exponentiation rapide est plus
k

difficile. Lidée est la suivante : un entier n peut s'écrire sous la forme n = Y b;-2’,
i=0
avec b; € {0, 1} pour tout 0 < i < k et k un entier. Alors :
k i k i\b;
x" = xzi=0bi‘2 = H (x2) b
i=0

11 nous faut donc une variable qui va contenir les x>, notée X; dans la suite et éle-
vée au carré a chaque étape, une autre qui va stocker le résultat (donc le produit),
notée R; dansla suite. Les b; quant a eux se calculeront al’aide des commandes de
division euclidienne : dans la suite, ce seront successivement les valeurs de N;%2.

Pour implémenter ce principe, on construit donc trois suites finies (N;), (R;) et
(X;) de la facon suivante :

[Nozn,XOertRozl

® tantqueN; >0,N;; =N;//2,X;;; =X; *X; etR;;; =R; « X012

i .

On montre alors que :

1. l'algorithme se termine en nombre fini d’étapes. Effet la suite (N;) est par
construction une suite strictement décroissante d’entiers naturels, et une
telle suite admet nécessairement un nombre fini de termes’. 1l existe donc
un entier naturel k tel que N, = 0.

2. En sortie de boucle : R; = x". On montre en effet facilement par récur-
rence que, pour tout i € [0, k],

R; * Xll.\]" =x"; on a bien alors R;, = x" puisque N, = 0.

i|N;|X; |R;
0/10| x |1
Ci-contre un exemple avec n = 10 : 1] 5 xi Rox1=1
2] 2 | xR X, =x7
3[1 [x® [Ryx1=x?
4]0 [x®[Ry %Xy =x"0

Complétez le code de la fonction expo_rapide, non récursive, qui renvoie la va-
leur de x™ al'aide de 'algorithme d’exponentiation rapide. Testez-la et comparez
les résultats avec sa version récursive.

1. On dit que N muni de sa relation d’ordre usuelle est un ensemble bien fondé.

n RECHERCHE DANS UNE LISTE TRIEE

Notations :
Dans cette partie et dans les suivantes, on appellera tranche d’une liste (ou d'un ta-
bleau) L toute sous-liste de L constituée d’éléments consécutifs de L.

Une tranche sera caractérisée par le couple d’entiers (d, f) ou d est son indice de dé-
but inclus et f son indice de fin exclus, c’est-a-dire L[d: f]. Lorsque d = f, la tranche
est donc vide.

la tranche (3,4) de Lestlaliste L[3:4] = ['d'],
La tranche (3,3) de L estlaliste L[3:3] = [].

Par exemplesilLestlaliste['a', 'b', 'c', 'd', 'e', 'f']alors:
® latranche (1,4)deLestlaliste L[1:4] = ['b"', 'c', 'd'],
® latranche (0,3) deLestlaliste L[0:3] = L[:3] = ['a', 'b', 'c'],
® latranche (3,6) de Lestlaliste L[3:6] = L[3:] = ['d*, 'e', 'f'],
°
°

On s’intéresse ici a la recherche d'un élément noté e dans un tableau ou une liste
L de longueur n. La premiere idée, naive, consiste a tester tous les éléments un par
un jusqu’a trouver e ou jusqu’a épuiser la liste (voir exercice 3 du TP2); une telle
approche demandera en moyenne de faire /2 comparaisons avant de détecter ou
non I'élément.

m Version récursive

Dans le cas ol la liste est triée, on peut appliquer une méthode de recherche dicho-
tomique que 'on détaille ici dans le cas ou la liste est triée par ordre croissant :

® [Cas terminal]
onrenvoie False.
® [Cas non terminal] sila liste n’est pas vide.
Notons alors m I'indice de I'élément centralde L:m =
possibles :
1. siL[m] == e, alors e appartient a la liste et on renvoie True,
2. siL[m] > e, alors e est a chercher dans la tranche (0, m) de L,
3. siL[m] < e, alors e est a chercher dans la tranche (m + 1, n) de L.

si la liste est vide. Dans ce cas e n‘appartient pas a la liste et

n//2, trois cas sont alors

La encore, cette méthode est bien plus efficace que la naive puisqu’elle ne deman-
dera en moyenne que log,(n) comparaisons, sa limitation étant de ne s’appliquer
qu’a des listes triées.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Exercice 4 Implémentation récursive
récursive present_dicho rec et testez-la.

[sol 4] Complétez le code de la fonction

m Version impérative

Pour implémenter impérativement cet algorithme, on procede ainsi :

® Oninitialise deux variables d et f qui représentent la tranche de L dans laquelle
chercher e.
® Tant que la tranche n’est pas vide, on note m I'indice de I'’élément central de la
tranche:m = (d+f)//2, trois cas sont alors possibles :
1. si L[m] == e, alors e appartient a la liste et on interrompt la boucle en
renvoyant True,
2. siL[m] > e, alors on met a jour d et f pour chercher e dans la tranche
(d,m)del,
3. siL[m] < e, alors on met a jour d et f pour chercher e dans la tranche
(m+1,f)delL.
® ATlissue delaboucle, on peut renvoyer False puisque celle-ci ne va a son terme
que si e n'est pas présent dans L.

Exercice 5 Implémentationimpérative [sols] Complétezle code delafonction
present dicho. Testez-la et comparez-la a sa version récursive.

n ETUDE DU TRI PAR INSERTION

On appelle tri tout algorithme permettant de trier par ordre croissant ou décroissant
une collection d’objets, ils seront étudiés plus en détails lors du prochain TP. Nous
allons étudier ici un tri classique, bien connu des joueurs de cartes, permettant de
trier une liste (ou un tableau) L : le tri par insertion.

Nous allons générer une nouvelle liste triée Lt contenant les mémes éléments que L
sans modifier la liste initiale* de la fagon suivante :

1. On initialise Lt avec la liste vide.

2. On parle de tri non en place ou encore d’absence d’effet de bord

2. On parcourt les éléments de L un par un et on les insére correctement dans Lt
de la fagon suivante :
21) on détermine I'indice p auquel il faut insérer I'élément dans Lt,
2.2) on «coupe» Lt al'indice p et on inseére I'élément entre les deux tranches.
3. Onrenvoie Lt.

Lalgorithme est simple, a condition de savoir déterminer ot insérer I’élément. C’est
I'objet des deux prochains exercices, le dernier étant dédié au codage du tri lui-
méme.

m Recherche de lUindice d’insertion

On donne dans le fichier TP_Dicho. py (exercice 6) le code de la fonction positionN
qui renvoie la position d'insertion par une méthode naive ; comme d’habitude, cette
fonction réalise en moyenne de l'ordre de n comparaisons.

On peut améliorer cela via un algorithme dichotomique codée impérativement et
assez proche de ce que I'on a fait dans I'exercice précédent :

® Oninitialise deux variables d et f qui représentent la tranche de L dans laquelle
chercher la position d’insertion de e.
® Tant que la tranche n’est pas vide, on note m I'indice de I'’élément central de la
tranche:m = (d+f)//2, deux cas sont alors possibles :
1. siL[m] >= e, alors on met a jour d et f pour chercher la position d’inser-
tion de e dans la tranche (d, m) de L,
2. siL[m] < e,alorsonmetajour det f pour chercherla position d’insertion
de e dans la tranche (m +1, f) de L.
® Alissue de la boucle, d et f ont la méme valeur. Cette valeur commune étant
I'indice auquel insérer I’élément.

Encore une fois, cette version dichotomique ne réalisera en moyenne que de I'ordre
de log,(n) comparaisons. On trouvera ci-dessous quelques exemples de recherche
d'un élémente danslalisteL = [1, 2, 2, 2, 3, 4, 5],idésignantle nombre de
passages dans la boucle while:

e=0 e=2 e=3 e=6
ilfld m|flld m|f||ld|m|f|d|m|f
0jjo|3 |70 3 |7)0|3|7|10] 3|7
1401 (30| 1 |34|5|7|4|5]|7
21400 10| 0|1 4|4 |5|6]|6]|7
3100|011 |14]|4|4|7]|7]|7

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Exercice 6 Recherche d’indice d’insertion dichotomique [sol 6] Complétez le
code de la fonction positionD quiréalise I'algorithme précédent et testez-la.

m Le tri par insertion

Exercice 7 Tripar insertion [sol7]

1. Ecrire la fonction triInsN(L:list)->list qui réalise le tri par insertion de
la liste L avec recherche de position d’insertion naive ainsi que la fonction
triInsD(L:list)->1ist qui réalise le tri par insertion de la liste L avec re-
cherche de position d’insertion dichotomique.

2. Justifier brievement que la premiére fonction fait en moyenne de l'ordre de n?
comparaisons tandis que la seconde n’en fait que de l'ordre de nlog,(n).
Exécutez le code, complet, des fonctions genlist et illustre et observez ce
que renvoie illustre(5000). Attention : la fonction i1lustre ne fonctionne
que si les fonctions de la question précédente ont été correctement codées.

RECHERCHE DE LA TRANCHE DE SOMME MAXIMALE

Attaquons-nous a un probleme plus difficile : soit L une liste non vide de réels ou
d’entiers relatifs de longueur n. On appelle « meilleure » tranche de L la tranche
(d, f) de L de somme maximale. Par exemple, la meilleure tranche de la liste Test =
[-2,1,-2,3,1,-3,2,-1,4,-1] estlatranche (3,9):L[3:9] = [3,1,-3,2,-1,4]et
sa somme, i.e. la somme de ses éléments, vaut 6.

On cherche a coder une fonction m_tranche(L:1list) qui renvoie le triplet (s, d, f)
ou (d, f) caractérise la meilleure tranche de L et ou s est sa somme.

La premiere idée, naive, serait de parcourir a 'aide de deux boucles for imbriquées
toutes les valeurs possibles de d et de f pour sélectionner la meilleure tranche. Cela
conduirait 2 un nombre de calculs de I'ordre de n? (voir de n® si on s’y prend mal).

Une approche dichotomique est possible, elle est sans surprise bien plus efficace?®
car elle conduit & un nombre de calculs de 'ordre de nlog,(n) : notonsm = n//2
I'indice de I'’élément central de L, la meilleure tranche de L se situe:

3. On peut toutefois faire encore mieux : il est possible de trouver la meilleure tranche avec un
nombre de calculs de I'ordre n avec des méthodes de programmation dynamique.

1. soit dans la moitié gauche de L, c’est-a-dire L[:m],

soit dans la moitié droite de L, c’est-a-dire L[m:],

3. soit est a cheval sur m, c’est-a-dire qu’elle contient les éléments d’'indices m — 1
etmdel.

N

Pour coder la fonction m_tranche par cette approche on va:

1. Coder une fonction non récursivem_tranche mil(L,d,m,f) quirenvoie le tri-
plet (s,deb, fin) ol (deb, fin) caractérise la meilleure tranche de L contenue
dans L[d:f] et a cheval sur m, de somme s.

Pour ce, on pourra remarquer qu'il suffit de concaténer la meilleure tranche fi-
nissant a m — 1 avec la meilleure commencant a m.

2. Coder une fonction récursive auxiliaire m_tranche _aux(L, d, f) quirenvoie
le triplet (s,deb,fin) ou (deb,fin) caractérise la meilleure tranche de L
contenue dans L[d: f], de somme s. Pour ce, on pourra déterminer :

21) la meilleure tranche « centrale » grace a la fonction précédente,
2.2) la meilleure tranche « de la moitié gauche » grace a un appel récursif,
2.3) la meilleure tranche « de la moitié droite » grace a un appel récursif.
Puis sélectionner la meilleure des trois.
Notons que le cas terminal est celui d'une liste a un unique élément.

3. Enfin coder la fonctionm_tranche(L:1list) qui consiste uniquement a un ap-

pel ala fonction précédente correctement initialisée.

Exercice 8 Recherche de la meilleure tranche [sols] Complétez les codes des
trois fonctions détaillées ci-dessus et testez votre fonction m_tranche sur la liste
Test.

Exercice 9 Une application [Sol 9] Soit une liste L des valeurs
boursiéres journalieres d'une action, sa valeur au jour 0 étant sa va-
leur d’introduction sur le marché. Par exemple on donne la liste Cours =
[100,113,110,85,105,102,86,63,81,101,94,106,101,79,94,90,97]. Lac-
tion est introduite sur le marché au jour 0 a une valeur de 100 euros, elle en vaut 113
alissue du jour 1, puis 110 a I'issue du jour 2 efc.

Les questions posées sont : a I'issue de quels jours faut-il acheter puis vendre I'action
pour réaliser le profit maximal? Et que vaut ce profit? Par exemple dans le cas de la
liste Cours, il faut acheter I'action a I'issue du jour 7 (63 euros) puis la revendre a
l'issue du jour 11 (106 euros) pour réaliser le profit maximal (43 euros).

Codez une fonction permettant de répondre a ces questions.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

v

A retenir

1. Algorithmes dichotomiques classiques : savoir coder I'exponentiation ra-
pide et la recherche dichotomique d'un élément dans une liste triée, récur-
sivement et impérativement.

2. Complexité : travailler par dichotomie permet de passer d'une complexité

linéaire a une complexité logarithmique. C’est un gain trés notable en
temps d’exécution en consommation d’énergie.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

SOLUTIONS DES EXERCICES

Solution 1
1. 1 def expo rapide rec(x:float,n:int)->float:

2

O 00 N O U b~ W
N

© 00 N O U b W

10
11
12

def

def

'''Renvoie la valeur de x”n (récursivement, méthode \
— dichotomique)'""'
if n ==
return 1
else:
if n%2 ==
return expo _rapide rec(x*x,n//2)
else:
return x*expo _rapide rec(x*x,n//2)

approx_dicho(f,a:float,b:float,e:float)->list:
'''Renvoie un encadrement a e pres de l'unique sol. de \
— f(x)=0 sur [a;b]"'"'
if b-a <= e:
return [a,b]
else:
m = (a+b)/2
if f(a)*f(m) < 0:
return approx dicho(f,a,m,e)
else:
return approx dicho(f,m,b,e)
g(x):
return x**5+x-1

>>> approx _dicho(g,0,1,0.0001)
[0.75482177734375, 0.7548828125]

Solution 2
1 def devine dicho aux(p:int, a:int, b:int, t:int)->int:

2

'''Renvoie le nb de tentatives nécessaires pour trouver p \
— par dicho. entre a et b, t étant le nombre de tentatives \

— déja effectuées'''

m = (a+b)//2
if m == p:
return t+1

O 00 N O

10

11
12

13

else:
if p < m:
return devine dicho aux(p,a,m-1,t+1)
else:
return devine dicho aux(p,m+1,b,t+1)

def devine dicho rec(p:int, n:int)->int:
'''Renvoie le nb de tentatives nécessaires pour trouver p \
— par dicho entre 0 et n'"'
return devine dicho aux(p, 0, n, 0)

Solution 3

1.

1 def approx(f,a:float,b:float,e:float)->list:
2 '''Renvoie un encadrement a e pres de l'unique sol. de \
— f(x)=0 sur [a;b]"'""'

3 i, s=a, b

4 while s-i > e:

5 m = (i+s)/2

6 if f(i)*f(m) < 0:
7 S =m

8 else:

9 i=m

10 return [i,s]

Si on teste a présent avec la fonction g définie dans un précédent exercice :
>>> approx(g, 0, 1, 0.0001)

[0.75482177734375, 0.7548828125]

>>> approx_dicho(g, 0, 1, 0.0001)

[0.75482177734375, 0.7548828125]

1 def expo rapide(x:float,n:int)->float:

2 '''Renvoie la valeur de x*n'"'
3 N, X, R=n, x, 1

4 while N > 0:

5 if N%2 == 1:

6 R = R*X

7 N, X =N//2, X*X

8 return R

Solution 4

ITC € 2025-2026

W/ Lycée Michel MONTAIGNE — Bordeaux

1 def present dicho rec(e,L:list)->bool: False
2 '''Renvoie True si e appartient a la liste L supposée \ >>> present dicho(2, L)
— triée par ordre True
3 croissant, False sinon'''
4 n = len(L)
5 if n == 0: Solution 6
6 return False
7 else: 1 def positionD(e,L:list)->int:
8 m=n//2 2 '''Renvoie la position a laquelle il faut insérer e dans \
9 if L[m] == e: — la liste L'"'
10 return True 3 n = len(L)
11 elif L[m] > e: 4 d, f=0, n
12 return present dicho rec(e, L[:m]) 5 while d < f:
13 else: 6 m = (d+f)//2
14 return present dicho rec(e, L[m+1:]) 7 if L[m] >= e :
>>> L =[1, 2, 3, 4, 2, 1] 8 f=m
>>> present _dicho rec(0, L) 9 else:
False 10 d = m+l
>>> present dicho rec(2, L) 11 return d
True >>> | = [1, 2, 2, 2, 3, 4, 5]
>>> positionD(3, L)
4
Solution 5 >>> positionN(3, L)
1 def present _dicho(e,L:list)->bool: ¢ o
2 "'Renvgie True si e appartient a la liste L supposée \ >>> positionD(6, L)
— triée par ordre i -
3 croissant, False sinon. Codée impérativement''' >>> positionN(6, L)
4 n = len(L) i
5 d,f=20,n Pour observer et comprendre I’évolution des variables d, f, on peut utiliser ce pro-
6 while d < f: gramme.
7 m = (d+f)//2 1 def positionD(e,L:list)->int:
8 if L[m] == e: 2 '''Renvoie la position & laquelle il faut insérer e dans \
9 return True < la liste L''
10 elif L[m] > e: 3 n = len(L)
11 f=m 4 d, f=20,n
12 else: 5 print("d=", d, "f=", f)
13 d = m+l 6 while d < f:
14 return False 7 m = (d+f)//2
>>> L = [1, 2, 3, 4, 2, 1] 8 if L[m] >= e:
>>> present dicho(0, L) 9 f=m

ITC € 2025-2026

W/ Lycée Michel MONTAIGNE — Bordeaux

10 else: 6 p = positionN(e,Lt) # on repéere ou les insérer |\
11 d = m+l — dans Lt

12 print("d=", d, "f=", f) 7 Lt = Lt[:pl+[el+Lt[p:] # on l'insére dans Lt

13 return d 8 return Lt

>> L = [1, 2, 2, 2, 3, 4, 5]

>>> positionD(0, L) 9 def triInsD(L:list)->list:

d=0 f= 7 10 "'"'Tri par insertion dichotomique de la liste L''

d= 0 f= 3 11 Lt, n =[], len(L) # on initialise Lt avec la |
d=0 f=1 — liste vide

d=0 f= 0 12 for i in range(n): # on parcourt les éléments |\

0 — de L

>>> positionD(2, L) 1z e = L[i]

d=0 f= 7 14 p = positionD(e,Lt) # on repére ou les insérer |
d= 0 f= 3 — dans Lt

d= 0 f= 1 15 Lt.insert(p, e) # on l'insére dans Lt avec |\
d=1 f= 1 — méthode insert cette fois (pour varier un peu)

1 16 return Lt

>>> positionD(3, L) 2. La premiére fonction fait n recherches naives dans la liste L _t qui a une taille
d= 0 f= 7 au plus n. Ces n recherches faisant en moyenne de 'ordre de n comparaisons,
d= 4 f= 7 le nombre total de comparaisons est bien de l'ordre de n?.

d= 4 f= 5 La deuxiéme fonction fait n recherches dichotomiques dans la liste L t qui a
d= 4 f= 4 une taille au plus n. Ces n recherches faisant en moyenne de l'ordre de log, (n)
4 comparaisons, le nombre total de comparaisons est bien de I'ordre de nlog,(n).
>>> positionD(6, L) illustre3(5000)

d= 0 f= 7

d= 4 f= 7

d= 6 f= 7

d= 7 f= 7

7 £ o100

Solution 7

1. 1 def
2
3

0 1000 2000 3000 4000 5000
taille de la liste

triInsN(L:list)->1list:
""'Tri par insertion naive de la liste L'''

Lt, n =[], len(L) # on initialise Lt avec la | Solution 8
— liste vide 1 def m tranche mil(L:list,d:int,m:int,f:int):
for i in range(n): # on parcourt les éléments |\ 2 '''Renvoie le triplet (s,deb,fin) olu (deb,fin) caractérise \
— de L — la meilleure tranche de L contenue dans L[d:f] et a \
e = L[i] — cheval sur m et ol s est sa somme'"'

ITC € 2025-2026

10

/M/ Lycée Michel MONTAIGNE — Bordeaux

© 00 N O U b

10

11

12
13
14
15
16
17
18

19

20

21

22

23

24

25

26

27

28

29

30

def

#Recherche de la meilleure tranche de L[d:f] débutant a \
— l'indice m

maxD, fin = L[m], m+1
S = L[m]
for i in range(m+1, f):
S = S+L[i]
if S > maxD:
maxD = S
fin = i+l

#Recherche de la meilleure tranche de L[d:f] finissant a |\
— l'indice m-1
maxG, deb = L[m-1],m-1

S = L[m-1]
for i in range(2,m-d+1):
S = S+L[m-1]
if S > maxG:
maxG = S
deb = m-i

#Concaténation des deux tranches
s = maxG+maxD
return s,deb, fin

m_tranche aux(L:list,d:int,f:int):

''"'Renvoie le triplet (s,deb,fin) ou (deb,fin) caractérise \
— la meilleure tranche de L contenue dans L[d:f] et ou s \
— est sa somme'"’

if f-d == 1:
return L[d], d, f
else:
m = (f+d)//2 #m est 1'indice central de |\
— L[d:f]
Tg = m_tranche aux(L,d,m) #meilleure tranche de |

— L[d:f] a gauche de m(exclus)

Tc = m_tranche mil(L,d,m,f) #meilleure tranche de |\
— L[d:f] a cheval sur m

Td = m_tranche _aux(L,m,f) #meilleure tranche de |\
— L[d:f] a droite de m(inclus)

31

32
33
34
35
36
37

38
39

40
41

def

Lt = [Tg, Tc, Td] #liste de ces trois meilleures |\
— tranches
sélection de la meilleure des trois
res = Lt[0]
for i in range(1l, 3):

if Lt[i] > res:

res = Lt[i]

return res

m_tranche(L:list):

'''Renvoie le triplet (s,deb,fin) ol (deb,fin) caractérise \
— la meilleure tranche
de L et ou s est sa somme
return m_tranche aux(L, 0, len(L))

Solution 9 Pour répondre a la question, il faut chercher la meilleure tranche non
pas de la liste L de départ, mais de celle V de ses variations journaliéres : V[i] =
L[i]-L[i-1], puis penser a décaler les indices de la tranche.

1 def var jour(L:list)->list:

2

3
4
5
6

~

10
11

def

'''Renvoie la liste des variations journalieres de L'''
V,n = [0],Tlen(L)
for i in range(1,n):
V.append (L[i]-L[i-1])
return V

m profit(L:list):

'''Renvoie le triplet (p,a,v) ou p est le profit maximal, \
— a le jour d'achat

et v le jour de vente'''

s,d,f = m _tranche(var_jour(L))

return (s,d-1,f-1)

	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:

