Semaine 7 du 10 au 14 novembre 2025

Équations différentielles linéaires

I) Équations différentielles du premier ordre

- Solutions de l'équation homogène y' + a(x)y = 0
- Principe de superposition
- Forme des solutions de l'équation complète
- Méthode de variation de la constante
- Problème de Cauchy, théorème de Cauchy

II) Équations différentielles du second ordre

- \bullet Solutions des équations homogènes à coefficients constants de fonction inconnue à valeurs dans $\mathbb R$ ou dans $\mathbb C$
- Principe de superposition
- Forme des solutions de l'équation complète
- Recherche d'une solution particulière pour un second membre polynomial, exponentiel, ou de la forme $B\cos(\omega x)$ ou $B\sin(\omega x)$ (l'équation homogène étant à coefficients constants)
- Problème de Cauchy, théorème de Cauchy
- Exemples de changement de variable

Équations différentielles linéaire

- Solutions de l'équation homogène y'(x) = a(x)y(x)
- Principe de superposition (pour une équation du premier ou du second ordre)
- Si y_p est une solution particulière de l'équation complète (du premier ou du second ordre), l'ensemble des solutions de cette équation est l'ensemble des fonctions de la forme $y_p + y_h$ avec y_h solution de l'équation homogène.

Intégrales et primitives

• Soit $I_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$. Montrer, pour tout entier naturel n, l'égalité

 $I_{n+2} = \frac{n+1}{n+2}I_n$ et en déduire une expression de I_{2p} pour tout p dans \mathbb{N} .

Équations différentielles linéaires

- Résoudre $(x \ln x)y'(x) y(x) = 2x^2(\ln x)^2 \text{ sur }]0, 1[.$
- Résoudre $x''(t) + 2x'(t) + x(t) = t^2 5 + e^{-t}$ sur \mathbb{R} .
- Résoudre sur \mathbb{R} l'équation $(1+t^2)^2x''(t)+2(t-1)(t^2+1)x'(t)+x(t)=0$ à l'aide du changement de variable $u=\operatorname{Arctan}(t)$.