Semaine 8 du 17 au 21 novembre 2025

Équations différentielles linéaires

I) Équations différentielles du premier ordre

- Solutions de l'équation homogène y' + a(x)y = 0
- Principe de superposition
- Forme des solutions de l'équation complète
- Méthode de variation de la constante
- Problème de Cauchy, théorème de Cauchy

II) Équations différentielles du second ordre

- Solutions des équations homogènes à coefficients constants de fonction inconnue à valeurs dans $\mathbb R$ ou dans $\mathbb C$
- Principe de superposition
- Forme des solutions de l'équation complète
- Recherche d'une solution particulière pour un second membre polynomial, exponentiel, ou de la forme $B\cos(\omega x)$ ou $B\sin(\omega x)$ (l'équation homogène étant à coefficients constants)
- Problème de Cauchy, théorème de Cauchy
- Exemples de changement de variable

Ensembles, applications, relations

I) Ensembles

- Appartenance, inclusion
- Partie, ensemble vide
- Réunion, intersection, différence, complémentaire
- Produit cartésien, ensemble des parties
- Recouvrement disjoint, partition

II) Application d'un ensemble dans un ensemble

- Application, graphe
- Fonction indicatrice d'une partie
- Restriction et prolongement
- Image directe f(A), image réciproque notée provisoirement $^{-1}f(B)$
- Composition, injection, surjection
- Bijection réciproque, réciproque d'une composée

Équations différentielles linéaire

- Solutions de l'équation homogène y'(x) = a(x)y(x)
- Principe de superposition (pour une équation du premier ou du second ordre)
- Si y_v est une solution particulière de l'équation complète (du premier ou du second ordre), l'ensemble des solutions de cette équation est l'ensemble des fonctions de la forme $y_p + y_h$ avec y_h solution de l'équation homogène.

Ensembles et applications

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- La composée de deux injections est injective.
- La composée de deux surjections est surjective.

Équations différentielles linéaires

- Résoudre $(x \ln x)y'(x) y(x) = 2x^2(\ln x)^2$ sur]0, 1[. Résoudre $x''(t) + 2x'(t) + x(t) = t^2 5 + e^{-t}$ sur \mathbb{R} .
- Résoudre sur \mathbb{R} l'équation $(1+t^2)^2 x''(t) + 2(t-1)(t^2+1)x'(t) + x(t) = 0$ à l'aide du changement de variable u = Arctan(t).

Ensembles

• Soient $A \subset E$ et $B \subset E$ deux parties d'un ensemble. Montrer une inclusion entre $\mathcal{P}(A \cup B)$ et $\mathcal{P}(A) \cup \mathcal{P}(B)$ et prouver qu'il n'y a pas égalité.