
/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

1
IT
C
Creative-Commons

20
25
-2
02
6

TP (S1) 8 Traitement d’images

1 Codage d’une image & Ta-
bleaux numpy

2 Ouvrir, afficher etmodifier une
image .

3 Quelques transformations de
base sur les images

Objectifs
• Utilisation des tableaux multi-

dimensionnels.
• Représentation et traitementd’images.

Fichier externe?
OUI TP_TableauxImages.py (présent(s) dans le répertoire partagé de la classe)

Ce TP ne sera traité en séance que très partiellement. Des parties seront à faire à la
maison, elles sont indiquées par le logoLaptop-House .

1 CODAGE D’UNE IMAGE & TABLEAUX NUMPY

1.1 Pixels

Le pixel est l’élément de base permettant de caractériser la définition d’une image
numérique. Une image peut donc être représentée par une matrice T dont chaque
terme représente l’état de coloration du pixel correspondant. Par exemple, ci-
dessous une image avec 9 pixels¹ :

T =
T[0, 0] T[0, 1] T[0, 2]
T[1, 0] T[1, 1] T[1, 2]
T[2, 0] T[2, 1] T[2, 2]

1. bien sûr, dans la pratique ce nombre sera bien plus important

Ainsi, le terme T[0,0] représente l’état du pixel situé en haut à gauche de l’image et
de manière générale T[𝑖, 𝑗] est le pixel situé sur la ligne d’indice 𝑖 en partant du haut
et sur la colonne d’indice 𝑗 en partant de la gauche. Le contenu deT[𝑖, 𝑗]diffère selon
le type d’image :

• Pour une image en noir et blanc, il y a deux états possibles et un bit suffira (0
pour un pixel noir,1 pour le blanc). Par exemple :

Tableau :

T =
0 1 0
1 0 1
0 1 0

Image associée :

• Pour une image enniveaude gris, chaquepixel est soit unflottant compris entre
0 et 1, soit un entier compris entre 0 et 255. La valeur 0 correspond à un pixel
noir, la valeur maximale (1 ou 255) à un pixel blanc. Par exemple :

Tableau :

T =
0 0.3 0.8
1 0.1 0.4

0.3 0.8 0.1

Image associée :

ITCCreative-Commons 2025-2026 1 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

2
IT
C
Creative-Commons

20
25
-2
02
6 • Enfin, pour une image en couleur, chaque pixel est un triplet [r,g,b], où 𝑟,𝑔,𝑏

sont soit des flottants entre 0 et 1, soit de entiers entre 0 et 255, codant l’intensité
d’une couleur primaire (𝑟pour rouge, 𝑣pour vert,𝑏pour bleu) dans le pixel. Par
exemple :

Tableau :

T =
[0.4, 0.4, 0.4] [0,1,0] [1,0,0]

[0,1,0] [0,1,1] [0,1,0]
[0,0,1] [0,1,0] [0,0,1]

Image associée :

Remarque 1
• Si 𝑟 = 𝑔 = 𝑏 = 0, le pixel est noir. Si 𝑟,𝑔 et 𝑏 ont leur valeur maximale (donc

1 ou 255, la valeur par défaut étant 255), le pixel est blanc.
• Supposons chaque coordonnée soit un entier entre 0 et 1, alors : [1,0,0]

est du rouge pur, [0,1,1] est le cyan (complémentaire du rouge), etc. Les
couleurs ayant des proportions identiques de rouge, vert et bleu [x,x,x]

sont des gris de plus en plus clair lorsque x augmente.

Remarque 2 (Pourquoi 255?) Le codage RGB de la couleur s’opère informati-
quement à l’aide de 3 coordonnées de 8 bits chacune; ainsi chaque coordonnée
aura pour valeur maximale 27+26+25+24+23+22+21+20 = 28−1 = 255. Plus
de détails sur ces notions seront apportés à la fin de l’année dans le ??).

1.2 Tableaux

La librairie numpy (rencontrée en cours au début du semestre) est une bibliothèque pour
langage de programmation Python, destinée à manipuler des matrices ou tableaux
multidimensionnels ainsi que des fonctions mathématiques opérant sur ces ta-
bleaux. C’est le type d’objet crée par les fonctions d’importation d’images que nous
détaillerons plus bas. L’objectif de cette sous-section n’est pas un parcours exhaus-
tif de toutes les fonctionnalités de numpy, mais uniquement celles qui nous seront
utiles pour le traitement d’images. On commence par importer la bibliothèque :

import numpy as np

Elle utilise essentiellement des variables de type ndarray (en abrégé array), que l’on
peut voir comme des tableaux à plusieurs dimensions. Les calculs avec numpy sont
particulièrement optimisés car ces tableaux sont homogènes (ils ne contiennent que
des valeurs d’un même type) et de taille fixée à la création : c’est donc une différence
importante avec les listes de listes, à garder à l’esprit.

• Création :oncrée simplementun tel tableauenconvertissant une liste de listes.
>>> T = np.array([[1, 0, 1], [0, 1, 0]])

>>> type(T)

<class 'numpy.ndarray'>

>>> T.dtype

dtype('int64')

>>> T = np.array([[1, 0, 1], [0, 1, 0]])

>>> T

array([[1, 0, 1],

 [0, 1, 0]])

>>> type(T)

<class 'numpy.ndarray'>

• Taille : on accède à la dimension de T à l’aide de la fonction np.shape (existe
aussi sous forme de méthode).
>>> n,p = np.shape(T)[0], np.shape(T)[1] # ou T.shape

>>> n, p

(2, 3)

• Accession à un élément : on accède à l’élément de T situé à la ligne i et dans la
colonne j par T[i, j] (ou T[i][j] si on préfère une syntaxe proche des listes
de listes).
>>> T[0, 0]

np.int64(1)

>>> T[0, 1]

np.int64(0)

• Parcourir : si T possède 𝑛 lignes et 𝑝 colonnes, elles sont numérotées de 0 à
𝑛−1 (resp. 𝑝−1). On dit que (𝑥,𝑦) sont des coordonnées dans le champ de T si
0 ⩽ 𝑥 ⩽ 𝑛−1 et 0 ⩽ 𝑦 ⩽ 𝑝−1. On peut parcourir un tableau au moyen de deux
boucles for : for i in range(n) puis for j in range(p).

• Slicing : on peut extraire facilement des portions de tableaux avec une syntaxe
similaire aux listes (quand on extrait avec a:b l’indice b est toujours exclu). Par
exemple :
>>> T

array([[1, 0, 1],

/ Lycée Michel Montaigne – Bordeaux 2 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

3
IT
C
Creative-Commons

20
25
-2
02
6

 [0, 1, 0]])

>>> T[1:,1:]

array([[1, 0]])

>>> T[:,1:]

array([[0, 1],

 [1, 0]])

• Tableaux usuels : on peut créer facilement des tableaux particuliers. Par
exemple le tableau nul ou un tableau de 1.
>>> np.zeros((2, 3)) # nécessite un tuple en argument

array([[0., 0., 0.],

 [0., 0., 0.]])

>>> np.ones((2, 3))

array([[1., 1., 1.],

 [1., 1., 1.]])

• Moyenne : la fonction np.mean permet de renvoier la moyenne arithhmétique
d’un tableau.
>>> T

array([[1, 0, 1],

 [0, 1, 0]])

>>> np.mean(T)

np.float64(0.5)

• Opérations (coefficient par coefficient) :² on peut effectuer un grand nombre
d’opérations directement sur les array : elles sont effectuées élément par élé-
ment. Ainsi T**2 va élever au carré chaque coefficient de T. La plupart des fonc-
tions mathématiques sont redéfinies par numpy et permettent d’agir sur un ta-
bleau : par exemple np.sin(T) applique le sinus sur chaque élément de T.

À retenir Différences entre tableaux numpy et listes
♥

Même si les objets ndarray et list (listes de listes) semblent être très proches,
il y a néanmoins quelques différences à bien garder en tête.
• La méthode append n’existe pas sur les tableaux, même unidimensionnels.

Ainsi, un tableau a une certaine taille lors de sa création et conservera sa
taille tantqu’il existe. (Cequin’empêchepasde construireune liste de listes avecappend,
puis de convertir le tout en tableau avec np.array())

• Une liste peut contenir des objets de natures différentes, alors que tous les
éléments d’un tableau sont de même type. Type là encore défini lors de sa
création et fixé jusqu’à la fin, on y accède avec T.dtype. Par exemple, T[0,
0] = 0.001 n’aura aucun effet si T est crée avec des entiers (Python trans-
forme alors automatiquement 0.001 en un entier).

2. Les opérations usuelles du calcul matriciel existent aussi mais ne seront pas utiles dans ce TP

♥
>>> T = np.array([[1, 2], [3, 4]])

>>> T.dtype

dtype('int64')

>>> T[0, 0] = 0.001

>>> T

array([[0, 2],

 [3, 4]])

2 OUVRIR, AFFICHER ET MODIFIER UNE IMAGE

Commencez par récupérer et ouvrir le fichier TP_TableauxImages.py disponible
dans le répertoire partagé de la classe, ainsi que toutes les images associées, il
contient le code des fonctions, généralement à compléter, qui seront étudiées dans
les différents exercices de ce TP.

Exercice 1 Afficher une image et extraire des informations [Sol 1]

1. Après avoir copié l’image 'lighthouse.png' du répertoire de la classe vers votre
répertoire perso, recopiez et exécutez le code suivant (avec « Ctrl+Shift+E » après
avoir enregistré le code dans le même répertoire que l’image). Vérifiez le type, la
dimension (np.shape(Im)) et le contenu de Im (on se demandera notamment le
codage utilisé pour cette image parmi ceux présentés en introduction).
import numpy as np

import matplotlib.pyplot as plt

Im = plt.imread('lighthouse.png') # un tableau numpy

plt.figure('gris') # titre à la figure (facultatif)

plt.imshow(Im, cmap = 'gray')

plt.show()

(Le paramètre cmap permet de régler l’interprétation faite par imshow du tableau
numpy : si chaque coordonnée du tableau est de taille 3, imshow utilisera par défaut
un codage RGB (voir introduction). Ici on impose un niveau de gris en spécifiant
cmap)

2. Que fait le code ci-dessous qui est à ajouter à la suite du code de la question pré-
cédente?

ITCCreative-Commons 2025-2026 3 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

4
IT
C
Creative-Commons

20
25
-2
02
6

Imnb = np.zeros(np.shape(Im))

seuil = np.mean(Im)

n, p = np.shape(Im)[0], np.shape(Im)[1]

for i in range(n):

 for j in range(p):

 if Im[i,j] >= seuil:

 Imnb[i,j] = 1

plt.figure('nb') # titre à la figure(facultatif)

plt.imshow(Imnb, cmap = 'gray')

plt.show()

3. À partir du code précédent, proposez une fonction
negatif(Im:np.array)->np.array qui permet d’obtenir le négatif d’une
image en niveau de gris, c’est à dire une image où la luminosité est inversée (les
zones claires deviennent foncées, les zones foncées deviennent claires). Cette
fonction pourra être testée sur l’image 'lighthouse.png'

4. Sur le même principe, écrire une fonction miroir_v(Im:np.array)->np.array

qui permet d’obtenir l’image miroir de l’image initiale, c’est à dire l’image symé-
trique par rapport à un axe vertical passant par le milieu.

5. Ecrire de même une fonction miroir_h(Im:np.array)->np.array qui permet
d’obtenir l’image symétrique par rapport à un axe horizontal passant par le mi-
lieu.

Exercice 2 Convertir une image couleur en niveau de grisLaptop-House [Sol 2]

1. Le fichier `crayons.jpg' contient une image couleur qu’il est possible d’afficher
en utilisant les mêmes instructions que précédemment mais en supprimant l’ar-
gument cmap='gray' qui n’est nécessaire que pour les images en niveau de gris
ou en noir et blanc. Charger l’image dans la variable Im2, examiner le contenu de
cette variable puis afficher l’image.

2. Prédire le résultat et analyser la commande :

(Im2[200,200][0]+Im2[200,200][1]+Im2[200,200][2])/3.

3. Il est possible de convertir une image couleur RGB en image en niveau de gris en
moyennant chaque pixel, c’est-à-dire en créant un pixel de valeur :

Gris=
1
3
Rouge+

1
3
Vert+

1
3
Bleu.

En utilisant np.mean, créer une nouvelle image en appliquant cette formule puis
affichez-la.

Par ailleurs, il est possible d’enregistrer l’image avec l’instruction
plt.imsave('nom_fichier_image.png',Im3, cmap='gray').

3 QUELQUES TRANSFORMATIONS DE BASE SUR LES IMAGES

Cadre
COGS

Pour simplifier le code, les images traitées dans cette section seront des
images en niveau de gris. Cependant les méthodes proposées s’appliquent
également aux images couleurs.

Dans cette partie, on produit à chaque fois une nouvelle image « transformée» à par-
tir de l’ancienne. Chaque coordonnée de pixel de l’image de départ peut donc avoir
un pixel image dans l’image d’arrivée, ou aucun (le pixel en question de l’image de
départ est donc « perdu »). En cas d’existence, on emploiera le même vocabulaire
que pour les applications en Mathématiques en parlant de pixel image et de pixel
antécédent.

3.1 Zoomer

Zoomer consiste à agrandir une partie d’une image autour d’un point particulier en
lui associant plus depixels qu’il n’y en avait pour cette partie dans l’image initiale.De
cette façon, elle apparait plus grosse. Généralement, la taille de l’image ne varie pas
au cours d’un zoom, seule la zone affichée est différente. Ainsi, si on considère une
image initiale de taille (𝑛,𝑝), zoomer d’un facteur 𝑘 autour d’un centre C consiste à
remplir un tableau (𝑛,𝑝) à l’aide du tableau de taille (𝑛//𝑘,𝑝//𝑘) centré autour du
pixel C.

Comme dans tous les problèmes de transformation d’image, la nouvelle image sera
stockée dans un tableau Im1.

Pour chaque point de la nouvelle image, il s’agit de déterminer (à l’aide de 𝑘) à quel
point de l’ancienne il correspond (voir la première question du prochain exercice).
À partir de là, plusieurs options se présentent pour colorer ce pixel :

• reprendre directement la couleur de l’ancien pixel (dans Im) ;
• ou reporter une valeur moyenne des pixels avoisinants (dans Im).

/ Lycée Michel Montaigne – Bordeaux 4 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

5
IT
C
Creative-Commons

20
25
-2
02
6

La première option produit des images de qualité médiocre puisqu’en moyenne un
pixel de l’ensemble de départ sera reproduit 𝑘 fois à l’identique dans l’image d’arri-
vée, ce qui produira des effets d’escalier. La seconde option, pour laquelle il y a de
nombreuses variantes, est plus coûteuse mais produit un meilleur lissage. Cette op-
tion ajoute cependant du flou à l’image.

Exercice 3 Moyenner sur un voisinage [Sol 3]

Compléter le code suivant relatif à une fonction moyenne_vois(T:np.array,

x:int, y:int)->float: qui, étant donné un tableau T et des coordonnées (𝑥,𝑦),
renvoie la moyenne des valeurs des cases voisines de (𝑥,𝑦) dans T.
import numpy as np

def moyenne_vois(T:np.array, x:int, y:int)->list:

 n, p = np.shape(T)[0], np.shape(T)[1]

 D = [(1, 1), (1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), \

↪ (-1, 1), (0, 1)] # déplacements élémentaires

 S, nb = 0, 0

 for d in D:

 dx, dy = d[0], d[1]

 a, b = __________, __________

 if 0 <= a and a < n and 0 <= b and b < p:

 S += ________________ # somme des valeurs

 nb += _____ # nombre de cases voisines

 return ________________

Exercice 4 Zoom sur une image en niveau de gris [Sol 4]

L’objectif de cet exercice est de proposer une fonction
zoom(Im:np.array,x_c:int,y_c:int,k->float:)->np.array qui, à partir
du tableau Im d’une image initiale en niveau de gris, renvoie une nouvelle matrice
de même taille que Im correspondant au zoom de l’image initiale centrée sur le
pixel de coordonnées (𝑥𝑐,𝑦𝑐) avec un « grossissement » de facteur 𝑘. Ce qui signifie
qu’un pixel de l’image initiale occupera environ 𝑘2 pixels dans l’image renvoyée (𝑘
n’étant pas nécessairement un entier).

1. On note (𝑥1,𝑦1) les coordonnées d’un point dans l’image zoomée et (𝑥,𝑦) celles
dupoint correspondant dans l’image initiale. Nous allons construire l’imagenou-

velle (de pixels (𝑥1,𝑦1)) telle que les relations ci-dessous soient satisfaites :
⎧⎪⎪
⎨⎪⎪
⎩

𝑥 = 𝑥𝑐+
𝑥1−

𝑛
2

𝑘

𝑦 = 𝑦𝑐+
𝑦1−

𝑝
2

𝑘
où (𝑛,𝑝) désigne la taille commune des deux images, c’est-à-dire np.shape(Im)
dans la suite.
Justifier la pertinence de ces relations, en comparant la distance entre (𝑥1,𝑦1) et
(𝑛2 ,

𝑝
2) d’une part, et la distance entre (𝑥,𝑦) et (𝑛2 ,

𝑝
2) d’autre part.

• Notez que ces formules ne renvoient en général pas des valeurs entières
pour𝑥 et𝑦, et qu’il faudra donc arrondir à l’entier le plus proche les résultats,
ce qui peut se faire par la fonction round.

• D’autre part, il se peut que (𝑥,𝑦) corresponde, si on s’éloigne trop du centre
du zoom, à des valeurs hors du champ des indices de l’image initiale. Dans
ce cas le pixel d’indices (𝑥1,𝑦1)de l’image zoomée seraplacé à 0 cequi a pour
effet de colorier ce point en noir.

2. Compléter, dans le code suivant, la définition de la fonction
zoom1(Im:np.array,x_c:int,y_c:int,k:float)->np.array en utilisant
les formules précédentes pour colorier la nouvelle image. Tester cette fonction
avec l’image 'lighthouse.png'.
Im = plt.imread('lighthouse.png')

plt.figure('gris')

plt.imshow(Im, cmap = "gray")

plt.show()

def zoom1(Im:np.array,x_c:int,y_c:int,k:float)->np.array:

 n, p = np.shape(Im)[0], np.shape(Im)[1]

 Im1 = #on créé la matrice destination

 for x_1: #on traite chacun des pixels (x_1,y_1) \

↪ de la destination Im1

 for y_1:

 x = x_c + round((x_1-n/2)/k)

 y = y_c + round((y_1-p/2)/k)

 if:

 Im1[x_1, y_1] =

 return Im1

Z1 = zoom1(Im, Im.shape[0]//2, Im.shape[1]//2,2) #vous pouvez \

↪ choisir un centre différent

ITCCreative-Commons 2025-2026 5 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

6
IT
C
Creative-Commons

20
25
-2
02
6

plt.figure()

plt.imshow(Z1, cmap = "gray")

plt.show()

3. À partir de la fonction zoom1 et de la fonction moyenne_vois, créer une nouvelle
fonction zoom2(Im:np.array,x_c:int,y_c:int,k:float)->np.array qui uti-
lise cette fois la moyenne des valeurs des pixels avoisinant le pixel antécédent.
Tester cette fonction avec l’image 'lighthouse.png'.

3.2 RotationLaptop-House

On cherche désormais à appliquer une rotation à une image à partir d’un centre
et d’un angle. La méthode adoptée est similaire à celle proposée pour le zoom :
on commence par créer la matrice de zéros qui accueillera les données de l’image
après rotation. Pour chaque pixel (𝑥1,𝑦1) de l’image finale, on calcule son antécé-
dent (𝑥,𝑦) dans l’image initiale (que l’on obtient après rotation de l’angle opposé),
qui est donné par les formules suivantes :

⎧
⎨
⎩

𝑥 = 𝑥𝑐+cos(α)(𝑥1−𝑥𝑐)+ sin(α)(𝑦1−𝑦𝑐)

𝑦 = 𝑦𝑐− sin(α)(𝑥1−𝑥𝑐)+cos(α)(𝑦1−𝑦𝑐),
là encore, les résultats seront arrondis aux entiers les plus proches, et si (𝑥,𝑦) n’ap-
partient pas à l’image initiale le point correspondant sur l’image finale sera de cou-
leur noire.

Exercice 5 Algorithme de rotation [Sol 5] Proposez une fonction

rotation(Im:np.array, x_c:int,y_c:int,a:float)->np.array

qui renvoie un tableau correspondant à l’image originale après une rotation de
centre (𝑥𝑐,𝑦𝑐) et d’angle a par l’approche détaillée ci-dessus. On remplira le pixel
à l’aide de la fonction moyenne_vois codée précédemment.

À retenir
♥

Une image est représentée en mémoire comme un tableau dont la dimension
correspond à la taille de l’image en pixels. Les éléments du tableau décrivent
le pixel soit par sa luminosité, soit par sa couleur décomposée en 3 couleurs
primaires (rouge, vert, bleu) avec éventuellement sa transparence. L’instruction
Im = plt.imread('lighthouse.png') permet de récupérer le tableau de type
np.array descriptif de l’image. L’instruction plt.imshow(Im,cmap="gray")

(suivie de plt.show()) permet d’afficher l’image (l’option ”gray” permettant de

♥
préciser lorsqu’il s’agit d’une image en niveau de gris).
Lors d’opération sur les images, la meilleure méthode consiste souvent à :
• créer un tableau de zéros à la bonne taille pour recevoir l’image après trai-

tement
• déterminer l’antécédent de chacun des pixels par la transformation à ap-

pliquer
• calculer la ou les valeurs des pixels cibles à partir de la valeur de l’antécé-

dents et éventuellement de ses voisins.

/ Lycée Michel Montaigne – Bordeaux 6 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

7
IT
C
Creative-Commons

20
25
-2
02
6

SOLUTIONS DES EXERCICES

Solution 1
1. Im est un tableau numpy (np.array) dont la dimension correspond à la taille de

l’image en pixels et qui contient des flottants entre 0 et 1.

Ce code transforme une image en niveau de gris en une image noir et blanc à
partir d’un seuillage ici égal à la valeur moyenne.

3.
def negatif(Im:np.array)->np.array:

n, p = np.shape(Im)[0], np.shape(Im)[1]

Imneg = np.zeros((n, p))

for i in range(n):

for j in range(p):

Imneg[i,j] = 1-Im[i,j]

return Imneg

Imneg = negatif(Im)

plt.figure()

plt.imshow(Imneg, cmap ="gray")

4.
def miroir_v(Im:np.array)->np.array:

 n, p = np.shape(Im)[0], np.shape(Im)[1]

 Im_mirv = np.zeros((n, p))

 for i in range(n):

 for j in range(p):

 Im_mirv[i,j] = Im[i,p-1-j]

 return Im_mirv

Im_mir_v = miroir_v(Im)

plt.figure()

plt.imshow(Im_mir_v, cmap ="gray")

5.
def miroir_h(Im:np.array)->np.array:

 n, p = np.shape(Im)[0], np.shape(Im)[1]

 Im_mir_h = np.zeros((n, p))

 for i in range(n):

 for j in range(p):

 Im_mir_h[i,j] = Im[n-1-i,j]

 return Im_mir_h

Im_mir_h = miroir_h(Im)

plt.figure()

plt.imshow(Im_mir_h, cmap ="gray")

Solution 2

ITCCreative-Commons 2025-2026 7 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

8
IT
C
Creative-Commons

20
25
-2
02
6

1. plt.figure('couleurs')

Im2 = plt.imread('crayons.jpg')

np.shape(Im2) # Dimension du tableau

Im2[200, 200] # Contenu d'un élément du tableau

plt.imshow(Im2)

2. L’instruction devrait renvoyer lamoyenne des trois pixels. Elle renvoie une erreur,
due au fait que les trois coordonnées ne sont pas du type int, mais uint8 :
>>> (Im2[200,200][0]+Im2[200,200][1]+Im2[200,200][2])/3

<input>:1: RuntimeWarning: overflow encountered in scalar add

np.float64(77.33333333333333)

3. n, p = np.shape(Im2)[0], np.shape(Im2)[1]

Im3 = np.zeros((n, p))

for i in range(n):

 for j in range(p):

 Im3[i, j] = np.mean(Im2[i, j])

plt.figure('gris')

plt.imshow(Im3, cmap = 'gray')

Solution 3
1. def moyenne_vois(T:np.array, x:int, y:int)->list:

 n, p = np.shape(T)[0], np.shape(T)[1]

 D = [(1, 1), (1, 0), (1, -1), (0, -1), (-1, -1), (-1, 0), \

↪ (-1, 1), (0, 1)] # déplacements élémentaires

 S, nb = 0, 0

 for d in D:

 dx, dy = d[0], d[1]

 a, b = x+dx, y+dy

 if 0 <= a and a < n and 0 <= b and b < p:

 S += T[a, b]

 nb += 1 # nombre de cases voisines

 return S/nb

>>> T = np.array([[1, 2], [3, 4]])

>>> T

array([[1, 2],

 [3, 4]])

>>> moyenne_vois(T, 0, 0)

np.float64(3.0)

>>> moyenne_vois(T, 1, 1)

np.float64(2.0)

Solution 4

1. Notons d la première distance, et d1 la seconde. Alors en tenant compte des rela-
tions on a :

d1 =√(𝑥1−
𝑛
2
)
2
+(𝑦1−

𝑝
2
)
2

=√𝑘2 (𝑥−𝑥𝑐)2+𝑘2 (𝑦−𝑦𝑐)2

=𝑘×√(𝑥−𝑥𝑐)2+(𝑦−𝑦𝑐)2 = 𝑘×d .
La distance d’origine a bien été multipliée par 𝑘, c’est ce que l’on voulait.

2. Im = plt.imread('lighthouse.png')

plt.figure('gris')

plt.imshow(Im, cmap="gray")

/ Lycée Michel Montaigne – Bordeaux 8 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

9
IT
C
Creative-Commons

20
25
-2
02
6

def zoom1(Im:np.array,x_c:int,y_c:int,k:float)->np.array:

 n, p = np.shape(Im)[0], np.shape(Im)[1]

 Im1 = np.zeros((n, p))

 for x_1 in range(n):

 for y_1 in range(p):

 x = x_c + round((x_1-n/2)/k)

 y = y_c + round((y_1-p/2)/k)

 if (x >= 0 and x < n) and (y >= 0 and y < p):

 Im1[x_1, y_1] = Im[x, y]

 return Im1

Z1 = zoom1(Im, Im.shape[0]//2, Im.shape[1]//2, 2)

plt.figure()

plt.imshow(Z1, cmap ="gray")

3. Im = plt.imread('lighthouse.png')

def zoom2(Im:np.array,x_c:int,y_c:int,k:float)->np.array:

 n, p = np.shape(Im)[0], np.shape(Im)[1]

 Im1 = np.zeros((n, p))

 for x_1 in range(n):

 for y_1 in range(p):

 x = x_c + round((x_1-n/2)/k)

 y = y_c + round((y_1-n/2)/k)

 if (x > 0 and x < n) and (y > 0 and y < p):

 Im1[x_1, y_1] = moyenne_vois(Im, x, y)

 return Im1

Z2 = zoom2(Im, Im.shape[0]//2, Im.shape[1]//2,2)

plt.figure()

plt.imshow(Z2, cmap ="gray")

Solution 5
def rotation(Im:np.array, x_c:int,y_c:int,a:float)->np.array:

 n, p = Im.shape[0], Im.shape[1]

 Im1 = np.zeros((n, p))

 for x in range(n):

 for y in range(p):

 x_1 = round(x_c+np.cos(a)*(x-x_c)+np.sin(a)*(y-y_c))

 y_1 = round(y_c-np.sin(a)*(x-x_c)+np.cos(a)*(y-y_c))

 if (x_1 > 0 and x_1 < n) and (y_1 > 0 and y_1 < p):

 Im1[x_1, y_1] = moyenne_vois(Im, x, y)

 return Im1

Im = plt.imread('lighthouse.png')

R = rotation(Im, Im.shape[0]//2, Im.shape[1]//2, 90)

plt.figure()

plt.imshow(R, cmap ="gray")

ITCCreative-Commons 2025-2026 9 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

10
IT
C
Creative-Commons

20
25
-2
02
6

/ Lycée Michel Montaigne – Bordeaux 10 ITCCreative-Commons 2025-2026

	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:

