ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Traitement d’'images

1 Codage d'une image & Ta- Objectifs
bleaux nUMPYcevvuunnnn.. ® Utilisation des tableaux multi-
. . dimensionnels.
2 Ouvrir, afficher et modifier une ® Représentation et traitement d’images.
(111 T =L
3 Quelques transformations de
base sur les images.............

Fichier externe?
0OUI

TP _TableauxImages.py (présent(s) dans le répertoire partagé de la classe)

Ce TP ne sera traité en séance que trés partiellement. Des parties seront a faire a la
maison, elles sont indiquées par le logo fﬂ, .

n CODAGE D’UNE IMAGE & TABLEAUX NUMPY

n Pixels

Le pixel est I’élément de base permettant de caractériser la définition d'une image
numérique. Une image peut donc étre représentée par une matrice T dont chaque
terme représente 1'état de coloration du pixel correspondant. Par exemple, ci-
dessous une image avec 9 pixels ' :

T[0,0] | T[0, 1] | T[0, 2]
T=|T[1,0] | T[1,1] | T[1, 2]
T[2,0] | T[2,1] | T[2, 2]

1. bien str, dans la pratique ce nombre sera bien plus important

Ainsi, le terme T[0, 0] représente 1'état du pixel situé en haut a gauche de I'image et
de maniéere générale T[i, j] est le pixel situé sur la ligne d’indice i en partant du haut
et surla colonne d’'indice j en partant de la gauche. Le contenu de T[i, j] differe selon
le type d’'image :

® Pour une image en noir et blanc, il y a deux états possibles et un bit suffira (0
pour un pixel noir,1 pour le blanc). Par exemple :

Image associée :

Tableau : o5
0|10
T=1|0]|1
0|10

® Pour uneimage en niveau de gris, chaque pixel est soit un flottant compris entre
0 et 1, soit un entier compris entre 0 et 255. La valeur 0 correspond a un pixel
noir, la valeur maximale (1 ou 255) a un pixel blanc. Par exemple :

Image associée :

Tableau :
0 [03]0.8
T=| 1 |01|04
0.3]0.8]|0.1

“os 0.0 0.5 10 15 2.0 25

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

® Enfin, pour une image en couleur, chaque pixel estun triplet [r,g,b],our,g,b

sont soit des flottants entre 0 et 1, soit de entiers entre 0 et 255, codant I'intensité
d’une couleur primaire (r pour rouge, v pour vert, b pour bleu) dans le pixel. Par
exemple :

Image associée :

import numpy as np

Elle utilise essentiellement des variables de type ndarray (en abrégé array), que l'on
peut voir comme des tableaux a plusieurs dimensions. Les calculs avec numpy sont
particulierement optimisés car ces tableaux sont homogenes (ils ne contiennent que
des valeurs d'un méme type) et de taille fixée a la création : c’est donc une différence
importante avec les listes de listes, a garder a I'esprit.

Tableau : o5

[0.4,0.4,0.4] | [0,1,0] | [1,0,0]
T= [0,1,0] [0,1,1] | [0,1,0]
[0,0,1] [0,1,0] | [0,0,1] 05

2.0

25
-0.5 0.0 0.5 10 15 2.0 2.5

Remarque 1
® Sir=g=>b=0,lepixel est noir. Si r, g et b ont leur valeur maximale (donc
1 ou 255, la valeur par défaut étant 255), le pixel est blanc.
® Supposons chaque coordonnée soit un entier entre 0 et 1, alors : [1,0,0]
est du rouge pur, [0,1,1] est le cyan (complémentaire du rouge), etc. Les
couleurs ayant des proportions identiques de rouge, vert et bleu [x, x, x]
sont des gris de plus en plus clair lorsque x augmente.

Remarque 2 (Pourquoi255?) Le codage RGB de la couleur s'opére informati-
quement a l'aide de 3 coordonnées de 8 bits chacune; ainsi chaque coordonnée
aura pour valeur maximale 27 + 28 + 2% + 2% + 23 +22 4. 21 + 20 = 28 1 = 255 Plus
de détails sur ces notions seront apportés a la fin de 'année dans le 22).

m Tableaux

La librairie numpy (rencontrée en cours au début du semestre) est une bibliotheque pour
langage de programmation Python, destinée a manipuler des matrices ou tableaux
multidimensionnels ainsi que des fonctions mathématiques opérant sur ces ta-
bleaux. C’est le type d’objet crée par les fonctions d'importation d’'images que nous
détaillerons plus bas. Lobjectif de cette sous-section n'est pas un parcours exhaus-
tif de toutes les fonctionnalités de numpy, mais uniquement celles qui nous seront
utiles pour le traitement d’images. On commence par importer la bibliothéque :

® (Création: on crée simplement un tel tableau en convertissant une liste de listes.

>>> T = np.array([[1, 0, 1], [0, 1, 0]])

>>> type(T)

<class 'numpy.ndarray'>

>>> T.dtype

dtype('int64"')

>>> T = np.array([[1, 0, 11, [0, 1, O]])

>>> T

array([[1, 0, 11,

[e, 1, o1l

>>> type(T)

<class 'numpy.ndarray'>
Taille : on accede a la dimension de T a I'aide de la fonction np. shape (existe
aussi sous forme de méthode).

>>> n,p = np.shape(T)[0], np.shape(T)[1] # ou T.shape

>>>n, p

(2, 3)
Accession a un élément : on accede al’élément de T situé alaligne i et dansla
colonne j par T[i, j] (ouT[i][j] sion préfere une syntaxe proche des listes

de listes).

>>> T[0, 0]
np.int64(1)
>>> T[0O, 1]

np.int64(0)
Parcourir : si T posséde n lignes et p colonnes, elles sont numérotées de 0 a
n—1 (resp. p—1). On dit que (x, y) sont des coordonnées dans le champ de T si
0sx<sn-1let0<y<p-1.0n peut parcourir un tableau au moyen de deux
boucles for: for i in range(n) puis for j in range(p).
Slicing : on peut extraire facilement des portions de tableaux avec une syntaxe
similaire aux listes (quand on extrait avec a: b I'indice b est toujours exclu). Par
exemple :

>>> T

array([[1, 0, 11,

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

(o, 1, ol1)

>>> T[1:,1:]
array([[1, 0]])
>>> T[:,1:]
array([[0, 1],

[1, 011)
Tableaux usuels : on peut créer facilement des tableaux particuliers. Par
exemple le tableau nul ou un tableau de 1.

>>> np.zeros((2, 3)) # nécessite un tuple en argument
array([[0., 6., 0.],
(0.,) 11)
>>> np.ones((2, 3))
array([[1., ; 1,

[1., , 1.11)
Moyenne : la fonction np.mean permet de renvoier la moyenne arithhmétique
d’'un tableau.
>>> T
array([[1, 0, 1],
(e, 1, ol])
>>> np.mean(T)
np.float64()
Opérations (coefficient par coefficient) : on peut effectuer un grand nombre
d’opérations directement sur les array : elles sont effectuées élément par élé-
ment. Ainsi T**2 va élever au carré chaque coefficient de T. La plupart des fonc-
tions mathématiques sont redéfinies par numpy et permettent d’agir sur un ta-
bleau : par exemple np.sin(T) applique le sinus sur chaque élément de T.

Méme si les objets ndarray et list (listes de listes) semblent étre trés proches,
il y a néanmoins quelques différences a bien garder en téte.

® [Laméthode append nexiste pas sur les tableaux, méme unidimensionnels.
Ainsi, un tableau a une certaine taille lors de sa création et conservera sa
taille tant qu'il existe. (Cequinempéchepas de construire une liste de listes avecappend,
puis de convertir le tout en tableau avecnp.array())

® Une liste peut contenir des objets de natures différentes, alors que tous les
éléments d'un tableau sont de méme type. Type la encore défini lors de sa
création et fixé jusqu’a la fin, on y accede avec T.dtype. Par exemple, T[0,
0] = 0.001 n'aura aucun effet si T est crée avec des entiers (Python trans-
forme alors automatiquement 0. 001 en un entier).

2. Les opérations usuelles du calcul matriciel existent aussi mais ne seront pas utiles dans ce TP

>>> T = np.array([[1, 2], [3, 4]1)
>>> T.dtype

dtype('int64"')
>>> T[O, 0] =
>>> T
array([[0, 2],
[3, 411)

n OUVRIR, AFFICHER ET MODIFIER UNE IMAGE

Commencez par récupérer et ouvrir le fichier TP_TableauxImages.py disponible
dans le répertoire partagé de la classe, ainsi que toutes les images associées, il
contient le code des fonctions, généralement a compléter, qui seront étudiées dans
les différents exercices de ce TP.

Exercice 1 Afficher une image et extraire des informations [sol 1]

1. Apres avoir copié I'image 'lighthouse.png' durépertoire de la classe vers votre
répertoire perso, recopiez et exécutez le code suivant (avec « Ctrl+Shift+E » apres
avoir enregistré le code dans le méme répertoire que I'image). Vérifiez le type, la
dimension (np.shape(Im)) etle contenu de Im (on se demandera notamment le
codage utilisé pour cette image parmi ceux présentés en introduction).

import numpy as np

import matplotlib.pyplot as plt

Im = plt.imread('lighthouse.png') # un tableau numpy
plt.figure('gris') # titre a la figure (facultatif)
plt.imshow(Im, cmap = 'gray')

plt.show()

(Le parametre cmap permet de régler Uinterprétation faite par imshow du tableau
numpy : si chaque coordonnée du tableau est de taille 3, imshow utilisera par défaut
un codage RGB (voir introduction). Ici on impose un niveau de gris en spécifiant

cmap)

2. Que fait le code ci-dessous qui est a ajouter a la suite du code de la question pré-

cédente?

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Imnb = np.zeros(np.shape(Im))
seuil = np.mean(Im)
n, p = np.shape(Im)[0], np.shape(Im)[1]
for i in range(n):
for j in range(p):
if Im[i,j] >= seuil:
Imnb[i,j] =1

plt.figure('nb') # titre a la figure(facultatif)
plt.imshow(Imnb, cmap = 'gray')
plt.show()

3. A partir du code précédent, proposez une fonction
negatif(Im:np.array)->np.array qui permet dobtenir le négatif d'une
image en niveau de gris, c’'est a dire une image ot la luminosité est inversée (les
zones claires deviennent foncées, les zones foncées deviennent claires). Cette
fonction pourra étre testée sur I'image ' lighthouse.png'

4, Sur le méme principe, écrire une fonction miroir v(Im:np.array)->np.array
qui permet d’obtenir 'image miroir de I'image initiale, c’est a dire 'image symé-
trique par rapport a un axe vertical passant par le milieu.

5. Ecrire de méme une fonction miroir h(Im:np.array)->np.array qui permet
d’obtenir 'image symétrique par rapport a un axe horizontal passant par le mi-
lieu.

Exercice 2 Convertir une image couleur en niveau de gris fh [Sol 2]

1. Lefichier “crayons.jpg' contient une image couleur qu’il est possible d’afficher
en utilisant les mémes instructions que précédemment mais en supprimant l'ar-
gument cmap="'gray' qui n'est nécessaire que pour les images en niveau de gris
ou en noir et blanc. Charger I'image dans la variable Im2, examiner le contenu de
cette variable puis afficher I'image.

2. Prédire le résultat et analyser la commande :
(Im2[200,200][0]+Im2[200,200][1]+Im2[200,200][2])/3.

3. Il est possible de convertir une image couleur RGB en image en niveau de gris en
moyennant chaque pixel, c’est-a-dire en créant un pixel de valeur :

1 1 1
Gris = —Rouge + —Vert + —Bleu.
3 3 3

En utilisant np.mean, créer une nouvelle image en appliquant cette formule puis
affichez-la.

Par ailleurs, il est possible denregistrer l'image avec [linstruction

plt.imsave('nom fichier image.png',Im3, cmap='gray').

n QUELQUES TRANSFORMATIONS DE BASE SUR LES IMAGES

Cadre

Pour simplifier le code, les images traitées dans cette section seront des
images en niveau de gris. Cependant les méthodes proposées s’appliquent
également aux images couleurs.

Dans cette partie, on produit a chaque fois une nouvelle image « transformée » a par-
tir de 'ancienne. Chaque coordonnée de pixel de I'image de départ peut donc avoir
un pixel image dans I'image d’arrivée, ou aucun (le pixel en question de I'image de
départ est donc « perdu »). En cas d’existence, on emploiera le méme vocabulaire
que pour les applications en Mathématiques en parlant de pixel image et de pixel
antécédent.

m Zoomer

Zoomer consiste a agrandir une partie d'une image autour d’'un point particulier en
lui associant plus de pixels qu’il n’y en avait pour cette partie dans'image initiale. De
cette facon, elle apparait plus grosse. Généralement, la taille de 'image ne varie pas
au cours d'un zoom, seule la zone affichée est différente. Ainsi, si on considere une
image initiale de taille (n, p), zoomer d'un facteur k autour d'un centre C consiste a
remplir un tableau (n, p) al'aide du tableau de taille (n//k, p// k) centré autour du
pixel C.

Comme dans tous les problemes de transformation d’image, la nouvelle image sera
stockée dans un tableau Iml.

Pour chaque point de la nouvelle image, il s’agit de déterminer (a I'aide de k) a quel
point de 'ancienne il correspond (voir la premiére question du prochain exercice).
A partir de 13, plusieurs options se présentent pour colorer ce pixel :

® reprendre directement la couleur de 'ancien pixel (dans Im);
® ou reporter une valeur moyenne des pixels avoisinants (dans Im).

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

La premiere option produit des images de qualité médiocre puisqu’'en moyenne un
pixel de 'ensemble de départ sera reproduit k fois a I'identique dans I'image d’arri-
vée, ce qui produira des effets d’escalier. La seconde option, pour laquelle il y a de
nombreuses variantes, est plus cotiteuse mais produit un meilleur lissage. Cette op-
tion ajoute cependant du flou a I'image.

Exercice 3 Moyenner sur un voisinage [Sol 3]

Compléter le code suivant relatif a une fonction moyenne vois(T:np.array,
x:int, y:int)->float: qui, étant donné un tableau T et des coordonnées (x, y),
renvoie la moyenne des valeurs des cases voisines de (x,y) dans T.

import numpy as np

def moyenne vois(T:np.array, x:int, y:int)->list:

n, p = np.shape(T)[0], np.shape(T)[1]
pb=1[(1, 1), (1, ©), (1, -1), (0, -1), (-1, -1), (-1, O), \
— (-1, 1), (0, 1)] # déplacements élémentaires
S, nb =0, 0
for d in D:
dx, dy = d[0], d[1]
a, b = ,

if O <=aand a <nand O <= b and b < p:
S += # somme des valeurs
nb += # nombre de cases voisines

return

Exercice 4 Zoom sur une image en niveau de gris [Sol 4]

Lobjectif de cet exercice est de proposer une fonction
zoom(Im:np.array,x c:int,y c:int,k->float:)->np.array qui, a partir
du tableau Im d'une image initiale en niveau de gris, renvoie une nouvelle matrice
de méme taille que Im correspondant au zoom de 'image initiale centrée sur le
pixel de coordonnées (x,,y,) avec un « grossissement » de facteur k. Ce qui signifie
qu’un pixel de I'image initiale occupera environ k? pixels dans I'image renvoyée (k
n’étant pas nécessairement un entier).

1. On note (x;,¥;) les coordonnées d'un point dans 'image zoomée et (x, y) celles
du point correspondant dans 'image initiale. Nous allons construire I'image nou-

. Compléter,

velle (de pixels (x;,y,)) telle que les relations ci-dessous soient satisfaites :

n
-3
k

X=Xx.+

— N3
y =Y + k
ol (n, p) désigne la taille commune des deux images, c’est-a-dire np.shape(Im)
dans la suite.
Justifier la pertinence de ces relations, en comparant la distance entre (x,y;) et

(#,%2) d’une part, et la distance entre (x,y) et (%, 2) d’autre part.

® Notez que ces formules ne renvoient en général pas des valeurs entiéres
pour x et y, et qu’il faudra donc arrondir a I'entier le plus proche les résultats,
ce qui peut se faire par la fonction round.

® D’autre part, il se peut que (x,y) corresponde, si on s’éloigne trop du centre
du zoom, a des valeurs hors du champ des indices de 'image initiale. Dans
ce cas le pixel d’indices (x;, ;) de'image zoomée sera placé a 0 ce qui a pour
effet de colorier ce point en noir.

dans le code suivant, la définition de la fonction
zooml(Im:np.array,x c:int,y c:int,k:float)->np.array en utilisant
les formules précédentes pour colorier la nouvelle image. Tester cette fonction
avec I'image 'lighthouse.png"'.

Im = plt.imread('lighthouse.png")

plt.figure('gris")
plt.imshow(Im, cmap = "gray")
plt.show()

def zooml(Im:np.array,x c:int,y c:int,k:float)->np.array:
n, p = np.shape(Im)[0], np.shape(Im)[1]

Iml = #on créé la matrice destination
for x 1: #on traite chacun des pixels (x 1,y 1) |
— de la destination Iml

for y 1:

X = X _C + round((x _1-n/2)/k)
y =y c + round((y_1-p/2)/Kk)
I -

return Iml

Z1 = zooml(Im, Im.shapel[0]//2, Im.shapel[ll//2,2) #vous pouvez |
— choisir un centre différent

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

O

plt.figure()
plt.imshow(Z1l, cmap = "gray")
plt.show()

3. A partir de la fonction zoom1 et de la fonction moyenne vois, créer une nouvelle
fonction zoom2 (Im:np.array,x _c:int,y c:int,k:float)->np.array qui uti-
lise cette fois la moyenne des valeurs des pixels avoisinant le pixel antécédent.
Tester cette fonction avec I'image ' lighthouse.png"'.

m Rotation fﬁ

On cherche désormais a appliquer une rotation a une image a partir d'un centre
et d'un angle. La méthode adoptée est similaire a celle proposée pour le zoom :
on commence par créer la matrice de zéros qui accueillera les données de I'image
apres rotation. Pour chaque pixel (x,,y;) de 'image finale, on calcule son antécé-
dent (x,y) dans I'image initiale (que I'on obtient apres rotation de ’angle opposé),
qui est donné par les formules suivantes :

X = X, +cos(a) (x; = x¢) +sin(a) (3 —yc)

¥ =Ye —sin(@)(x; = x) +cos(@)(y - ye),
la encore, les résultats seront arrondis aux entiers les plus proches, et si (x,y) n'ap-
partient pas a 'image initiale le point correspondant sur I'image finale sera de cou-
leur noire.

Exercice 5 Algorithme de rotation [Sol 5] Proposez une fonction
rotation(Im:np.array, x c:int,y c:int,a:float)->np.array

qui renvoie un tableau correspondant a 'image originale apres une rotation de
centre (x,,y,) et dangle a par 'approche détaillée ci-dessus. On remplira le pixel
al'aide de la fonction moyenne vois codée précédemment.

A retenir

Une image est représentée en mémoire comme un tableau dont la dimension
correspond a la taille de I'image en pixels. Les éléments du tableau décrivent
le pixel soit par sa luminosité, soit par sa couleur décomposée en 3 couleurs
primaires (rouge, vert, bleu) avec éventuellement sa transparence. Linstruction
Im = plt.imread('lighthouse.png') permet de récupérer le tableau de type
np.array descriptif de I'image. Linstruction plt.imshow(Im,cmap="gray")
(suivie de plt.show()) permet d’afficher I'image (I'option "gray” permettant de

opréciser lorsqu’il s'agit d'une image en niveau de gris).
Lors d'opération sur les images, la meilleure méthode consiste souvent a:

® créer un tableau de zéros a la bonne taille pour recevoir I'image apres trai-
tement

® déterminer I'antécédent de chacun des pixels par la transformation a ap-
pliquer

® calculer la ou les valeurs des pixels cibles a partir de la valeur de I'antécé-
dents et éventuellement de ses voisins.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

SOLUTIONS DES EXERCICES

Im mir v = miroir v(Im)

plt.figure()

plt.imshow(Im mir v, cmap ="gray")
Solution 1

0

1. Im est un tableau numpy (np.array) dont la dimension correspond a la taille de
I'image en pixels et qui contient des flottants entre 0 et 1.

Ce code transforme une image en niveau de gris en une image noir et blanc a
partir d’un seuillage ici égal a la valeur moyenne.

3.
def negatif(Im:np.array)->np.array:
n, p = np.shape(Im)[0], np.shape(Im)[1]
Imneg = np.zeros((n, p))
for i in range(n):
for j in range(p): 5.
Imneg[i,j] = 1-Im[1i,]] def miroir h(Im:np.array)->np.array:
return Imneg n, p = np.shape(Im)[0], np.shape(Im)[1]
Im mir h = np.zeros((n, p))
Imneg = negatif(Im) for i in range(n):
plt.figure() for j in range(p):
plt.imshow(Imneg, cmap ="gray") Im mir h[i,j] = Im[n-1-1i,j]
return Im mir h
Im mir h = miroir h(Im)
plt.figure()
plt.imshow(Im mir h, cmap
4,

def miroir v(Im:np.array)->np.array:
n, p = np.shape(Im)[0], np.shape(Im)[1]
Im mirv = np.zeros((n, p))
for i in range(n):
for j in range(p):
Im mirv[i,j] = Im[i,p-1-j]
return Im_mirv Solution 2

ITC © 2025-2026

0

W/ Lycée Michel MONTAIGNE — Bordeaux

1. plt.figure('couleurs"')
Im2 = plt.imread('crayons.jpg"')
np.shape(Im2) # Dimension du tableau
Im2[200, 200] # Contenu d'un élément du tableau
plt.imshow(Im2)

100 -
200+
300 4

400 1

500 4

T T
0 200 400 600 800 1000

2. Linstruction devrait renvoyer la moyenne des trois pixels. Elle renvoie une erreur,
due au fait que les trois coordonnées ne sont pas du type int, mais uint8:
>>> (Im2[200,200]1[0]1+Im2[200,200][1]1+Im2[200,200]1[2]1)/3
<input>:1: RuntimeWarning: overflow encountered in scalar add
np.float64(77.33333333333333)

3. n, p = np.shape(Im2)[0], np.shape(Im2)[1]
Im3 = np.zeros((n, p))
for i in range(n):
for j in range(p):
Im3[i, j] = np.mean(Im2[i, j])

plt.figure('gris"')
plt.imshow(Im3, cmap = 'gray')

T T
0 200 400 600 800 1000

Solution 3

1.

def moyenne vois(T:np.array, x:int, y:int)->list:
n, p = np.shape(T)[0], np.shape(T)[1]
b =I[(1, 1), (1, 0), (1, -1), (o, -1), (-1, -1), (-1, 0), \
— (-1, 1), (0, 1)] # déplacements élémentaires
S, nb =0, 0
for d in D:
dx, dy = d[0], d[1]
a, b = x+dx, y+dy
if O <=aand a <nand O <= b and b < p:
S += T[a, b]
nb += 1 # nombre de cases voisines
return S/nb
>>> T = np.array([[1, 2], [3, 41])
>>> T
array([[1, 2],
[3, 411)
>>> moyenne vois(T, 0, 0)
np.float64(3.0)
>>> moyenne vois(T, 1, 1)
np.float64(2.0)

Solution 4

1.

2.

Notons d la premiere distance, et d; 1a seconde. Alors en tenant compte des rela-

tionsona:

]

= k2 (x = x 2+ K2 (y — 3,)?
= kx /(- x)+ (y - o) = [k xd

La distance d’origine a bien été multipliée par k, c’est ce que I'on voulait.
Im = plt.imread('lighthouse.png')

plt.figure('gris")

plt.imshow(Im, cmap="gray")

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

3.

def zooml(Im:np.array,x c:int,y c:int,k:float)->np.array:

n, p = np.shape(Im)[0], np.shape(Im)[1]
Iml = np.zeros((n, p))
for x 1 in range(n):
for y 1 in range(p):
X = X € + round((x _1-n/2)/k)
y =y c + round((y_1-p/2)/k)

if (x >= 0 and x < n) and (y >= 0 and y < p):

Iml[x 1, y 11 = Im[x, vyl
return Iml

Z1 = zooml(Im, Im.shapel[0]1//2, Im.shapelll//2, 2)
plt.figure()
plt.imshow(Z1l, cmap ="gray")

m = plt.imread('lighthouse.png')

def zoom2(Im:np.array,x c:int,y c:int,k:float)->np.array:

n, p = np.shape(Im)[0], np.shape(Im)[1]
Iml = np.zeros((n, p))
for x 1 in range(n):

for y 1 in range(p):

X = X € + round((x _1-n/2)/k)

y =y c + round((y_1-n/2)/k)

if (x >0 and x < n) and (y > 0 and y < p):
Iml[x 1, y 1] = moyenne vois(Im, x, Yy)

return Iml

Z2 = zoom2(Im, Im.shapel[01//2, Im.shapel[ll//2,2)
plt.figure()
plt.imshow(Z2, cmap ="gray")

Solution 5

def rotation(Im:np.array, x c:int,y c:int,a:float)->np.array:
n, p = Im.shape[0], Im.shape[l]
Iml = np.zeros((n, p))
for x in range(n):
for y in range(p):

x 1 = round(x_c+np.cos(a)*(x-x _c)+np.sin(a)*(y-y c))

y 1 = round(y_c-np.sin(a)*(x-x _c)+np.cos(a)*(y-y c))

if (x 1 >0 and x 1 <n) and (y 1 >0 and y 1 < p):
Iml[x 1, y 1] = moyenne vois(Im, X, y)

return Iml

Im = plt.imread('lighthouse.png")
R = rotation(Im, Im.shape[0]1//2, Im.shape[ll//2, 90)

plt.figure()

plt.imshow(R, cmap ="gray")

9202-5207 @ DLl oL XNeapJiog — INDIVINOW 13YdIW 89947 \Q\

	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:

