
/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

1
IT
C
Creative-Commons

20
25
-2
02
6

Devoir Surveillé d’ITC N°1
le 19/12/2025

MPSI & PCSI

Consignes

• Les codes doivent être présentés en mentionnant explicitement l’indentation, au moyen par
exemple de barres verticales sur la gauche.

• Pour qu’un code soit compréhensible, il convient de choisir des noms de variables les plus expli-
cites possibles.

• La numérotation des exercices (et des questions) doit être respectée et mise en évidence. Les
résultats (hors questions purement informatiques) doivent être encadrés proprement.

• Il est important de numéroter correctement les pages des copies qui seront données à la correc-
tion. Chaque candidat est responsable de la vérification de son sujet d’épreuve : pagination et
impression de chaque page.

• Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il
convient de le signaler sur la copie et de poursuivre la composition en expliquant les raisons
des initiatives qui ont été prises.

• Les candidats ne doivent avoir aucune communication entre eux ou avec l’extérieur durant
l’épreuve. Aussi, l’utilisation des téléphones portables et, plus largement, de tout appareil per-
mettant des échanges ou la consultation d’informations, est interdite.

• À l’issue de la durée prévue pour cette épreuve, les candidats doivent déposer le stylo et ne sont
plus autorisés à écrire quoi que ce soit sur leur copie. Tout retard donne lieu à une pénalité sur la
note finale.

• L’usage de la calculatrice est interdit.

• Les signatures des fonctions devront toutes être écrites.
• Les codes devront être les plus « optimisés » possibles, lorsqu’une telle op-

timisation semble évidente. Par exemple, via l’utilisation de boucles ayant
un nombre minimal d’itérations.

Problème Autour du séquençagedugénome Dans ce sujet, on s’intéresse à la
recherche d’unmotif dans unemolécule d’ADN.Unemolécule d’ADN est constituée
de deux brins complémentaires, qui sont un long enchaînement de nucléotides de
quatre types différents désignés par les lettres A, T, C et G. Pour simplifier le sujet, on
va considérer qu’unemolécule d’ADN est une chaîne de caractères sur l’alphabet A,
C, G, T (on s’intéresse donc seulement à un des deux brins). On parlera de séquence
d’ADN.

Partie I — Génération d’une séquence d’ADN On considère la chaîne de
caractères : seq = 'ATCGTACGTACG'.

1. Que renvoie la commande seq[3]? Que renvoie la commande seq[2:6]?

Les fonctions que nous allons construire par la suite devront prendre en paramètre
une chaîne de caractères ne contenant que les lettres A, C, G, T (ceci correspond
à une séquence d’ADN). Nous allons commencer par construire aléatoirement une
séquence d’ADN.

Pour générer aléatoirement une séquence d’ADN composée de 𝑛 caractères, on uti-
lisera le principe suivant :

• On commence par créer une chaîne de caractères vide.
• On tire alors aléatoirement 𝑛 chiffres entiers compris entre 0 et 3 et :

⋄ si on obtient 0, alors, on ajoute ’A’ à notre chaîne de caractères ;
⋄ si on obtient 1, alors, on ajoute ’C’ à notre chaîne de caractères ;
⋄ si on obtient 2, alors, on ajoute ’G’ à notre chaîne de caractères ;
⋄ si on obtient 3, alors, on ajoute ’T’ à notre chaîne de caractères.

• On renvoie la chaîne de caractères ainsi construite.

2. Écrire une fonction generation qui prend en paramètre un entier 𝑛 et qui ren-
voie une chaîne de caractères aléatoires de longueur𝑛 ne contenant que des ’A’,
’C’, ’G’ et ’T’. On supposera que le module numpy.random est importé et on rap-
pelle que la commande randint(a, b) renvoie alors un entier aléatoirement
entre a et b-1.

Partie II — Recherche d’un motif Considérons une chaîne de caractères S
= 'ACTGGTCACT'. On appelle sous-chaîne de caractères de S une suite de caractères
incluse dans S. Par exemple, 'TGG' est une sous-chaîne de S mais 'TAG' n’en est pas
une.

L’objectif de cette partie et des suivantes est de rechercher une sous-chaîne de carac-
tères M de longueur 𝑚 appelée motif dans une chaîne de caractères S de longueur
𝑛.

Il s’agit d’une problématique classique en informatique, qui répond aux besoins de
nombreuses applications. On trouve plus de 100 algorithmes différents pour cette
même tâche, les plus célèbres datant des années 1970, mais plus de la moitié ont
moins de 10 ans.

Dans la partie suivante, nous allons d’abord nous intéresser à l’algorithme naïf, puis
dans les suivantes, nous nous pencherons sur plusieurs autres algorithmes. Les dif-
férentes parties sont indépendantes.

/ Lycée Michel Montaigne – Bordeaux 1 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

2
IT
C
Creative-Commons

20
25
-2
02
6

II — 1) Algorithme naïf Le principe de l’algorithme naïf est le suivant :

• on parcourt la chaîne S, disons que l’on se trouve en indice 𝑖.
⋄ On regarde si le motif M est présent dans S à partir de l’indice i.
⋄ Si ce n’est pas le cas, on recommence avec l’élément suivant de la chaîne

de caractères.

Par exemple, si on recherche lemotif'FOR'dans la chaine'INFORMATIQUE', on com-
pare d’abord le motif 'FOR' avec 'INF' (les motifs ne correspondent pas !), puis le
motif 'FOR' avec 'NFO' (les motifs ne correspondent toujours pas !), puis le motif
'FOR' avec 'FOR' (les motifs sont les mêmes).

3. Soit S une chaîne de caractères. Rappeler la commande, faisant appel à du sli-
cing, permettant d’obtenir une sous-chaîne de S, constituée des éléments de S
dont les indices sont compris entre les indices debut (inclus) et fin (inclus).

4. Écrire une fonction recherche(S:str,M:str)->int, faisant appel à du slicing,
qui à une sous-chaîne de caractères S et une chaîne de caractèresM renvoie -1 si
M n’est pas dans S, et la position de la première lettre de la chaîne de caractères
M si M est présente dans S. Par exemple, recherche('INFORMATIQUE','FOR')
renvoie 2, tandis que recherche('INFORMATIQUE','FORA') renvoie -1.

On pourrait démontrer que cette première méthode naïve est complètement ineffi-
cace lorsqu’on l’applique à de très longues chaines de caractères.

II — 2) Algorithme de Karp-Rabin (1987) L’algorithme de KARP-RABIN a
pour objectif d’améliorer l’algorithme naïf, mais en éliminant des comparaisons de
chaînes (qui peuvent être coûteuses). L’idée est de remplacer les chaînes S par un
entier f(S) où 𝑓 est une fonction à valeurs entières sur l’ensemble des chaînes, ap-
pelée fonction de hachage. On s’intéresse tout d’abord à un premier exemple simple
de telle fonction, puis on met en oeuvre son utilisation pour la recherche de motifs.
Enfin on étudie une deuxième telle fonction appelée empreinte de Rabin.

5. [1er exemplede fonction𝑓et algorithme] Ondécidepar exempled’associer
à une chaîne S le nombre de fois que la lettre ’A’ apparait dedans, noté ici f(S).
5.1) Écrire une fonction itérative nbA(ch:str)->int à qui on fournit une

chaîne ch et qui renvoie le nombre de ’A’ présents dans ch.
5.2) L’algorithme de RABIN-KARP consiste à, dans l’algorithme naïf, effectuer

la comparaison entre M et une sous-chaine de S à l’indice i uniquement
si les images par 𝑓 de ces deux sous-chaînes coïncident.
Recopier et compléter la fonction ci-après pour qu’elle implémente ce
principe.

def recherche_RK1(S:str,M:str)->int:

 m = len(M)

 n = len(S)

 f_M = nbA(M)

 for i in range(____________):

 S_i = ____________ # chaîne extraite de S à \

↪ l'indice i de longueur m

 if nbA(S_i) == f_M :

 if S_i == M:

 return ____________

 return ____________

5.3) Une amélioration simple de la fonction précédente peut être obtenue. En
effet, à chaque itération i, nbA(S_i) est recalculé alors que l’on pourrait
utiliser la valeur de l’itération précédente. En effet, S_i à l’itération sui-
vante partage𝑚−1 lettres en communavec S_ide l’itération précédente.
On se sert alors de la fonction nbA uniquement pour l’initialisation.
Écrire une nouvelle fonction recherche_RK2(S:str,M:str)->int ex-
ploitant ce principe. En quoi cet algorithme est-il meilleur que l’algo-
rithme naïf codé dans la précédente sous-partie?

6. [2ème exemple de fonction 𝑓] Voici un autre exemple de conversion d’une
chaine sur l’alphabet A,T,G,C en entier :
• à chaque caractère de l’alphabet, on associe une valeur. Ici, on va associer

à ’A’ la valeur 0, à ’C’ la valeur 1, à ’G’ la valeur 2 et à ’T’ la valeur 3. Pour un
motif de taille 𝑛, on obtient donc une suite de chiffre 𝑎𝑛−1, …, 𝑎1, 𝑎0. Par
exemple, à la chaîne 'TAGC', on lui associe la suite de chiffre 3021;

• cette suite de chiffres peut être considérée comme l’écriture d’un entier en
base 4. On convertit ensuite cet entier en base 10 en calculant

N= 𝑎𝑛−1×4𝑛−1+𝑎𝑛−2×4𝑛−2+…+𝑎1×4+𝑎0 ;
pour 3021 : 𝑛 = 4, 𝑎3 = 3, 𝑎2 = 0, 𝑎1 = 2, 𝑎0 = 1.

• on calcule enfin le reste de la division euclidienne deN par 13.
Dans cette question, on s’intéresse uniquement à la fonction de hachage, et pas
à son utilisation dans l’algorithme de KARP-RABIN.
6.1) On ne considère dans cette question que des motifs de taille 3. Quels

nombres obtient-on en convertissant les motifs 'CCC', 'ACG' et 'GAG'?
Pour cela, recopier le tableau suivant sur la copie puis le compléter :

ITCCreative-Commons 2025-2026 2 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

3
IT
C
Creative-Commons

20
25
-2
02
6

Motif Suite de chiffres Entier en base 10 Reste de la division par 13

'CCC'

'ACG'

'GAG'

6.2) On souhaite maintenant écrire une fonction à qui on fournit une chaîne
de caractères (qui représente une séquence d’ADN) et qui renvoie son co-
dage avec la méthode précédente.
i) Écrire une fonction itérative sommeit(L:list)->int à qui on four-

nit une liste L = [𝑎𝑛−1,𝑎𝑛−2, ...,𝑎1,𝑎0] constituée de nombres entiers

compris entre 0 et 3, et qui renvoie la somme :
𝑛−1
∑
𝑘=0

𝑎𝑘4𝑘.

ii) On se propose maintenant d’écrire une fonction récursive
sommerec(L:list)->int qui agit comme la fonction précédente.
On pourra par exemple s’appuyer sur l’algorithme de HORNER et
utiliser l’écriture suivante :

𝑛−1
∑
𝑘=0

𝑎𝑘4𝑘 = 𝑎0+4×[𝑎1+4×(𝑎2+4×(𝑎𝑛−2+4𝑎𝑛−1))] .

iii) Recopier la fonction suivante sur votre copie et la compléter afinqu’à
une chaîne de caractères ch, elle renvoie le résultat de sa conversion
décrite précédemment.
def f(ch:str)->int:

 seq = []

 codage = {'A': 0, 'C': 1, 'G': 2, 'T': 3} # \

↪ dictionnaire

 for car in ch:

 seq.append(.....)

 return sommerec(.....) % 13

II — 3) Algorithme dichotomique utilisant la structure de liste
Une autre possibilité pour chercher un motif dans une chaîne de caractères (ou
séquence d’ADN) est de construire une liste contenant tous les sous-motifs de notre
chaîne, triés par ordre alphabétique, puis de faire la recherche dans cette liste.

Par exemple, à la chaîne 'CATCG', on peut associer la liste :

['C', 'A', 'T', 'G', 'CA', 'AT', 'TC', 'CG', 'CAT', 'ATC', 'TCG',

'CATC', 'ATCG', 'CATCG']

que l’on peut ensuite trier pour obtenir la liste :

['A', 'AT', 'ATC', 'ATCG', 'C', 'CA', 'CAT', 'CATC', 'CATCG', 'CG',

'G', 'T', 'TC', 'TCG']

La première étape de cette méthode est donc de trier une liste.

7. Écrire une fonction position_max qui prend pour paramètre une liste L non
vide de nombres et qui renvoie l’indice de la première occurrence dumaximum
de la liste L.

8. Recopier la fonction suivante sur votre copie et compléter les pointillés afin
qu’elle trie une liste L fournie en paramètre.
def tri(L:list)->None:

 n = len(L)

 for i in range(n-1):

 p = position_max(L[.....])

 L[.....], L[.....] = L[.....], L[.....]

Vous noterez que cette fonction agit donc sur L par effets de bord, et ne renvoie
rien.

9. Quel est le nom de cette méthode de tri déjà étudiée en TP?
10. Laméthode de tri précédemment écrite, prévue pour trier une liste de nombres

fonctionne-t-elle encore si on l’utilise pour trier une liste de chaînes de carac-
tères? Justifier votre réponse.

11. On propose alors la fonction suivante, incomplète, à qui on fournit :
• une liste triée Lde chaînes de caractères constituée de tous les sous-motifs

d’une séquence d’ADN.
• un motif M

et qui renvoie -1 si M n’est pas dans L, et la position de M dans L sinon :
def recherche2(M:str, L:list)->int:

 """

 la liste L est triée et on y recherche le motif M

 """

 debut =

 fin =

 while debut < fin:

 m = (debut + fin) // 2

 if L[m] < M:

 debut =

 else:

 fin = ...

 if L[debut] == M:

 return

/ Lycée Michel Montaigne – Bordeaux 3 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

4
IT
C
Creative-Commons

20
25
-2
02
6

 else:

 return -1

11.1) Quel nom porte la méthode proposée dans cette dernière fonction?
11.2) Recopier la fonctionprécédente sur votre copie et compléter les pointillés

afin qu’elle réalise l’opération attendue.

II — 4) Algorithme de Knuth-Morris-Pratt (1970) Lorsqu’un échec a
lieu dans l’algorithme naïf, c’est-à-dire lorsqu’un caractère du motif est différent du
caractère correspondant dans la séquence d’ADN, la recherche reprend à la position
suivante en repartant au début du motif. Pour améliorer la recherche, nous allons
introduire les notions de préfixe et de suffixe.

• Un préfixe d’unmotifM est unmotif, différent deM, qui est un début deM. Par
exemple, ’mo’ et ’m’ sont des préfixes de ’mot’, mais ’mot’ n’est pas un préfixe de
’mot’.

• Un suffixe d’un motif M est un motif, différent de M, qui est une fin de M. Par
exemple, ’ot’ et ’t’ sont des suffixes de ’mot’, mais ’mot’ n’est pas un suffixe de
’mot’.

12. Donner tous les préfixes et les suffixes du motif 'ACGTAC'.
13. Quel est le plus long préfixe de 'ACGTAC' qui soit aussi un suffixe? Quel est le

plus long préfixe de 'ACAACA' qui soit aussi un suffixe?

L’algorithme de KNUTH-MORRIS-PRATT (KMP) est un algorithme reposant essentiel-
lement sur une fonction annexe appelée KMP_aux dans la suite. On ne s’intéresse pas
dans ce sujet à l’algorithme KMP complet, mais uniquement à plusieurs méthodes
d’implémentation de KMP_aux, qui prend en argument un motif M.

L’objectif de cette dernière est de renvoyer une liste F, telle que F[i] contienne, pour
chaque lettre de M à la position i, la longueur du plus grand sous-mot de M qui finit
par la lettre M[i] (donc le plus grand suffixe de M[:i+1]) qui soit aussi un préfixe de
M.

14. On considère que le motif M est 'ACGTAC' et on note F = KMP_aux(M).
14.1) Quelle est la taille de la liste F?
14.2) Quelle information sur F donne le résultat de la question 13?

15. On considère que le motif M est 'ACAACA' et on note F = KMP_aux(M).
15.1) Quelle est la taille de la liste F?
15.2) Quelle information sur F donne le résultat de la question 13?

16. On souhaite proposer ici une première version de KMP_aux.

16.1) Écrire une fonction calc_pref(M:str)->list qui renvoie une liste des
préfixes de M triés dans l’ordre croissant de longueur. par exemple,
calc_pref("ACCT") renverra : ["A", "AC", "ACC"].

16.2) Écrire une fonction récursive renverse(M:str)->str qui renvoie la
chaîne miroir de M. Par exemple, renverse("ACCT") renverra "TCCA".

16.3) Écrire une fonction calc_suff(M:str)->list qui renvoie une liste des
suffixes de M triés dans l’ordre croissant de longueur. par exemple,
calc_suff("ACCT") renverra : ["T", "CT", "CCT"].

16.4) Écrire enfin une première version de la fonction KMP_aux.
17. On propose le code suivant :

def KMP_aux(M:str)->list:

 F = [0]

 i = 1

 j = 0

 m = len(M)

 while i < m :

 if M[i] == M[j]:

 F.append(j+1)

 i = i+1

 j = j+1

 else:

 if j > 0:

 j = F[j-1]

 else:

 F.append(0)

 i = i+1

 return F

17.1) Décrire l’exécutionde la fonctionfonctionannexe lorsqueM = 'ACAACA'

en recopiant sur votre copie et complétant le tableau suivant, qui décrit
l’évolution du contenu des variables i, j et F.

i j F

Fin du premier passage dans la boucle while

Fin du deuxième passage dans la boucle while

Fin du troisième passage dans la boucle while

Fin du quatrième passage dans la boucle while

Fin du cinquième passage dans la boucle while

Fin du sixième passage dans la boucle while

17.2) Quel est l’avantage de cette nouvelle version par rapport à l’ancienne?

ITCCreative-Commons 2025-2026 4 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

5
IT
C
Creative-Commons

20
25
-2
02
6

Correction
du Devoir Surveillé d’ITC N°1 (le 19/12/2025)

MPSI & PCSI

Solution

Partie I — Génération d’une séquence d’ADN

1. seq[3] renvoie ’G’ et seq[2:6] renvoie ’CGTA’.
2. Fonction generation :

def generation(n:int)->str:

 seq = ''

 for _ in range(n):

 x = randint(0,4)

 if x == 0:

 seq += 'A'

 elif x == 1:

 seq += 'C'

 elif x == 2:

 seq += 'G'

 else:

 seq += 'T'

 return seq

ou plus simplement :
def generation(n):

 seq = ''

 codage = ['A','C','G','T']

 for _ in range(n):

 seq += codage[randint(0,4)]

 return seq

Partie II — Recherche d’un motif

3. Il s’agit de S[debut:fin+1].
4. Fonction recherche :

def recherche(S:str,M:str)->int:

 m = len(M)

 n = len(S)

 for i in range(n-m+1):

 if S[i:i+m] == M:

 return i

 return -1

5. 5.1) def nbA(ch:str)->int:

 a = 0

 for x in ch:

 if x == "A":

 a += 1

 return a

>>> nbA("AAAGTC")

3

5.2) def recherche_RK1(S:str,M:str)->int:

 m = len(M)

 n = len(S)

 f_M = nbA(M)

 for i in range(n-m+1):

 S_i = S[i:i+m] # chaîne extraite de S à l'indice \

↪ i de longueur m

 if nbA(S_i) == f_M :

 if S_i == M:

 return i

 return -1

>>> recherche_RK1("ATGCCCCGTACG", "TAG")

-1

>>> recherche_RK1("ATGCCCCGTACG", "TAC")

8

5.3) def recherche_RK2(S:str,M:str)->int:

 m = len(M)

 n = len(S)

 f_M, f_S = nbA(M), nbA(S[0:m])

 for i in range(n-m+1):

 S_i = S[i:i+m] # chaîne extraite de S à l'indice \

↪ i de longueur m

 if f_S == f_M :

 if S_i == M:

/ Lycée Michel Montaigne – Bordeaux 5 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

6
IT
C
Creative-Commons

20
25
-2
02
6

 return i

 # Actualisation de f_S

 if S_i[0] == "A":

 f_S -= 1

 if i+m < n and S[i+m] == "A": # 1er caractère \

↪ dans S à droite de S_i

 f_S += 1

 return -1

>>> recherche_RK2("ATGCCCCGTACG", "TAG")

-1

>>> recherche_RK2("ATGCCCCGTACG", "TAC")

8

L’utilisation d’une fonction 𝑓 permet d’éliminer un nombre important de
comparaisons de chaînes ; l’actualisation de nbA(S_i) se faisant quant à
elle avec seulement quelques opérations simples.

6. 6.1) On obtient :
Motif Suite de chiffres Entier en base 10 Reste de la division par 13

'CCC' 111 21 8

'ACG' 012 6 6

'GAG' 202 34 8

6.2) i) Voici une première fonction sommeit, peu efficace, car pour le calcul
de 4𝑘, on repart à chaque fois du début :
def sommeit(L:list)->int:

 S = 0

 n = len(L)

 for k in range(n):

 S = S+L[n-1-k]*4**k

 return S

La fonction suivante est meilleure car on garde en mémoire la der-
nière puissance de 4 calculée.
def sommeit(L:list)->int:

 S = 0

 n = len(L)

 puiss = 1

 for k in range(n):

 S = S+L[n-1-k]*puiss

 puiss = puiss*4

 return S

ii) Fonction sommerec :
def sommerec(L:list)->int:

 if len(L) == 1:

 return L[0]

 else:

 return L[-1] + 4*sommerec(L[:-1])

iii) Fonction conversion :
def conversion(ch:str)->int:

 seq = []

 codage = { 'A': 0, 'C': 1, 'G': 2, 'T': 3 } # \

↪ dictionnaire

 for car in ch:

 seq.append(codage[car])

 return sommerec(seq) % 13

>>> conversion("CCC")

8

>>> conversion("ACG")

6

>>> conversion("GAG")

8

7. Fonction position_max :
def position_max(L:list)->int:

 max = L[0]

 pos = 0

 n = len(L)

 for i in range(1,n):

 if L[i] > max:

 max, pos = L[i], i

 return pos

8. Fonction tri :
def tri(L:list)->None:

 n = len(L)

 for i in range(n-1):

 p = position_max(L[:n-i])

 L[p], L[n-i-1] = L[n-i-1], L[p]

9. Il s’agit du tri par sélection.
10. Oui, la méthode précédente fonctionnera encore. Lors du test, if L[i] > max,

on comparera deux chaînes de caractères à l’aide de l’ordre lexicographique.
11. 11.1) Il s’agit d’une méthode de recherche par dichotomie.

11.2) def recherche2(M:str, L:list)->int:

ITCCreative-Commons 2025-2026 6 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

7
IT
C
Creative-Commons

20
25
-2
02
6

 debut = 0

 fin = len(L)-1

 while debut < fin:

 m = (debut + fin) // 2

 if L[m] < M:

 debut = m+1

 else:

 fin = m

 if L[debut] == M:

 return debut

 else:

 return -1

12. Les préfixes de 'ACGTAC' sont ’A’, ’AC’, ’ACG’, ’ACGT’ et ’ACGTA’, et ses suffixes
sont ’C’, ’AC’, ’TAC’, ’GTAC’ et ’CGTAC’.

13. Le plus long préfixe de 'ACGTAC' qui soit aussi un suffixe est 'AC'. Le plus long
préfixe de 'ACAACA' qui soit aussi un suffixe est 'ACA'.

14. On considère que le motif M est 'ACGTAC' et on note F = KMP_aux(M).
14.1) Fpossède autant d’éléments quede lettres dansM, donc est de longueur 6

pour ce motif.
14.2) La question 13 fournit alors la dernière coordonnée de F, qui est donc 2 .

15. On considère que le motif M est 'ACGTAC' et on note F = KMP_aux(M).
15.1) Fpossède autant d’éléments quede lettres dansM, donc est de longueur 6

pour ce motif.
15.2) La question 13 fournit alors la dernière coordonnée de F, qui est donc 3 .

16. 16.1) def calc_pref(M:str)->list:

 L, pref = [], ""

 for c in M[:-1]:

 pref += c # à l'itération k, pref contient M[:k]

 L.append(pref)

 return L

>>> calc_pref("ACCT")

['A', 'AC', 'ACC']

16.2) def renverse(M:str)->str:

 if len(M) == 0:

 return ""

 else:

 return M[-1] + renverse(M[:-1])

>>> renverse("ACCT")

'TCCA'

16.3) def calc_suff(M:str)->list:

 M_r = renverse(M)

 L_suff = calc_pref(M_r) #les suffixes, mais renversés

 return [renverse(suff) for suff in L_suff]

>>> calc_suff("ACCT")

['T', 'CT', 'CCT']

16.4) def KMP_aux(M:str)->list:

 F = [0]

 m = len(M)

 L_pref = calc_pref(M)

 for i in range(1, m):

 L_suff = calc_suff(M[:i+1])

 # on parcourt les suffixes à rebours, et on \

↪ regarde si c'est un préfixe

 j = i-1 # dernier indice de M[:i+1]

 while j >= 0 and L_suff[j] != L_pref[j]:

 j -= 1

 F.append(j+1)

 return F

>>> KMP_aux("ACAACA")

[0, 0, 1, 1, 2, 3]

>>> KMP_aux("ACGTAC")

[0, 0, 0, 0, 1, 2]

>>> KMP_aux("ACAACA")

[0, 0, 1, 1, 2, 3]

17. 17.1) Voici le tableau complété :
i j F

Fin du premier passage dans la boucle while 2 0 [0,0]

Fin du deuxième passage dans la boucle while 3 1 [0,0,1]

Fin du troisième passage dans la boucle while 3 0 [0,0,1]

Fin du quatrième passage dans la boucle while 4 1 [0,0,1,1]

Fin du cinquième passage dans la boucle while 5 2 [0,0,1,1,2]

Fin du sixième passage dans la boucle while 6 3 [0,0,1,1,2,3]

17.2) La fonction KMP_aux sera beaucoup plus rapide, car elle ne nécessite
qu’une seule boucle de parcours de M.

/ Lycée Michel Montaigne – Bordeaux 7 ITCCreative-Commons 2025-2026

