ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Devoir Surveille d’'ITC N°1
le 19/12/2025

MPSI & PCSI

Consignes

® Les codes doivent étre présentés en mentionnant explicitement 'indentation, au moyen par
exemple de barres verticales sur la gauche.

® Pour qu'un code soit compréhensible, il convient de choisir des noms de variables les plus expli-
cites possibles.

® La numérotation des exercices (et des questions) doit étre respectée et mise en évidence. Les
résultats (hors questions purement informatiques) doivent étre encadrés proprement.

®]l estimportant de numéroter correctement les pages des copies qui seront données a la correc-
tion. Chaque candidat est responsable de la vérification de son sujet d’épreuve : pagination et
impression de chaque page.

® Sj, au cours de I'épreuve, un candidat repére ce qui lui semble étre une erreur d’énoncé, il
convient de le signaler sur la copie et de poursuivre la composition en expliquant les raisons
des initiatives qui ont été prises.

® [es candidats ne doivent avoir aucune communication entre eux ou avec l'extérieur durant
I'épreuve. Aussi, l'utilisation des téléphones portables et, plus largement, de tout appareil per-
mettant des échanges ou la consultation d’informations, est interdite.

® Alissue de la durée prévue pour cette épreuve, les candidats doivent déposer le stylo et ne sont
plus autorisés a écrire quoi que ce soit sur leur copie. Tout retard donne lieu a une pénalité sur la
note finale.

® Lusage de la calculatrice est interdit.

® [es signatures des fonctions devront toutes étre écrites.

® Les codes devront étre les plus « optimisés » possibles, lorsqu’une telle op-
timisation semble évidente. Par exemple, via I'utilisation de boucles ayant
un nombre minimal d’itérations.

Probléme Autourdu séquencage dugénome Dans ce sujet, on s'intéresse ala
recherche d'un motif dans une molécule ’ADN. Une molécule d’ADN est constituée
de deux brins complémentaires, qui sont un long enchainement de nucléotides de
quatre types différents désignés par les lettres A, T, C et G. Pour simplifier le sujet, on
va considérer qu'une molécule dADN est une chaine de caracteres sur I'alphabet A,
C, G, T (on s'intéresse donc seulement a un des deux brins). On parlera de séquence
d’ADN.

PARTIE | — GENERATION D'UNE SEQUENCE D’ADN On considére la chaine de
caracteres: seq = 'ATCGTACGTACG'.

1. Que renvoie la commande seq[3] 2 Que renvoie la commande seq[2:6]?

Les fonctions que nous allons construire par la suite devront prendre en parametre
une chaine de caractéres ne contenant que les lettres A, C, G, T (ceci correspond
a une séquence d’ADN). Nous allons commencer par construire aléatoirement une
séquence d’ADN.

Pour générer aléatoirement une séquence ’ADN composée de n caracteres, on uti-
lisera le principe suivant :

® On commence par créer une chaine de caracteres vide.

® On tire alors aléatoirement rn chiffres entiers compris entre 0 et 3 et :

si on obtient 0, alors, on ajoute A’ a notre chaine de caracteres;

si on obtient 1, alors, on ajoute 'C’ a notre chaine de caracteres;
si on obtient 2, alors, on ajoute 'G’ a notre chaine de caractéres;
si on obtient 3, alors, on ajoute "T’ a notre chaine de caracteres.

® Onrenvoie la chaine de caracteres ainsi construite.

<
<
<o
<

2. Ecrire une fonction generation qui prend en paramétre un entier 7 et qui ren-
voie une chaine de caracteres aléatoires de longueur n ne contenant que des A,
'C’,’G’ et "T". On supposera que le module numpy . random est importé et on rap-
pelle que la commande randint(a, b) renvoie alors un entier aléatoirement
entre a et b-1.

PARTIE Il — RECHERCHE D'UN MOTIF Considérons une chaine de caractéres S
= 'ACTGGTCACT'. On appelle sous-chaine de caracteres de S une suite de caracteres
incluse dans S. Par exemple, ' TGG' est une sous-chaine de S mais ' TAG' n'en est pas
une.

Lobjectif de cette partie et des suivantes est de rechercher une sous-chaine de carac-
teres M de longueur m appelée motif dans une chaine de caracteres S de longueur
n.

Il s’agit d'une problématique classique en informatique, qui répond aux besoins de
nombreuses applications. On trouve plus de 100 algorithmes différents pour cette
méme tache, les plus célébres datant des années 1970, mais plus de la moitié ont
moins de 10 ans.

Dans la partie suivante, nous allons d’abord nous intéresser a I’algorithme naif, puis
dans les suivantes, nous nous pencherons sur plusieurs autres algorithmes. Les dif-
férentes parties sont indépendantes.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Il — 1) ALGORITHME NAIF Le principe de I'algorithme naif est le suivant :

® on parcourt la chaine S, disons que l'on se trouve en indice i.
o Onregarde si le motif M est présent dans S a partir de 'indice i.
o Si ce n'est pas le cas, on recommence avec I'élément suivant de la chaine
de caracteres.

Par exemple, si on recherche le motif ' FOR' dansla chaine ' INFORMATIQUE', on com-
pare d’abord le motif 'FOR' avec 'INF' (les motifs ne correspondent pas!), puis le
motif 'FOR' avec 'NFO' (les motifs ne correspondent toujours pas!), puis le motif
'"FOR' avec 'FOR' (les motifs sont les mémes).

3. Soit S une chaine de caracteres. Rappeler la commande, faisant appel a du sli-
cing, permettant d'obtenir une sous-chaine de S, constituée des éléments de S
dont les indices sont compris entre les indices debut (inclus) et fin (inclus).

4. Ecrire une fonction recherche(S:str,M:str)->int, faisant appel a du slicing,
qui a une sous-chaine de caractéres S et une chaine de caractéeres M renvoie -1 si
Mn’est pas dans S, et la position de la premiere lettre de la chaine de caractéres
M si M est présente dans S. Par exemple, recherche (' INFORMATIQUE', 'FOR')
renvoie 2, tandis que recherche (' INFORMATIQUE', 'FORA') renvoie -1.

On pourrait démontrer que cette premiére méthode naive est complétement ineffi-
cace lorsqu’on I'applique a de trés longues chaines de caracteres.

Il —2) ALGORITHME DE KARP-RABIN (1987) Lalgorithme de Karp-RABIN a
pour objectif d’améliorer 'algorithme naif, mais en éliminant des comparaisons de
chaines (qui peuvent étre cotiteuses). L'idée est de remplacer les chaines S par un
entier f(S) ou f est une fonction a valeurs entiéres sur I'ensemble des chaines, ap-
pelée fonction de hachage. On s’intéresse tout d’abord a un premier exemple simple
de telle fonction, puis on met en oeuvre son utilisation pour la recherche de motifs.
Enfin on étudie une deuxieme telle fonction appelée empreinte de Rabin.

5. [1er exemple de fonction f etalgorithme] On décide par exemple d’associer

a une chaine S le nombre de fois que la lettre A’ apparait dedans, noté ici f (S).

51) Ecrire une fonction itérative nbA(ch:str)->int a qui on fournit une
chaine ch et qui renvoie le nombre de 'A’ présents dans ch.

5.2) Lalgorithme de RABIN-KARP consiste a, dans l'algorithme naif, effectuer
la comparaison entre M et une sous-chaine de S a I'indice i uniquement
siles images par f de ces deux sous-chaines coincident.

Recopier et compléter la fonction ci-aprés pour qu’elle implémente ce
principe.

def recherche RK1(S:str,M:str)->int:

m = len(M)
n = len(S)
f M = nbA(M)
for i in range():
Si-= # chaine extraite de S a |

— l'indice i1 de longueur m
if nbA(S i) == f M :
if S i ==
return
return

5.3) Une amélioration simple de la fonction précédente peut étre obtenue. En

effet, a chaque itération i, nbA(S_1i) est recalculé alors que I'on pourrait
utiliser la valeur de I'itération précédente. En effet, S_i a l'itération sui-
vante partage m—1 lettres en commun avecS_1i del'itération précédente.
On se sert alors de la fonction nbA uniquement pour 'initialisation.
Ecrire une nouvelle fonction recherche RK2(S:str,M:str)->int ex-
ploitant ce principe. En quoi cet algorithme est-il meilleur que l'algo-
rithme naif codé dans la précédente sous-partie?

6. [2éme exemple de fonction f] Voici un autre exemple de conversion d’'une
chaine sur I'alphabet A, T,G,C en entier :
® 2achaque caractere de I'alphabet, on associe une valeur. Ici, on va associer

N N

a’A'lavaleur0,a’C’ lavaleur 1, a’'G’ lavaleur 2 et a’'T’ la valeur 3. Pour un
motif de taille n, on obtient donc une suite de chiffre a,,_,, ..., a;, a,. Par
exemple, a la chaine ' TAGC', on lui associe la suite de chiffre 3021;
cette suite de chiffres peut étre considérée comme I'écriture d'un entier en
base 4. On convertit ensuite cet entier en base 10 en calculant

N=a, ,x4" ' +a, ,x4"?+ ... +a, x4+ay;
pour3021:n=4,a;=3,a,=0,a, =2, a, =1.

® on calcule enfin le reste de la division euclidienne de N par 13.
Dans cette question, on s’intéresse uniquement a la fonction de hachage, et pas
a son utilisation dans I'algorithme de KArRp-RABIN.
6.1) On ne considere dans cette question que des motifs de taille 3. Quels

nombres obtient-on en convertissant les motifs 'CCC', "ACG' et 'GAG'?
Pour cela, recopier le tableau suivant sur la copie puis le compléter :

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Motif
"CCC'

Suite de chiffres

Entier en base 10

Reste de la division par 13

"ACG'

'GAG'

6.2) On souhaite maintenant écrire une fonction a qui on fournit une chaine
de caracteres (qui représente une séquence d’ADN) et qui renvoie son co-

dage avec la méthode précédente.

i) Ecrire une fonction itérative sommeit(L:list)->int & qui on four-
nit une liste L =[a,_,,a,_,,...,a;, a,] constituée de nombres entiers

n-1
compris entre 0 et 3, et qui renvoie la somme : Z ak4k.
k=0

ii) On se propose maintenant d’écrire une fonction récursive
sommerec(L:list)->int qui agit comme la fonction précédente.
On pourra par exemple s‘appuyer sur 'algorithme de HORNER et

utiliser I'écriture suivante :
n-—1
Y a4k = ag+ax[a; +4x (a,+4x(a,_,+4a,,))].
k=0

iii) Recopier la fonction suivante sur votre copie et la compléter afin qu’a
une chaine de caracteres ch, elle renvoie le résultat de sa conversion

décrite précédemment.
def f(ch:str)->int:
seq = []
codage = {'A': 0, 'C': 1, 'G': 2, 'T':
— dictionnaire
for car in ch:
seq.append(.....)
return sommerec(.....) % 13

3} # |\

| oy 3) ALGORITHME DICHOTOMIQUE UTILISANT LA STRUCTURE DE LISTE

Une autre possibilité pour chercher un motif dans une chaine de caractéres (ou
séquence d’ADN) est de construire une liste contenant tous les sous-motifs de notre
chaine, triés par ordre alphabétique, puis de faire la recherche dans cette liste.

Par exemple, a la chaine ' CATCG', on peut associer la liste :

ICAI,
'CATC"',

IATI, ITCI, ICGI,
"ATCG', 'CATCG']

'CAT', 'ATC', 'TCG',

que l'on peut ensuite trier pour obtenir la liste :

[IAII

"AT', 'ATC', 'ATCG',

IGI,

ICI,
|T|’

ICAI,
ITCI,

"CAT',
'TCG']

'CATC', 'CATCG', 'CG',

La premiere étape de cette méthode est donc de trier une liste.

7

10.

.

Ecrire une fonction position max qui prend pour parametre une liste L non
vide de nombres et qui renvoie I'indice de la premiere occurrence du maximum
de laliste L.

. Recopier la fonction suivante sur votre copie et compléter les pointillés afin

qu’elle trie une liste L fournie en parametre.
def tri(L:list)->None:

n = len(L)
for i in range(n-1):
p = position max(L[..... 1)

Vous noterez que cette fonction agit donc sur L par effets de bord, et ne renvoie
rien.
Quel est le nom de cette méthode de tri déja étudiée en TP?
La méthode de tri précédemment écrite, prévue pour trier une liste de nombres
fonctionne-t-elle encore si on I'utilise pour trier une liste de chaines de carac-
téres ? Justifier votre réponse.
On propose alors la fonction suivante, incomplete, a qui on fournit :
® une liste triée L de chaines de caracteres constituée de tous les sous-motifs
d’'une séquence d’ADN.
® un motifM
et qui renvoie -1 si M n’est pas dans L, et la position de Mdans L sinon :
def recherche2(M:str, L:list)->int:

la liste L est triée et on y recherche le motif M

fin =
while debut < fin:
m = (debut + fin) // 2
if L[m] < M:
debut =
else:
fin = ...
if L[debut] == M:
return

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

else:
return -1
11.1) Quel nom porte la méthode proposée dans cette derniere fonction?
11.2) Recopierlafonction précédente sur votre copie et compléter les pointillés
afin qu’elle réalise 'opération attendue.

Il — 4) ALGORITHME DE KNUTH-MORRIS-PRATT (1970) Lorsqu’un échec a
lieu dans I'algorithme naif, c’est-a-dire lorsqu’un caractere du motif est différent du
caractere correspondant dans la séquence d’ADN, la recherche reprend a la position
suivante en repartant au début du motif. Pour améliorer la recherche, nous allons
introduire les notions de préfixe et de suffixe.

® Un préfixe d'un motif M est un motif, différent de M, qui est un début de M. Par
exemple, 'mo’ et 'm’ sont des préfixes de 'mot’, mais ‘'mot’ n’est pas un préfixe de

’ ’

mot’.
® Un suffixe d'un motif M est un motif, différent de M, qui est une fin de M. Par
exemple, 'ot’ et 't’ sont des suffixes de 'mot’, mais 'mot’ n'est pas un suffixe de

))

mot.

12. Donner tous les préfixes et les suffixes du motif ' ACGTAC"'.
13. Quel est le plus long préfixe de 'ACGTAC' qui soit aussi un suffixe? Quel est le
plus long préfixe de ' ACAACA' qui soit aussi un suffixe?

L'algorithme de KNuTH-MORRIS-PRATT (KMP) est un algorithme reposant essentiel-
lement sur une fonction annexe appelée KMP_aux dans la suite. On ne s’intéresse pas
dans ce sujet a 'algorithme KMP complet, mais uniquement a plusieurs méthodes
d’implémentation de KMP_aux, qui prend en argument un motif M.

Lobjectif de cette derniere est de renvoyer une liste F, telle que F[i] contienne, pour
chaque lettre de M a la position i, la longueur du plus grand sous-mot de M qui finit
parlalettre M[1] (donc le plus grand suffixe de M[: i+1]) qui soit aussi un préfixe de
M.

14. On consideére que le motif M est ' ACGTAC' etonnote F = KMP_aux(M).
14.1) Quelle est la taille de la liste F?
14.2) Quelle information sur F donne le résultat de la question 13?

15. On considere que le motif M est 'ACAACA' et on note F = KMP_aux(M).
15.1) Quelle est la taille de la liste F?
15.2) Quelle information sur F donne le résultat de la question 13?2

16. On souhaite proposer ici une premieére version de KMP_aux.

17.

16.1) Ecrire une fonction calc_pref(M:str)->list qui renvoie une liste des
préfixes de M triés dans l'ordre croissant de longueur. par exemple,
calc_pref("ACCT") renverra: ["A", "AC", "ACC"].

16.2) Ecrire une fonction récursive renverse(M:str)->str qui renvoie la
chaine miroir de M. Par exemple, renverse("ACCT") renverra "TCCA".

16.3) Ecrire une fonction calc suff(M:str)->list qui renvoie une liste des
suffixes de M triés dans l'ordre croissant de longueur. par exemple,
calc_suff("ACCT") renverra: ["T", "CT", "CCT"].

16.4) Ecrire enfin une premiere version de la fonction KMP_aux.

On propose le code suivant :
def KMP_aux(M:str)->list:

F = [0]
i=1

j =0

m = len(M)

while i < m :
if M[i] == M[j]:
F.append(j+1)
i=1i+1
j = j+1
else:
if j > 0:
j = F[j-1]
else:
F.append(0)
i= i+l
return F
171) Décrire I'exécution delafonction fonctionannexelorsqueM = 'ACAACA'
en recopiant sur votre copie et complétant le tableau suivant, qui décrit
I’évolution du contenu des variables i, j et F.

Fin du premier passage dans la boucle while

Fin du deuxieme passage dans la boucle while

Fin du troisiéme passage dans la boucle while

Fin du quatrieme passage dans la boucle while

Fin du cinquiéme passage dans la boucle while

Fin du sixieme passage dans la boucle while

17.2) Quel est I'avantage de cette nouvelle version par rapport a 'ancienne?

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Correction def recherche(S:str,M:str)->int:
° ogg ¢ m = len(M)
du Devoir Surveillé d’'ITC N°1 (le 19/12/2025) n = len(s)
MPSI & PCSI for i in range(n-m+1):
if S[i:i+m] ==
return 1
return -1
Solution 5. 51) def nbA(ch:str)->int:
a=0
for x in ch:
s , P , if x == "A":
PARTIE | — GENERATION D'UNE SEQUENCE D'ADN a 4= 1
1. seq[3] renvoie 'G’ et seq[2:6] renvoie 'CGTA. return a
2. Fonction generation: >>> nbA("AAAGTC")
def generation(n:int)->str: 3
seq = ' 5.2) def recherche RK1(S:str,M:str)->int:
for _in range(n): m = len(M)
x = randint(0,4) n = len(S)
if x == 0: f M = nbA(M)
seq += 'A' for i in range(n-m+1):
elif x == 1: S i = S[i:i+m] # chaine extraite de S a l'indice |\
seq += 'C' — 1 de longueur m
elif x == 2: if nbA(S_i) == f_M 5
seq += 'G' if S_i ==
else: return i
seq += 'T' return -1
return seq >>> recherche RK1("ATGCCCCGTACG", "TAG")
ou plus simplement : -1
def generation(n): >>> recherche RK1("ATGCCCCGTACG", "TAC")
seq = "' 8
codage = ['A","C","G","T"] 53) def recherche RK2(S:str,M:str)->int:
for _ in range(n): m = len(M)
seq += codage[randint(0,4)] n = len(S)
return seq f M, £ S = nbA(M), nbA(S[0:m])
for i in range(n-m+1):
S i = S[i:i+m] # chaine extraite de S a l'indice |\
PARTIE Il — RECHERCHE D'UN MOTIF — 1 de longueur m
if fS=fM:
3. Il s'agitde S[debut:fin+1]. if S i ==

4. Fonction recherche:

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

6.

return i
Actualisation de f S
if S i[0] == "A":
fsS-=1
if i+m < n and S[i+m] == "A": # ler caractere |
— dans S a droite de S i
fS+=1
return -1
>>> recherche RK2("ATGCCCCGTACG", "TAG")
-1
>>> recherche RK2("ATGCCCCGTACG", "TAC")
8
Lutilisation d'une fonction f permet d’éliminer un nombre important de
comparaisons de chaines; l'actualisation de nbA(S_1i) se faisant quant a
elle avec seulement quelques opérations simples.
6.1) On obtient:

Motif | Suite de chiffres ‘ Entier en base 10 | Reste de la division par 13

'CccC! 111 21 8
"ACG' 012 6 6
'GAG' 202 34 8

6.2) i) Voici une premiére fonction sommeit, peu efficace, car pour le calcul

de 4%, on repart a chaque fois du début :
def sommeit(L:list)->int:

S=0

n = len(L)

for k in range(n):

S = S+L[n-1-k]*4**k

return S
La fonction suivante est meilleure car on garde en mémoire la der-
niére puissance de 4 calculée.
def sommeit(L:list)->int:

S=0
n = len(L)
puiss = 1

for k in range(n):
S = S+L[n-1-k]*puiss
puiss = puiss*4
return S

ii) Fonction sommerec :
def sommerec(L:list)->int:
if len(L) == 1:
return L[O]
else:
return L[-1] + 4*sommerec(L[:-11])
ili) Fonction conversion:
def conversion(ch:str)->int:
seq = [I]
codage = { 'A': 0, 'C': 1, 'G': 2, 'T': 3 } #|
— dictionnaire
for car in ch:
seq.append(codage[car])
return sommerec(seq) % 13
>>> conversion("CCC")
8
>>> conversion("ACG")
6
>>> conversion("GAG")
8
7. Fonction position max:
def position max(L:list)->int:

max = L[O]
pos = 0
n = len(L)

for i in range(1,n):
if L[i] > max:
max, pos = L[i], i
return pos
8. Fonction tri:
def tri(L:list)->None:
n = len(L)
for i in range(n-1):
p = position max(L[:n-i])
Llpl, LIn-i-1] = L[n-i-1], L[p]
9. Il s’agit du tri par sélection.
10. Oui, la méthode précédente fonctionnera encore. Lors du test, if L[i] > max,
on comparera deux chaines de caracteéres a l'aide de I'ordre lexicographique.
1. 11.1) Il s’agit d'une méthode de recherche par dichotomie.
1.2) def recherche2(M:str, L:list)->int:

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

12.

13.

14.

15.

16.

debut = 0
fin = len(L)-1
while debut < fin:
m = (debut + fin) // 2
if L[m] < M:
debut
else:
fin = m
if L[debut] == M:
return debut
else:
return -1
Les préfixes de 'ACGTAC' sont A, 'AC’, 'ACG’, ’ACGT’ et '"ACGTA, et ses suffixes
sont 'C’,’AC’, "TAC’,"GTAC’ et 'CGTAC.
Le plus long préfixe de 'ACGTAC' qui soit aussi un suffixe est 'AC'. Le plus long
préfixe de 'ACAACA' qui soit aussi un suffixe est 'ACA".
On considere que le motifMest 'ACGTAC' et on note F = KMP_aux(M).
141) Fpossede autant d’éléments que de lettres dansM, donc est de
pour ce motif.
14.2) La question 13 fournit alors la derniere coordonnée de F, qui est donc [2].
On considere que le motif M est 'ACGTAC' etonnote F = KMP_aux(M).
15.1) Fpossede autant d’éléments que de lettres dansM, donc estde
pour ce motif.
15.2) La question 13 fournit alors la derniere coordonnée de F, qui est donc 3],
161) def calc pref(M:str)->list:
L, pref =[], ""
for c in M[:-1]:
pref += ¢ # a l'itération k, pref contient M[:k]
L.append(pref)
return L
>>> calc_pref("ACCT")
['A', "AC', 'ACC']
def renverse(M:str)->str:
if len(M) == 0:
return ""
else:
return M[-1] + renverse(M[:-1])

m+1

16.2)

>>> renverse("ACCT")
"TCCA'

16.3) def calc suff(M:str)->list:

M r = renverse(M)
L suff = calc pref(M r) #les suffixes, mais renversés
return [renverse(suff) for suff in L suff]

>>> calc_suff("ACCT")

[‘T', 'CT', 'CCT']
16.4) def KMP aux(M:str)->list:
F = [0]
m = len(M)

L pref = calc pref(M)
for i in range(1, m):
L suff = calc suff(M[:i+1])
on parcourt les suffixes a rebours, et on |\
— regarde si c'est un préfixe
j = i-1 # dernier indice de M[:i+1]
while j >= 0 and L suff[j] != L pref[j]:
j =1
F.append(j+1)
return F

>>> KMP_aux("ACAACA")
[6, 0, 1, 1, 2, 3]
>>> KMP_aux("ACGTAC")
[6, 0, 0, 0, 1, 2]
>>> KMP_aux ("ACAACA")
[6, 0, 1, 1, 2, 3]

17. 171) Voici le tableau complété :

)
Fin du premier passage dans la boucle while 210 [0,0]
Fin du deuxieéme passage dans la boucle while | 3 | 1 [0,0,1]
Fin du troisieme passage dans la boucle while | 3| 0 [0,0,1]
Fin du quatrieme passage dans la boucle while | 4 [1 | [0,0,1,1]
Fin du cinquieéme passage dans la boucle while | 5 | 2 | [0,0,1,1,2]
Fin du sixieéme passage dans la boucle while 6|3][001,1,23]

17.2) La fonction KMP_aux sera beaucoup plus rapide, car elle ne nécessite
qu'une seule boucle de parcours de M.

