ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Bonnes pratiques de
programmation

Objectis -
1 Speécificationsoeeniis ® Savoir définir les spécifications (signa- bool, True si 'n' est premier, False sinon. Par convention \
2 INVariants......cceeeeieneennnnns ture, docstring). < 1 n'est pas premier.

® Savoir annoter un bloc d’instruc- Wi
tions (précondition, postcondition,
invariant).

. . . Pour cela, on pourra tester la divisibilté de I'entier n par des entiers k vérifiant
® Savoir mettre au point un jeu de tests.

k =2 et k < n,alaide d'une boucle while.

Fichier externe?

2. Ecrirela spécification de la fonction isGoldbach(n:int) ->bool quirenvoie True
si et seulement si la conjecture est vérifiée pour I'entier n (si n est impair ou est
inférieur ou égal a 2 la fonction renvoie True, cette convention peut paraitre éton-
nante mais justifiée par la prochaine question). Ecrire ensuite le code de la fonc-

n SPECIFICATIONS tion isGoldbach (on utilisera la fonction isPrime précédemment définie).

OUI fichier TP BonPratProg.py présentdans le dossier partagé de la classe

3. Ecrire une fonction goldbach(p:int)->bool qui implémente la spécification
suivante (on utilisera la fonction isGoldbach précédemment définie) :

Exercice 1 Conjecture de GOLDBACH et spécification [sol 1] La conjecture de R

GOLDBACH est la suivante : « tout nombre pair strictement plus grand que 2 peut étre

P . Parameters
écrit comme la somme de deux nombres premiers ».
1. On désire écrire une fonction isPrime(n:int)->bool qui respecte la spécifica- p : int, entier maximal pour lequel on veut tester la \
tion suivante : — conjecture de Goldbach.
Détermine si l'entier 'n' est premier Returns
Parameters bool, True si et seulement si tout entier inférieur ou \

__________ — égal a p vérifie la conjecture de Goldbach, False sinon

int, entier dont on veut déterminer la primalité

Returns

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Exercice 2 Fonctions sans spécifications ni commentaires [sol2] Sur I'espace
«données » du réseau pédagogique, téléchargez le fichier TP_BonPratProg. py et co-
piezle sur votre espace personnel. Ce programme contient deux fonctions f et g dont
les spécifications et les commentaires sont absents, ce qui rend la compréhension du
role de ces fonctions assez difficile.

1. La variable n est ici un entier naturel. Faire apparaitre cette contrainte en com-
mencant a écrire les spécifications de chacune des fonctions.

2. On cherche a déterminer le réle de la fonction f (indice : f est liée a une suite
(u,) déja rencontrée dans le cours d’informatique, et de mathématique). En tes-
tant différentes valeurs de n, pouvez-vous émettre une hypothése surla nature du
résultat renvoyé par f ? Une fois cette identification réalisée, rappeler la définition
«usuelle » de la suite calculée par f. Le programme fourni est-il compréhensible
al’aide de cette seule définition?

On donne une propriété de la suite (u,,) considérée ici :

Usp =u,(2uy —uy)
2
p+1-

VpeN, 5

3. Détailler le fonctionnement du programme lorsqu’on exécute f (2), f (6). On pré-
cisera en particulier les appels successifs a la fonction g.

4. Compléter les fonctions (spécifications et commentaires) dans le but de les
rendre plus directement compréhensibles. On pourra également renommer les
fonctions de maniere plus explicite.

5. Proposer le script d'une fonction f2(n:int) ->int qui calcule renvoie u,, en ap-
pliquant un algorithme itératif. Déterminer le nombre d’additions et affectations
nécessaires au calcul de u,, par f2.

6. En prenant n = 27, p € N, montrer que la fonction f permet de calculer u,, avec
moins d'opérations élémentaires que f2, pour n « grand » .

n INVARIANTS

Exercice 3 Recherchedichotomique [sol3] Onreprend icilescript derecherche
dichotomique dans une liste triée (par ordre croissant), sans spécification ni signa-
ture :

def present dicho(t: , Vi
d=20
f = len(t)
trouve = False
Précondition :
while not trouve and d < f:
m=(d+f) // 2
if t[m] == v:
trouve = True
elif t[m] < v:
d=m+ 1
else:
f=m
Postcondition :
return trouve

1. Cette fonction a trous est dans le fichier fourni. Compléter la en précisant sa si-
gnature, une docstring, ainsi que précondition et postcondition en commentaire.

2. Montrer que: est un invariant de la boucle

while.

P(i) «(vet)ou(vetld;: f;])»

Exercice 4 Tester Pordre croissant [sol +] Ecrire une fonction qui prend en en-
trée une liste de nombres et qui renvoie True si ces nombres sont dans l'ordre crois-
sant, False sinon. Cette fonction devra étre correctement documentée et commen-
tée, un invariant de boucle sera proposé et justifié.

n TESTS

Exercice 5 Algorithme de HORNER itératif (retour)
n-1

polynome P =)_ a,X’, et on souhaite évaluer ce polynome sur des réels x. Pour
i=0

cela on choisit de représenter ce polyndome avec la suite de ses coefficients, a sa-

voir : [ay, ..., a,_;], coefficient constant a gauche de la liste. On conviendra que le
polyndme nul est codé par la liste vide.

[sol 5] On considére un

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

2. [On peut faire mieux]

3. [Tests de performance]

1. [Méthode naive] Un étudiant propose la fonction (non documentée!) sui-

vante :
def eval polyl(P: list, x: float) -> float:
S = P[0O]
for k in range(1l, len(P)):
S += P[k]*(x**k)
return S

1) Ecrire et exécuter dans la console un test qui permet de montrer que la fonc-
tion ne renvoie pas toujours le résultat attendu. Apporter la correction néces-
saire a la fonction.

1.2) Proposer un invariant pour la fonction modifiée.

1.3) En remarquant que x* = 1 x x x --- x x et nécessite ainsi k multiplications,
déterminer combien exactement il y a de multiplications effectuées lors de
I’évaluation d’'un polynéme par cette fonction.

L'idée de I'algorithme de HORNER s’appuie sur l'idée sui-
vante, supposons pour simplifier que 'on cherche a évaluer ax® + bx* + cx + d,
alors on peut écrire :

ax>+bx?*+cx+d=((axx+b)xx+c)xx+d
il y a seulement trois multiplications. Proposer une troisieme version de la fonc-
tion précédente, nommée eval poly2 qui utilise 'algorithme de HORNER, le
nombre de multiplications ne doit pas dépasser n. Documenter votre fonction.

Nous allons comparer les performances en temps
n-1

d’exécution de ces deux fonctions en prenant le polyndme P =) kx* avec n =
k=0

1000 et x = —20. Pour cela on importe la fonction time () du module time, on exé-

cute un certain nombre de fois (par exemple 1000 fois) chacune de ces fonctions
en mesurant le temps écoulé pour chacune. Par exemple pour la premiere cela
donnerait :
tl = time() # on reléve l'heure initiale
for _ in range(1000):
rl = eval polyl(P,x)
t2 = time() # on reléve l'heure de fin
print("eval polyl: ",t2-tl) # on affiche le temps écoulé

Comparer ainsi le temps d’exécution des deux fonctions, commenter les résultats.

Remarque : si on est dans un notebook, alors on peut plus simplement utili-
ser I'instruction timeit eval polyl(P,x) qui va mesurer automatiquement le
temps d’exécution de la fonction.

Exercice 6 Conception d'un jeu de tests [sol 6] Dans le fichier
TP_BonPratProg.py, on a écrit quatre fonctions différentes (max1,max2,max3
et max4) dont l'objectif est de renvoyer le maximum d’une liste d’entiers passée
en argument. On désire tester ces fonctions, uniquement en regardant si elles
renvoient le résultat attendu lorsqu’on les applique a différentes listes (supposées
non vide). Pour chaque test, on a donc un couple (L,v) ot L est une liste d’entiers
et v la valeur du maximum attendu.

1. Imaginer un ensemble de couples de type (L, V) et stocker ces couples dans une
liste jeu_test (cette liste est donc du type [(list,int)]).

2. La fonction test max(f:callable,jeu test:[(list,int)])->None fournie
permet de tester une fonction f (a choisir parmi les quatre fonctions max propo-
sées) sur les tests contenus dans la liste jeu_test. Appliquer votre jeu de tests a
chacune des fonctions et déterminer quelle est (sont) la (les) fonctions correctes.

Exercice 7 Division euclidienne dans Z (S0l 7] Pour cet exercice, on reprend
I'exemple du cours division(a, b), qui était la division euclidienne dans N, pour
I’étendre aux entiers relatifs. La nouvelle version devra envoyer un tuple d’entiers
(g,r)telsque: a=bg+ravecO<r<]|b]|.

1. Pour cette nouvelle version, préciser signature, pré et post condition. Contraire-
ment a I'exemple du cours, on conviendra que la fonction doit provoquer une
erreur lorsque la pré-condition n'est pas remplie.

2. Ecrire une docstring pour cette nouvelle version incluant un jeu de tests.

3. En reprenant I'idée du code de I'exemple du cours, proposer une adaptation de
celui-ci tout en conservant la relation a = bg+r comme invariant. On sera amené
adistinguera =0eta <0.

4, Saisir et tester la nouvelle version.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

SOLUTIONS DES EXERCICES bool
False si "n" est pair et que la conjecture de Goldbach |
— n'est pas vérifiée pour "n", True sinon.
True si "n" est impair

Solution 1 o _ -
1. def isPrime(n): # cas ol la conjecture est & vérifier

oD if n%2 == 0 and n > 2:
gold = False
on cherche si on peut écrire n = k + q avec k et q |\
— premiers
k =2
while k <= n//2 and not gold:
if isPrime(k) and isPrime(n-k):

Détermine si 'n' est premier

Parameters

n : int, supposé > 1, entier dont on veut déterminer la |\
— primalité

gold = True
Returns k +=1
_______ return gold
bool, True si 'n' est premier, False sinon L)
W # autres cas (convention)
= return True
while k < n and n%k !'= 0: >>> isGoldbach(13)
k += 1 True
return k =— >>> jisGoldbach(14)
>>> isPrime(3) True
True 3. def golbach(p:int)->bool:
>>> lSPrlme(4) wun
False Vérifie la conjecture de Goldbach jusqu’a un certain rang
>>> isPrime(1)
False Parameters
2. def isGoldbach(n): T
nnn p : lnt

entier maximal pour lequel on veut tester la |\

Teste la conjecture de Goldbach sur l'entier "n")
— conjecture de Goldbach.

Parameters
__________ Returns
n : int T
entier pour lequel on veut tester la conjecture de | et) .)))) s0al
< Goldbach. Tru? Si ?tls?u ement 51 tout entier inferieur ou gga |
— a p vérifie la conjecture de Goldbach, False sinon
Returns

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

for n in range(p+1):
if not isGoldbach(n):
return False
return True

>>> golbach(30)
True

2

1. On peut commencer ainsi :
def f(n):

Parameters
n : int
Returns

int

assert n >=0, "la variable n n'est pas un entier naturel"
return g(n)[0]

def g(n):

Parameters

n : int
Returns

if n ==
return (0, 1)

a, b =g(n//2)
c = a*(2*b-a)

return (c, d)

else:
return (d, c+d)

2. On obtient les résultats suivants :

>>> f(0),f(1),f(2),f(3),f(4),f(5)
(’ ’ ’ ’ ’)

Cela semble correspondre aux premiers termes de la suite de FiBoNNAccI, définie
par:

Ug=0, u =1, Vnz=z0,u,,=U, +U,.
Le programme fourni ne semble pas s’appuyer directement sur cette définition.

. Lors de I'appel f(2), on appelle g(2), et I'écriture récursive de g nécessite I'appel

de g(1), qui elle-méme nécessite g(0) (cas terminal). On a ainsi g(0) qui renvoie
(ug, u;), g(1) utilise la propriété décrite avec p = 0 (ce qui ne nécessite que uy, u;)
et renvoie (u,,u,), enfin g(2) utilise la propriété décrite avec p = 1 (ce qui ne
nécessite que u;, u,) et renvoie (u,, u3). Ainsi f(2) renvoie u,.

De méme, pour f(6), on appelle successivement g(6),g(3),g(1) et g(0). Comme
précédemment,g(0) renvoie (uy, 1,), g(1) renvoie (u,, u,). Lappel a g(3) utilise
la propriété avec p = 1 (ce qui ne nécessite que u,, u,) et renvoie (us, u,), 'appel
a g(6) utilise la propriété avec p = 3 (ce qui ne nécessite que us, u,) et renvoie
(ug, u;). Finalement f(6) renvoie ug.

4. Afin de rendre les fonctions plus compréhensibles, on renomme f en fibo et g en

fibo_aux. On précise les entrées et surtout les sorties de chaque fonction dans
la spécification, et on fournit en commentaire la propriété de la suite (u,,) sur
laquelle s’appuie le code. On obtient pour la réécriture de f :
def fibo(n):
""" renvoie le niéme terme de la suite de Fibonnacci

Parameters
n : int

rang de la suite recherché

Returns

nieme terme de la suite de Fibonnacci

Examples

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

-------- else:
>>> fibo(0) # On utilise les propriétés suivantes :
0 # u_{2p} = u_p*(2*u_{p+1}-u_p)
>>> fibo(1) # u {2p+1} = u p™2+u {p+1}~2
1 a, b = fibo aux(n//2) # a,b contiennent |\
>>> fibo(6) — (u (n//2),u {n//2+1))
8 c = a*(2*b - a)
d = a**2 + b**2
e # si n = 2p, c contient le terme de rang |\
assert n >=0, "la variable n n'est pas un entier naturel" — 2*(n//2)=2p=n,et d le terme suivant
on utilise une fonction auxiliaire fibo aux(n) qui |\ # sinon n = 2p+1, c¢ contient le terme de rang |
— renvoie (u n,u {n+1}) — 2%¥(n//2)=2p=n-1, et d le terme de rang n : on |\
return fibo aux(n)[0] — utilise alors la relation u {n+1} = u n+u {n-1} pour |\
— calculer le terme de rang n+1
etpour celledeg: if n%2 == 0:
def fibo aux(n): return (c, d)
o else:
Renvoie le couple de termes (u_n,u_{n+l1}) de la suite de | return (d, c+d)

— Fibonnacci

Parameters 5. Lafonction fibo2:
---------- def fibo 2(n):
n : int e
Renvoie le terme u n de la suite de Fibonnacci

Returns
------- Parameters
tuple e

(u n,u {n+1}) n : int

rang de la suite recherché

Examples
-------- Returns
>>> fibo aux(0) e
(0,1) int
>>> fibo aux(1) niéme terme de la suite de Fibonnacci
(1,1) e
>>> fibo aux(6) # u et v contiennent u n et u {n+l1} a chaque itération
(8,13) u, v=20,1
e # on utilise ici u {n+2} = u n+u {n+1}
cas de base for k in range(n):
if n == 0: u, Vv =V, U+Vv

return (0,1) return u

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

A chaque itération, on réalise une somme et deux affectation. En comptant les f = len(t)
deux premiéres affectations (indépendantes de n), le nombre C(n) d’opérations trouve = False
estC(n)=2+3n. # précondition (P) : t est une liste triée par ordre |
— croissant
6. Lappel récursif de g(n) se fait sur des arguments qui décroissent selon les valeurs while not trouve and d < f:
successives suivantes : 2” (= n),2P ! (= n/2),2P72,2°(= 1) et finalement 0 (cas ter- m=(d+f) // 2
minal qui n’effectue aucune opération). On a donc p + 1 itérations, avec a chaque if t[m] == v:
fois un nombre faible d'opérations, que I'on peut majorer par K > 0. On a donc trouve = True
C'(n) < Kp =Klog,(n). On a bien C'(n) < C(n) a partir d'un certain rang. Lal- elif t[m] < v:
gorithme proposé dans les fonctions f et g nécessite moins d’opérations pour les d=m+ 1
grandes valeurs de n. En revanche, il est plus délicat & comprendre (et nécessite else:
donc une spécification et des commentaires détaillés). f=m

postcondition (Q) : trouve vaut True si 'v' appartient a |\
— 't', False sinon.
Solution 3 return trouve

1. En rajoutant les éléments demandés, on peut proposer pour la partie demandée 2~ Distinguons deux cas :
(le code étant inchanggé) :
def present dicho(t:[int], v:int)->bool:

® Si t ne contient pas v, alors I'invariant est bien s{ir vrai.
® Si t contient v (t n'est donc pas vide), montrons que v € t[d; : f;] est vrai
pour tout i € {0,..., n} ou n désigne ici le nombre d’itérations de la boucle

Determines if value 'v' belongs to 't' by dichotomic method. while.

Initialisation. Pour i = 0:avantlaboucleona d, =0et f, = len(t) et ainsi

Parameters tld,: fo] = t[0:len(t)] = t, 'invariant est bien donc vérifié.

t : list of n int, sorted in ascending order Hérédite. Supposons qu'il soit vraienunrangi € [0, n—1] et qu'ily ait une
int, value to be tested itération i + 1. Alors montrons que v € t[d;,; : f;;;].Onam,,., =(d; + ;)] /2

et faisons alors plusieurs cas.

R o [Cas1] t[m;,,]=v.Onad,, =d;etf;,, = f; donc I'invariant reste

_______ vrai.

bool, True if value 'v' is in 't', False in the other case o [Cas 2] t[m;,;] < v. Alors puisque la liste est croissante, on a v €

t[m;.,+1:1.0r1,d;,; = m;,; +1, f;,; = f; doncl'invariant reste vrai.

Examples o [Cas 3] t[m;,,] > v. Alors puisque la liste est croissante, on a v € t[:

________ m;,1] (rappel : lindice de droite dans un slicing est exclu) OF, d; . = d;, fi11 =

>>> dicho([1,3,5],5) m,;,; donc l'invariant reste vrai.

True Linvariant est donc vérifié.

>>> dicho([1,3,51]1,4)

False

>>> dicho([],1) Solution 4

False def ascending(t: list) -> bool:

d=20 Determines whether the elements of t are in ascending order.

Parameters

ITC © 2025-2026

True if the elements of t are in ascending order.

Examples

>>> ascending([1,3,5,7,8])

True

>>> ascending([1,5,3,7,8])

False

>>> ascending([])

True

result = True # variable pour le résultat

k = 0 # index pour le parcours

while result and k < len(t)-1 # 1l faut k+1 <= len(t)-1

Invariant: result indique si t[:k+1] est dans 1'ordre |\

— croissant
if t[k] > t[k+1]: # on compare chaque élément avec le |\
— suivant

result = False # 2 éléments ne sont pas dans le bon |\

— ordre (sortie de boucle)
k += 1 # pour passer au suivant, on a maintenant k <= |
— len(t)-1
return result

Preuve pour l'invariant :

I'invariant est vérifié.

suivante, ce qui signifie que result est Trueetque k < len(t)-1.

puisque k augmente de 1 et que la valeur de result n’a pas changé.

/M/ Lycée Michel MONTAIGNE — Bordeaux

® Avantlaboucle,ona k =0donc t[:k+1] vaut t[:1] qui est la liste vide si ¢ est
vide, et la liste réduite au premier élément si ¢ n'est pas vide, dans les deux cas,

® Supposons l'invariant vérifié a I'issue d'une itération, et qu’il y ait une itération

o Sit[k] <= t[k+1] alors grace al'invariant on peut affirmer que t[: k+21]
est dans l'ordre croissant, ce qui donne bien l'invariant en fin d’itération

o Par contre, si t[k] > t[k+1] alors on peut affirmer que t[:k+2] n'est
pas dans l'ordre croissant, ce qui donne bien I'invariant en fin d’itération
puisque k augmente de 1 et que la valeur de result est passée a False.

En sortie de boucle : on a (not result) or (k >= len(t)-1) qui est vérifié ainsi
que l'invariant. Si result ala valeur False alors I'invariant nous permet d’affirmer
que t[:k+1] n'est pas dans l'ordre croissant et donc # non plus. Si result ala valeur
True alors 'invariant nous permet d’affirmer que t [: k+1] est dans I'ordre croissant,
mais comme on a également k >= len(t)-1,onaenréalittonak = len(t)-1,et
la sous-liste t[:k+1] estlaliste ¢ en entier.

Donc en sortie de boucle, result indique bien si la liste est dans I'ordre croissant.

Remarque : le corps de la fonction pourrait étre remplacé par le code équivalent
suivant :
for k in range(len(t)-1):
if t[k] > t[k+1]:
return False
return True

Solution 5

1. 1) La fonction ne s’exécute pas correctement sur une liste vide : cela provoque
une erreur (évaluation de P[0] impossible), alors qu'il faudrait que la fonction
renvoie 0 (si on convient qu’une liste vide représente le polynome nul). une
version modifiée est :

def eval polyl(P: list, x: float) -> float:
S =0
for k in range(len(P)):
S += P[k]*(x**k)
return S

i-1
1.2) On peut proposer l'invariant: «S; =) P[k]x* », avantl'entrée dansla boucle
k=0
on convient que S, est nul.

13) llyai—1+1=imultiplications a l'itération i = 1, donc puisque len(P) = n,
nl o p(n-1
autotal) i= nin-1)
i=1

multiplications.

2. Avec l'algorithme de HORNER (la docstring n'a pas été reproduite) :

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

def eval poly2(P: list, x: float) -> float:

n = len(P)

S=0

for k in range(1l, n+l):

Invariant: S i = sum {k=1}"1 P[n-Kk]x"{i-k}
S =S *x + P[n-k]

return S

>>> eval poly2([1, 2, 3], -1) # évaluation de P = 1+2X+3X"2 en |

-1

2

ou en utilisant un range a rebours si on préfere :

def eval poly2(P: list, x:

float) -> float:

n = len(P)

S=0

for k in range(n-1, -1, -1):

— l'envers

Invariant: S 1 = sum {k=1}"1 P[n-Kk]x"~{i-k}
S =S * x + P[k]

return S

on parcourt la liste a |

>>> eval poly2([1, 2, 3], -1) # évaluation de P = 1+2X+3X"2 en |

-1

2

. On définit d’abord P, netx:n = 1000 ; P = list(range(n)) ; x = -20.Ré-

sultats obtenus :

eval polyl: 2.386896848678589
%seval poly2: 0.4218263626098633
eval poly2: 0.24854230880737305

Attention, les temps mesurés ne sont pas forcément identiques d'une machine a

l'autre, mais les comparaisons restent les mémes.

Avec timeit:

>>> timeit eval polyl(P,x)

2.56 ms = 153 ps per loop (mean * std. dev. of 7 runs, 100 \
— loops each)

%>>> timeit eval poly2(P,x)

%451 us £ 30.3 ps per loop (mean + std. dev. of 7 runs, 1000 \
— loops each)

>>> timeit eval poly2(P,x)
268 pus = 15.3 ps per loop (mean + std. dev. of 7 runs, 1000 \
— loops each)

Solution 6

1. Il faut tester plusieurs cas limites : le max peut étre au début, a la fin, au milieu de
laliste, et la liste peut contenir des entiers positifs ou bien négatifs (uniquement).
On peut proposer par exemple la liste suivante :

jeu_test =[([-3,-1,-2],-1),([5,2,13],13),([9,2,8],9)]

2. Les fonctions max1, max2, max3 échouent sur les tests proposés et sont donc in-
correctes. La fonction max4 passe tous les tests (ce qui ne signifie pas qu’elle est
forcément correcte).

Solution 7
1. Spécifications :

® Signature:division(a: int, b: int) -> (int, int).

® Pré-condition : a et b sont des entiers relatifs avec b non nul.

® Post-condition : le résultat de la fonction est le tuple (g, r) oll g et r soxnt
respectivement le quotient et le reste de la division euclidienne de a par b
(c’est a dire vérifiant a = bg + r avec 0 < r < |b|).

2. Ladocstring etun jeu de tests
def division(a: int, b: int) -> (int, int):

Renvoie le quotient et le reste de la division de a par b

Paraméetres:

a: int
b: int, entier non nul

Retour:

tuple (q, r) tel que a=bqg+r avec 0 <= r < |b|
ou bien None si b est nul

ITC © 2025-2026

W/ Lycée Michel MONTAIGNE — Bordeaux

Exemples:

>>> division(19,7) == (2,5)

True

>>> division(7,19) == (0,7)
True

>>> division(0,19) == (0,0)
True

>>> division(19,-7) == (-2,5)
True

>>> division(-19,7) == (-3,2)
True

>>> division(-19,-7) == (3,2)
True

3. Pour conserver 'invariant on initialise encore g a 0 et r a a. Si a est positif le prin-
cipe est le méme que dans le cours mais en prenant |b| a la place de b (on re-
tranche |b| a r et on adapte g en conséquence). Mais si a < 0 la méme méthode
ne marche plus (car r < 0), cette fois-ci il faut ajouter | b| a r et adapter g en consé-
quence, et ceci tant que r < |b|. On peut donc proposer ceci (ladocstring n’a pas
été reproduite) :

def division(a: int, b: int) -> (int, int):

0On comme par tester la pré-condition
assert type(a) == int, f"division({a}, {b}): {a} n'est pas \

— entier"
assert type(b) == int, f"division({a}, {b}): {b} n'est pas \
— entier"
assert b != 0, f"division({a}, {b}): division par 0 "
La pré-condition est vérifiée
g, r=20, a
r=a
if b > 0:
B, sg=b, 1 # on a sg*b =B = |b]|
else:
B, sg = -b, -1 # on a sg*b = B = |b|
if a >= 0:

while r > B:
Invariant : a = bg+r et r>=0

q += sg
r -=B # bg+r = b(g+sg)+(r-B)
else: # a <0
while r < 0:
Invariant: a = bg+r et r < B
q -= sg
r+= B # bg+r = b(q-sg)+(r+B)
return(qg,r)

4. En ajoutant import doctest avant la fonction, et doctest.testmod() apres la
fonction, on vérifie que tous les tests proposés sont validés.

	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:

