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TP (S2) 1
Bonnes pratiques de
programmation

1 Spécifications . . . . . . . . . . . . . . . . . .

2 Invariants . . . . . . . . . . . . . . . . . . . . . . .

3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Objectifs
• Savoir définir les spécifications (signa-

ture, docstring).
• Savoir annoter un bloc d’instruc-

tions (précondition, postcondition,
invariant).

• Savoir mettre au point un jeu de tests.

Fichier externe?
OUI fichier TP_BonPratProg.py présent dans le dossier partagé de la classe

1 SPÉCIFICATIONS

Exercice 1 Conjecture de GOLDBACH et spécification [Sol 1] La conjecture de
GOLDBACH est la suivante : « tout nombre pair strictement plus grand que 2 peut être
écrit comme la somme de deux nombres premiers ».

1. On désire écrire une fonction isPrime(n:int)->bool qui respecte la spécifica-
tion suivante :
    """

    Détermine si l'entier 'n' est premier

    Parameters

    ----------

    'n' : int, entier dont on veut déterminer la primalité

    Returns

    -------

    bool, True si 'n' est premier, False sinon. Par convention \

↪ 1 n'est pas premier.

    """

Pour cela, on pourra tester la divisibilté de l’entier n par des entiers k vérifiant
𝑘 ≥ 2 et 𝑘 < 𝑛, à l’aide d’une boucle while.

2. Écrire la spécification de la fonction isGoldbach(n:int)->boolqui renvoie True
si et seulement si la conjecture est vérifiée pour l’entier 𝑛 (si 𝑛 est impair ou est
inférieur ou égal à 2 la fonction renvoie True, cette conventionpeut paraitre éton-
nante mais justifiée par la prochaine question). Écrire ensuite le code de la fonc-
tion isGoldbach (on utilisera la fonction isPrime précédemment définie).

3. Écrire une fonction goldbach(p:int)->bool qui implémente la spécification
suivante (on utilisera la fonction isGoldbach précédemment définie) :
    """

    Vérifie la conjecture de Goldbach jusqu’à un certain rang

    Parameters

    ----------

    p : int, entier maximal pour lequel on veut tester la \

↪ conjecture de Goldbach.

    Returns

    -------

    bool, True si et seulement si tout entier inférieur ou \

↪ égal à p vérifie la conjecture de Goldbach, False sinon

    """
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Exercice 2 Fonctions sans spécifications ni commentaires [Sol 2] Sur l’espace
«données » du réseau pédagogique, téléchargez le fichier TP_BonPratProg.py et co-
piez le sur votre espacepersonnel. Ceprogrammecontient deux fonctionsf etgdont
les spécifications et les commentaires sont absents, cequi rend la compréhensiondu
rôle de ces fonctions assez difficile.

1. La variable n est ici un entier naturel. Faire apparaitre cette contrainte en com-
mençant à écrire les spécifications de chacune des fonctions.

2. On cherche à déterminer le rôle de la fonction f (indice : f est liée à une suite
(𝑢𝑛) déjà rencontrée dans le cours d’informatique, et de mathématique). En tes-
tant différentes valeurs de n, pouvez-vous émettre une hypothèse sur la nature du
résultat renvoyé par f? Une fois cette identification réalisée, rappeler la définition
« usuelle » de la suite calculée par f. Le programme fourni est-il compréhensible
à l’aide de cette seule définition?

On donne une propriété de la suite (𝑢𝑛) considérée ici :

∀𝑝 ∈N,
⎧
⎨
⎩

𝑢2𝑝 =𝑢𝑝(2𝑢𝑝+1−𝑢𝑝)
𝑢2𝑝+1 =𝑢2𝑝+𝑢2𝑝+1.

3. Détailler le fonctionnement duprogramme lorsqu’on exécute f(2), f(6). Onpré-
cisera en particulier les appels successifs à la fonction g.

4. Compléter les fonctions (spécifications et commentaires) dans le but de les
rendre plus directement compréhensibles. On pourra également renommer les
fonctions de manière plus explicite.

5. Proposer le script d’une fonction f2(n:int)->int qui calcule renvoie 𝑢𝑛, en ap-
pliquant un algorithme itératif. Déterminer le nombre d’additions et affectations
nécessaires au calcul de 𝑢𝑛 par f2.

6. En prenant 𝑛 = 2𝑝,𝑝 ∈ N, montrer que la fonction f permet de calculer 𝑢𝑛 avec
moins d’opérations élémentaires que f2, pour 𝑛 « grand » .

2 INVARIANTS

Exercice 3 Recherchedichotomique [Sol 3] Onreprend ici le script de recherche
dichotomique dans une liste triée (par ordre croissant), sans spécification ni signa-
ture :

def present_dicho(t:_____, v:_____)->______:

    d = 0

    f = len(t)

    trouve = False

    # Précondition : _________________________

    while not trouve and d < f:

        m = (d + f) // 2

        if t[m] == v:

            trouve = True

        elif t[m] < v:

            d = m + 1

        else:

            f = m

    # Postcondition : _________________________

    return trouve

1. Cette fonction à trous est dans le fichier fourni. Compléter la en précisant sa si-
gnature, une docstring, ainsi que précondition et postcondition en commentaire.

2. Montrer que : 𝒫(𝑖) «(𝑣 ∉ 𝑡) ou (𝑣 ∈ 𝑡[𝑑𝑖 ∶ 𝑓𝑖])» est un invariant de la boucle
while.

Exercice 4 Tester l’ordre croissant [Sol 4] Écrire une fonction qui prend en en-
trée une liste de nombres et qui renvoie True si ces nombres sont dans l’ordre crois-
sant, False sinon. Cette fonction devra être correctement documentée et commen-
tée, un invariant de boucle sera proposé et justifié.

3 TESTS

Exercice 5 Algorithme de HÖRNER itératif (retour) [Sol 5] On considère un

polynôme P =
𝑛−1
∑
𝑖=0

𝑎𝑖X𝑖, et on souhaite évaluer ce polynôme sur des réels 𝑥. Pour

cela on choisit de représenter ce polynôme avec la suite de ses coefficients, à sa-
voir : [𝑎0,…,𝑎𝑛−1], coefficient constant à gauche de la liste. On conviendra que le
polynôme nul est codé par la liste vide.
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1. [Méthode naïve] Un étudiant propose la fonction (non documentée!) sui-
vante :
def eval_poly1(P: list, x: float) -> float:

    S = P[0]

    for k in range(1, len(P)):

        S += P[k]*(x**k)

    return S

1.1) Écrire et exécuter dans la console un test qui permet de montrer que la fonc-
tion ne renvoie pas toujours le résultat attendu. Apporter la correction néces-
saire à la fonction.

1.2) Proposer un invariant pour la fonction modifiée.

1.3) En remarquant que 𝑥𝑘 = 1× 𝑥 ×⋯×𝑥 et nécessite ainsi 𝑘 multiplications,
déterminer combien exactement il y a de multiplications effectuées lors de
l’évaluation d’un polynôme par cette fonction.

2. [Onpeut fairemieux] L’idée de l’algorithmedeHÖRNER s’appuie sur l’idée sui-
vante, supposons pour simplifier que l’on cherche à évaluer 𝑎𝑥3 +𝑏𝑥2 +𝑐𝑥+𝑑,
alors on peut écrire :

𝑎𝑥3+𝑏𝑥2+𝑐𝑥+𝑑 = ((𝑎 ×𝑥+𝑏)×𝑥+𝑐)×𝑥+𝑑
il y a seulement trois multiplications. Proposer une troisième version de la fonc-
tion précédente, nommée eval_poly2 qui utilise l’algorithme de HÖRNER, le
nombre de multiplications ne doit pas dépasser 𝑛. Documenter votre fonction.

3. [Tests de performance] Nous allons comparer les performances en temps

d’exécution de ces deux fonctions en prenant le polynôme P =
𝑛−1
∑
𝑘=0

𝑘𝑥𝑘 avec 𝑛 =

1000 et𝑥 =−20. Pour cela on importe la fonction time()dumodule time, on exé-
cute un certain nombre de fois (par exemple 1000 fois) chacune de ces fonctions
en mesurant le temps écoulé pour chacune. Par exemple pour la première cela
donnerait :
t1 = time() # on relève l'heure initiale

for _ in range(1000):

    r1 = eval_poly1(P,x)

t2 = time() # on relève l'heure de fin

print("eval_poly1: ",t2-t1) # on affiche le temps écoulé

Comparer ainsi le tempsd’exécutiondes deux fonctions, commenter les résultats.

Remarque : si on est dans un notebook, alors on peut plus simplement utili-
ser l’instruction timeit eval_poly1(P,x) qui va mesurer automatiquement le
temps d’exécution de la fonction.

Exercice 6 Conception d’un jeu de tests [Sol 6] Dans le fichier
TP_BonPratProg.py, on a écrit quatre fonctions différentes (max1,max2,max3
et max4) dont l’objectif est de renvoyer le maximum d’une liste d’entiers passée
en argument. On désire tester ces fonctions, uniquement en regardant si elles
renvoient le résultat attendu lorsqu’on les applique à différentes listes (supposées
non vide). Pour chaque test, on a donc un couple (L,v) où L est une liste d’entiers
et v la valeur du maximum attendu.

1. Imaginer un ensemble de couples de type (L,v) et stocker ces couples dans une
liste jeu_test (cette liste est donc du type [(list,int)]).

2. La fonction test_max(f:callable,jeu_test:[(list,int)])->None fournie
permet de tester une fonction f (à choisir parmi les quatre fonctions max propo-
sées) sur les tests contenus dans la liste jeu_test. Appliquer votre jeu de tests à
chacune des fonctions et déterminer quelle est (sont) la (les) fonctions correctes.

Exercice 7 Division euclidienne dans ℤ [Sol 7] Pour cet exercice, on reprend
l’exemple du cours division(a, b), qui était la division euclidienne dans ℕ, pour
l’étendre aux entiers relatifs. La nouvelle version devra envoyer un tuple d’entiers
(𝑞,𝑟) tels que : 𝑎 = 𝑏𝑞+𝑟 avec 0 ⩽ 𝑟 < |𝑏|.

1. Pour cette nouvelle version, préciser signature, pré et post condition. Contraire-
ment à l’exemple du cours, on conviendra que la fonction doit provoquer une
erreur lorsque la pré-condition n’est pas remplie.

2. Écrire une docstring pour cette nouvelle version incluant un jeu de tests.

3. En reprenant l’idée du code de l’exemple du cours, proposer une adaptation de
celui-ci tout en conservant la relation𝑎 = 𝑏𝑞+𝑟 comme invariant. On sera amené
à distinguer 𝑎 ⩾ 0 et 𝑎 < 0.

4. Saisir et tester la nouvelle version.
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SOLUTIONS DES EXERCICES

Solution 1
1. def isPrime(n):

    """

    Détermine si 'n' est premier

    Parameters

    ----------

    n : int, supposé > 1, entier dont on veut déterminer la \

↪ primalité

    Returns

    -------

    bool, True si 'n' est premier, False sinon

    """

    k = 2

    while k < n and n%k != 0:

        k += 1

    return k == n

>>> isPrime(3)

True

>>> isPrime(4)

False

>>> isPrime(1)

False

2. def isGoldbach(n):

    """

    Teste la conjecture de Goldbach sur l'entier "n"

    Parameters

    ----------

    n : int

        entier pour lequel on veut tester la conjecture de \

↪ Goldbach.

    Returns

    -------

    bool

        False si "n" est pair et que la conjecture de Goldbach \

↪ n'est pas vérifiée pour "n", True sinon.

        True si "n" est impair

    """

    # cas où la conjecture est à vérifier

    if n%2 == 0 and n > 2:

        gold = False

        # on cherche si on peut écrire n = k + q avec k et q \

↪ premiers

        k = 2

        while k <= n//2 and not gold:

            if isPrime(k) and isPrime(n-k):

                gold = True

            k += 1

        return gold

    else:

        # autres cas (convention)

        return True

>>> isGoldbach(13)

True

>>> isGoldbach(14)

True

3. def golbach(p:int)->bool:

    """

    Vérifie la conjecture de Goldbach jusqu’à un certain rang

    Parameters

    ----------

    p : int

        entier maximal pour lequel on veut tester la \

↪ conjecture de Goldbach.

    Returns

    -------

    bool

        True si et seulement si tout entier inferieur ou égal \

↪ à p vérifie la conjecture de Goldbach, False sinon

    """

/ Lycée Michel Montaigne – Bordeaux 4 ITCCreative-Commons 2025-2026
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    for n in range(p+1):

        if not isGoldbach(n):

            return False

    return True

>>> golbach(30)

True

Solution 2
1. On peut commencer ainsi :

def f(n):

"""

Parameters

----------

n : int

Returns

-------

int

"""

assert n >=0, "la variable n n'est pas un entier naturel"

return g(n)[0]

def g(n):

"""

Parameters

----------

n : int

Returns

-------

tuple

"""

if n == 0:

return (0, 1)

a, b = g(n//2)

c = a*(2*b-a)

d = a**2+b**2

if n%2 == 0:

return (c, d)

else:

return (d, c+d)

2. On obtient les résultats suivants :
>>> f(0),f(1),f(2),f(3),f(4),f(5)

(0, 1, 1, 2, 3, 5)

Cela semble correspondre aux premiers termes de la suite de FIBONNACCI, définie
par :

𝑢0 = 0, 𝑢1 = 1, ∀𝑛 ≥ 0,𝑢𝑛+2 =𝑢𝑛+1+𝑢𝑛.
Le programme fourni ne semble pas s’appuyer directement sur cette définition.

3. Lors de l’appel 𝑓(2), on appelle 𝑔(2), et l’écriture récursive de 𝑔 nécessite l’appel
de 𝑔(1), qui elle-même nécessite 𝑔(0) (cas terminal). On a ainsi 𝑔(0) qui renvoie
(𝑢0,𝑢1),𝑔(1)utilise la propriété décrite avec𝑝 = 0 (ce qui ne nécessite que𝑢0,𝑢1)
et renvoie (𝑢1,𝑢2), enfin 𝑔(2) utilise la propriété décrite avec 𝑝 = 1 (ce qui ne
nécessite que 𝑢1,𝑢2) et renvoie (𝑢2,𝑢3). Ainsi 𝑓(2) renvoie 𝑢2.

De même, pour 𝑓(6), on appelle successivement 𝑔(6),𝑔(3),𝑔(1) et 𝑔(0). Comme
précédemment,𝑔(0) renvoie (𝑢0,𝑢1), 𝑔(1) renvoie (𝑢1,𝑢2). L’appel à 𝑔(3) utilise
la propriété avec 𝑝 = 1 (ce qui ne nécessite que 𝑢1,𝑢2) et renvoie (𝑢3,𝑢4), l’appel
à 𝑔(6) utilise la propriété avec 𝑝 = 3 (ce qui ne nécessite que 𝑢3,𝑢4) et renvoie
(𝑢6,𝑢7). Finalement 𝑓(6) renvoie 𝑢6.

4. Afin de rendre les fonctions plus compréhensibles, on renomme f en fibo et g en
fibo_aux. On précise les entrées et surtout les sorties de chaque fonction dans
la spécification, et on fournit en commentaire la propriété de la suite (𝑢𝑛) sur
laquelle s’appuie le code. On obtient pour la réécriture de f :
def fibo(n):

    """ renvoie le nième terme de la suite de Fibonnacci

    Parameters

    ----------

    n : int

        rang de la suite recherché

    Returns

    -------

    int

        nième terme de la suite de Fibonnacci

    Examples

ITCCreative-Commons 2025-2026 5 / Lycée Michel Montaigne – Bordeaux
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    --------

    >>> fibo(0)

    0

    >>> fibo(1)

    1

    >>> fibo(6)

    8

    """

    assert n >=0, "la variable n n'est pas un entier naturel"

    # on utilise une fonction auxiliaire fibo_aux(n) qui \

↪ renvoie (u_n,u_{n+1})

    return fibo_aux(n)[0]

et pour celle de g :
def fibo_aux(n):

    """

    Renvoie le couple de termes (u_n,u_{n+1}) de la suite de \

↪ Fibonnacci

    Parameters

    ----------

    n : int

    Returns

    -------

    tuple

        (u_n,u_{n+1})

    Examples

    --------

    >>> fibo_aux(0)

    (0,1)

    >>> fibo_aux(1)

    (1,1)

    >>> fibo_aux(6)

    (8,13)

    """

    # cas de base

    if n == 0:

        return (0,1)

    else:

        # On utilise les propriétés suivantes :

        # u_{2p} = u_p*(2*u_{p+1}-u_p)

        # u_{2p+1} = u_p^2+u_{p+1}^2

        a, b = fibo_aux(n//2) # a,b contiennent \

↪ (u_(n//2),u_{n//2+1))

        c = a*(2*b - a)

        d = a**2 + b**2

        # si n = 2p, c contient le terme de rang \

↪ 2*(n//2)=2p=n,et d le terme suivant

        # sinon n = 2p+1, c contient le terme de rang \

↪ 2*(n//2)=2p=n-1, et d le terme de rang n : on \

↪ utilise alors la relation u_{n+1} = u_n+u_{n-1} pour \

↪ calculer le terme de rang n+1

        if n%2 == 0:

            return (c, d)

        else:

            return (d, c+d)

5. La fonction fibo2 :
def fibo_2(n):

    """

    Renvoie le terme u_n de la suite de Fibonnacci

    Parameters

    ----------

    n : int

        rang de la suite recherché

    Returns

    -------

    int

        nième terme de la suite de Fibonnacci

    """

    # u et v contiennent u_n et u_{n+1} à chaque itération

    u, v = 0, 1

    # on utilise ici u_{n+2} = u_n+u_{n+1}

    for k in range(n):

        u, v = v, u+v

    return u
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À chaque itération, on réalise une somme et deux affectation. En comptant les
deux premières affectations (indépendantes de 𝑛), le nombre C(𝑛) d’opérations
est C(𝑛) = 2+3𝑛.

6. L’appel récursif de𝑔(𝑛) se fait sur des arguments qui décroissent selon les valeurs
successives suivantes : 2𝑝(= 𝑛),2𝑝−1(= 𝑛/2),2𝑝−2,20(= 1) et finalement 0 (cas ter-
minal qui n’effectue aucune opération). On a donc 𝑝+1 itérations, avec à chaque
fois un nombre faible d’opérations, que l’on peut majorer par K > 0. On a donc
C′(𝑛) < K𝑝 = K log2(𝑛). On a bien C′(𝑛) < C(𝑛) à partir d’un certain rang. L’al-
gorithme proposé dans les fonctions 𝑓 et 𝑔 nécessite moins d’opérations pour les
grandes valeurs de 𝑛. En revanche, il est plus délicat à comprendre (et nécessite
donc une spécification et des commentaires détaillés).

Solution 3

1. En rajoutant les éléments demandés, on peut proposer pour la partie demandée
(le code étant inchangé) :
def present_dicho(t:[int], v:int)->bool:

    """

    Determines if value 'v' belongs to 't' by dichotomic method.

    Parameters

    ----------

    t : list of n int, sorted in ascending order

    v : int, value to be tested

    Returns

    -------

    bool, True if value 'v' is in 't', False in the other case

    Examples

    --------

    >>> dicho([1,3,5],5)

    True

    >>> dicho([1,3,5],4)

    False

    >>> dicho([],1)

    False

    """

    d = 0

    f = len(t)

    trouve = False

    # précondition (P) : t est une liste triée par ordre \

↪ croissant

    while not trouve and d < f:

        m = (d + f) // 2

        if t[m] == v:

            trouve = True

        elif t[m] < v:

            d = m + 1

        else:

            f = m

    # postcondition (Q) : trouve vaut True si 'v' appartient à \

↪ 't', False sinon.

    return trouve

2. Distinguons deux cas :

• Si t ne contient pas v, alors l’invariant est bien sûr vrai.
• Si t contient v (t n’est donc pas vide), montrons que 𝑣 ∈ 𝑡[𝑑𝑖 ∶ 𝑓𝑖] est vrai

pour tout 𝑖 ∈ {0,…,𝑛} où 𝑛 désigne ici le nombre d’itérations de la boucle
while.
Initialisation. Pour 𝑖 = 0 : avant la boucle on a 𝑑0 = 0 et 𝑓0 = len(t) et ainsi
𝑡[𝑑0 ∶ 𝑓0] = 𝑡[0 ∶ len(𝑡)] = 𝑡, l’invariant est bien donc vérifié.
Hérédité. Supposons qu’il soit vrai en un rang 𝑖 ∈ J0, 𝑛−1K et qu’il y ait une
itération 𝑖+1. Alors montrons que 𝑣 ∈ 𝑡[𝑑𝑖+1 ∶ 𝑓𝑖+1]. On a𝑚𝑖+1 = (𝑑𝑖+𝑓𝑖)//2
et faisons alors plusieurs cas.
⋄ [Cas 1] 𝑡[𝑚𝑖+1] = 𝑣. On a 𝑑𝑖+1 = 𝑑𝑖 et 𝑓𝑖+1 = 𝑓𝑖 donc l’invariant reste

vrai.
⋄ [Cas 2] 𝑡[𝑚𝑖+1] < 𝑣. Alors puisque la liste est croissante, on a 𝑣 ∈
𝑡[𝑚𝑖+1+1 ∶]. Or, 𝑑𝑖+1 =𝑚𝑖+1+1,𝑓𝑖+1 = 𝑓𝑖 donc l’invariant reste vrai.

⋄ [Cas 3] 𝑡[𝑚𝑖+1] > 𝑣. Alors puisque la liste est croissante, on a 𝑣 ∈ 𝑡[∶
𝑚𝑖+1] (rappel : l’indice de droite dans un slicing est exclu) Or, 𝑑𝑖+1 = 𝑑𝑖,𝑓𝑖+1 =
𝑚𝑖+1 donc l’invariant reste vrai.

L’invariant est donc vérifié.

Solution 4
def ascending(t: list) -> bool:

    """

    Determines whether the elements of t are in ascending order.
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    Parameters

    ----------

    t : list of n values

    Returns

    -------

    bool

        True if the elements of t are in ascending order.

    Examples

    --------

    >>> ascending([1,3,5,7,8])

    True

    >>> ascending([1,5,3,7,8])

    False

    >>> ascending([])

    True

    """

    result = True # variable pour le résultat

    k = 0 # index pour le parcours

    while result and k < len(t)-1 : # il faut k+1 <= len(t)-1

    # Invariant: result indique si t[:k+1] est dans l'ordre \

↪ croissant

        if t[k] > t[k+1]: # on compare chaque élément avec le \

↪ suivant

            result = False # 2 éléments ne sont pas dans le bon \

↪ ordre (sortie de boucle)

        k += 1 # pour passer au suivant, on a maintenant k <= \

↪ len(t)-1

    return result

Preuve pour l’invariant :

• Avant la boucle, on a 𝑘 = 0 donc t[:k+1] vaut t[:1] qui est la liste vide si 𝑡 est
vide, et la liste réduite au premier élément si 𝑡 n’est pas vide, dans les deux cas,
l’invariant est vérifié.

• Supposons l’invariant vérifié à l’issue d’une itération, et qu’il y ait une itération
suivante, ce qui signifie que result est True et que k < len(t)-1.
⋄ Si t[k] <= t[k+1] alors grâce à l’invariant on peut affirmer que t[:k+2]

est dans l’ordre croissant, ce qui donne bien l’invariant en fin d’itération
puisque 𝑘 augmente de 1 et que la valeur de result n’a pas changé.

⋄ Par contre, si t[k] > t[k+1] alors on peut affirmer que t[:k+2] n’est
pas dans l’ordre croissant, ce qui donne bien l’invariant en fin d’itération
puisque 𝑘 augmente de 1 et que la valeur de result est passée à False.

En sortie de boucle : on a (not result) or (k >= len(t)-1) qui est vérifié ainsi
que l’invariant. Si result a la valeur False alors l’invariant nous permet d’affirmer
que t[:k+1] n’est pas dans l’ordre croissant et donc 𝑡 non plus. Si result a la valeur
True alors l’invariant nous permet d’affirmer que t[:k+1] est dans l’ordre croissant,
mais comme on a également k >= len(t)-1, on a en réalité on a k = len(t)-1, et
la sous-liste t[:k+1] est la liste 𝑡 en entier.

Donc en sortie de boucle, result indique bien si la liste est dans l’ordre croissant.

Remarque : le corps de la fonction pourrait être remplacé par le code équivalent
suivant :
for k in range(len(t)-1):

    if t[k] > t[k+1]:

        return False

return True

Solution 5

1. 1.1) La fonction ne s’exécute pas correctement sur une liste vide : cela provoque
une erreur (évaluationdeP[0] impossible), alors qu’il faudrait que la fonction
renvoie 0 (si on convient qu’une liste vide représente le polynôme nul). une
version modifiée est :
def eval_poly1(P: list, x: float) -> float:

    S = 0

    for k in range(len(P)):

        S += P[k]*(x**k)

    return S

1.2) Onpeut proposer l’invariant : «S𝑖 =
𝑖−1
∑
𝑘=0

P[𝑘]𝑥𝑘 » , avant l’entrée dans la boucle

on convient que S0 est nul.

1.3) Il y a 𝑖−1+1 = 𝑖multiplications à l’itération 𝑖 ⩾ 1, donc puisque len(P) =𝑛,

au total
𝑛−1
∑
𝑖=1

𝑖 =
𝑛(𝑛−1)

2
multiplications.

2. Avec l’algorithme de HÖRNER (la docstring n’a pas été reproduite) :
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def eval_poly2(P: list, x: float) -> float:

    """ ... """

    n = len(P)

    S = 0

    for k in range(1, n+1):

    # Invariant: S_i = sum_{k=1}^i P[n-k]x^{i-k}

        S = S * x + P[n-k]

    return S

>>> eval_poly2([1, 2, 3], -1) # évaluation de P = 1+2X+3X^2 en \

↪ -1

2

ou en utilisant un range à rebours si on préfère :
def eval_poly2(P: list, x: float) -> float:

    """ ... """

    n = len(P)

    S = 0

    for k in range(n-1, -1, -1): # on parcourt la liste à \

↪ l'envers

    # Invariant: S_i = sum_{k=1}^i P[n-k]x^{i-k}

        S = S * x + P[k]

    return S

>>> eval_poly2([1, 2, 3], -1) # évaluation de P = 1+2X+3X^2 en \

↪ -1

2

3. On définit d’abord P, 𝑛 et 𝑥 : n = 1000 ; P = list(range(n)) ; x = -20. Ré-
sultats obtenus :
eval_poly1: 2.386896848678589

%eval_poly2: 0.4218263626098633

eval_poly2: 0.24854230880737305

Attention, les temps mesurés ne sont pas forcément identiques d’une machine à
l’autre, mais les comparaisons restent les mêmes.

Avec timeit :
>>> timeit eval_poly1(P,x)

2.56 ms ± 153 µs per loop (mean ± std. dev. of 7 runs, 100 \

↪ loops each)

%>>> timeit eval_poly2(P,x)

%451 µs ± 30.3 µs per loop (mean ± std. dev. of 7 runs, 1000 \

↪ loops each)

>>> timeit eval_poly2(P,x)

268 µs ± 15.3 µs per loop (mean ± std. dev. of 7 runs, 1000 \

↪ loops each)

Solution 6

1. Il faut tester plusieurs cas limites : le max peut être au début, à la fin, au milieu de
la liste, et la liste peut contenir des entiers positifs ou bien négatifs (uniquement).
On peut proposer par exemple la liste suivante :

𝑗𝑒𝑢_𝑡𝑒𝑠𝑡 = [([−3,−1,−2],−1), ([5,2,13],13), ([9,2,8],9)]

2. Les fonctions max1, max2, max3 échouent sur les tests proposés et sont donc in-
correctes. La fonction max4 passe tous les tests (ce qui ne signifie pas qu’elle est
forcément correcte).

Solution 7

1. Spécifications :

• Signature : division(a: int, b: int) -> (int, int).
• Pré-condition : 𝑎 et 𝑏 sont des entiers relatifs avec 𝑏 non nul.
• Post-condition : le résultat de la fonction est le tuple (𝑞,𝑟) où 𝑞 et 𝑟 soxnt

respectivement le quotient et le reste de la division euclidienne de 𝑎 par 𝑏
(c’est à dire vérifiant 𝑎 = 𝑏𝑞+𝑟 avec 0 ⩽ 𝑟 < |𝑏|).

2. La docstring et un jeu de tests
def division(a: int, b: int) -> (int, int):

    """"

    Renvoie le quotient et le reste de la division de a par b

    Paramètres:

    ----------

        a: int

        b: int, entier non nul

    Retour:

    ------

        tuple (q, r) tel que a=bq+r avec 0 <= r < |b|

        ou bien None si b est nul
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    Exemples:

    --------

    >>> division(19,7) == (2,5)

    True

    >>> division(7,19) == (0,7)

    True

    >>> division(0,19) == (0,0)

    True

    >>> division(19,-7) == (-2,5)

    True

    >>> division(-19,7) == (-3,2)

    True

    >>> division(-19,-7) == (3,2)

    True

    """

3. Pour conserver l’invariant on initialise encore 𝑞 à 0 et 𝑟 à 𝑎. Si 𝑎 est positif le prin-
cipe est le même que dans le cours mais en prenant |𝑏| à la place de 𝑏 (on re-
tranche |𝑏| à 𝑟 et on adapte 𝑞 en conséquence). Mais si 𝑎 < 0 la même méthode
nemarche plus (car 𝑟 < 0), cette fois-ci il faut ajouter |𝑏| à 𝑟 et adapter𝑞 en consé-
quence, et ceci tant que 𝑟 < |𝑏|. On peut donc proposer ceci (la docstringn’a pas
été reproduite) :
def division(a: int, b: int) -> (int, int):

    """" ... """

    # On comme par tester la pré-condition

    assert type(a) == int, f"division({a}, {b}): {a} n'est pas \

↪ entier"

    assert type(b) == int, f"division({a}, {b}): {b} n'est pas \

↪ entier"

    assert b != 0, f"division({a}, {b}): division par 0 "

    # La pré-condition est vérifiée

    q, r = 0, a

    r = a

    if b > 0:

        B, sg = b, 1 # on a sg*b = B = |b|

    else:

        B, sg = -b, -1 # on a sg*b = B = |b|

    if a >= 0:

        while r > B:

        # Invariant : a = bq+r et r>=0

            q += sg

            r -= B # bq+r = b(q+sg)+(r-B)

    else: # a < 0

        while r < 0:

        # Invariant: a = bq+r et r < B

            q -= sg

            r += B # bq+r = b(q-sg)+(r+B)

    return(q,r)

4. En ajoutant import doctest avant la fonction, et doctest.testmod() après la
fonction, on vérifie que tous les tests proposés sont validés.
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