ITC © 2025-2026

TP (S2)2

Objectifs
1 Preuve d’un programme........

2 Complexité d’un algorithme.... boucle.

Preuves & Complexité

® Savoir prouver la terminaison d'une

® Savoir prouver un programme simple
en utilisant un invariant de boucle.

® Savoir calculer la complexité tempo-
relle et/ou spatiale d'un programme.

n PREUVE D’'UN PROGRAMME

Exercice 1 Terminaison de la recherche dichotomique

[Sol 11 On rappelle la

fonction de recherche dichotomique d’'un élément dans une liste triée :

def present dicho(t:[int], v:int)->bool:

[(Teste le présence de l'entier 'v' dans la liste 't', par méthode \

— dichotomique

o
d=20
f = len(t)
trouve = False

précondition (P)
— croissant
while not trouve and d < f:
m=(d+ f) // 2
if t[m] == v:
trouve = True
elif t[m] < v:

W/ Lycée Michel MONTAIGNE — Bordeaux

: t est une liste triée par ordre |

d
else:
f = m #Decalage a gauche
postcondition (Q) trouve vaut True si 'v' appartient a |
False sinon.
return trouve

m + 1 #Décalage a droite

s |t|,

Notons d,. et f. le contenu des variables d et f a la fin de l'itération k, et ¢, de la
tranche t[d; : fi]. On a la relation f; = d; + ¢;. On suppose par 'absurde que la
boucle ne termine jamais.

1. Montrer que ¢, est au moins divisé par deux pour chaque tour de boucle. En dé-
duire que l'algorithme termine.

2. Ona prouvé dans le TP précédent I'invariant suivant :
tldy : fi])». En déduire que l'algorithme est correct.

P(k) «(vet)ou (ve

Exercice 2 Le tri par sélection
besoin de la fonction suivante :
def pos max(L: list)->int:
""" Renvoie l'indice de la derniere occurrence du maximum de |

— L

[Sol 2] Pour mettre en oeuvre ce tri nous aurons

ou L est une liste de nombres supposée non vide """
m, p, n=L[0], 0, len(L) #initialisation avec le premier |
— élément

for i in range(l, n): # on parcourt les éléments suivants

if L[i] >= m: # si on trouve un élément supérieur ou |\
— égal
m, p=L[i], i # on met a jour nos variables
return p

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

1. Proposer un invariant pour la boucle for et faire la preuve de cette fonction.
2. Le principe de ce tri est le suivant :

® Premiére étape : on trouve le plus grand élément de L et on I’échange avec
le dernier élément de L.

® Deuxiéme étape : on trouve le plus grand élément parmi les n — 1 premiers
éléments de L et on I'’échange avec I'avant-dernier élément de L.

® etc.

21) Ecrirelafonction tri_select(L: list)->None quiréalise al'aide de la fonc-
tion précédente le tri par sélection en place de la liste L.

2.2) Faire la preuve de cette fonction.

Exercice 3 Méthode dichotomique continue [sol 2] On considere la fonction
suivante qui met en ceuvre la méthode dichotomique pour la résolution a € pres
d’'une équation f(x) = 0 possédant une solution unique dans un intervalle [a; b] :
def dicho(f: Callable, a: float, b: float, epsilon: \
— float)->float:
""" Calcule une valeur approchée a epsilon prés de l'unique
solution de f(x)=0 dans l'intervalle [a;b],
pré-condition : e

fa = f(a)
while b-a > 2*epsilon:
milieu = (a+b)/2
fm = f(milieu)
if fa*fm <= 0:
b = milieu
else:
a = milieu
fa = fm

return (a+b)/2
1. Compléter la pré-condition dans la docstring et commenter le code.
2. Etablir la terminaison de la boucle while.
3. Proposer un invariant de boucle et faire la preuve.

4. Proposer une version récursive de cette fonction.

Exercice 4 Fonction ’ACKERMANN [sol 4] Cette fonction est définie sur N? ré-

cursivement comme ceci :
n+1 sim=0,
A(m-1,1)

Am-1,A(m,n-1))

V(m,n)eN?, A(m,n)= sim>0etn=0,

sim>0etn>0.

1. Ecrirela fonction A(m: int,
tester.

n:int)->int quirenvoie la valeur de A(m, n), et la

2. Montrer que pour tout (72, n) € N?, I'appel 4 A(m,n) se termine et renvoie un na-
turel.

n COMPLEXITE D’'UN ALGORITHME

Exercice 5 Recherche d’'un maximum [sol 5] FEcrire une fonction
IndiceMaxListe(L:1list)->int qui renvoie le plus petit indice de 1’élément
maximal d'une la liste L de flottants. Quelle est sa complexité temporelle?

Exercice 6 Fonction mystére [sols] On considére la fonction suivante :
def Mystere(L:list)->bool
1g = len(L)
doublon = False
for i in range(lg-1)
for j in range(i+l,1g):
if L[j] == L[i]
doublon = True
return doublon

Calculer sa complexité.

Exercice 7 Calculs de complexités [sol 7] Evaluer la complexité exacte de cha-
cune des fonctions suivantes puis donner sa complexité asymptotique.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

1. for i in range(5, n-5):
for j in range(i-5, i+5):
X += 1
2. for i in range(n):
for j in range(i):
for k in range(j):
X +=1

Exercice 8 Complexité de Pexponentiation rapide [sol 5] On reprend I'algo-
rithme d’exponentiation rapide pour calculer x” qui a été présenté dans le cours :
def expR(x: float, n: int)-> float
"""Renvoie x~n pour x réel et n entier naturel.

X =X
N =n
R=1
while N !'= 0
if N%2 ==
N = N//2
else :
R = R*X
N = (N-1)//2
X = X*X
return R

1. Compter le nombre de multiplications effectuées (X * X et R * X) dans l'algo-
rithme d’exponentiation rapide lorsque n = 27 (on néglige le temps d’exécution
des autres opérations élémentaires devant celui de la multiplication).

2. Lorsque 27 < n < 2P*!, donner un encadrement du nombre de multiplications
puis en déduire la complexité asymptotique.

3. [Meilleur encadrement] On peut obtenir un meilleur encadrement en dé-
composant n en binaire. Plus précisément, on I’écrit sous la forme :

n:2p1+...+2pk, 2pk<n<2pk+l.

3.1) Montrer, par récurrence sur k, que le nombre de multiplications est p;. +
k+1.

3.2) En déduire que le nombre C(n) de multiplications vérifie :

avec: 0<p, <-- < p; entiers tels que

log,(n) < C(n) < 2log,(n)+2. (Onpourra remarquer en justifiant que k < p;. +1)

Exercice 9 Suite de FIBoNAccI [sol9] On s'intéresse dans cet exercice 2 la suite
de FiBonAccI dont on rappelle la définition :

F,=0, F,=1, et: ¥YneN, F,,=F, +F,.

1. Ecrire une fonction itérative Fibo1l & qui on fournit un entier naturel n et qui
renvoie F,,. Calculer la complexité temporelle de cette fonction.

2. Proposer une fonction récursive « naturelle » Fibo2 quirenvoie le méme résul-
tat que Fibol et calculer sa complexité temporelle.

3. On propose la fonction récursive suivante :

def Fibo3(a, b, n):
if n ==
return a
else:

return Fibo3(b, a+b, n-1)
Déterminer la signature et la docstring de cette fonction, et expliquer comment
on pourrait I'utiliser pour calculer F,,. Calculer sa complexité.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

SOLUTIONS DES EXERCICES

Solution 1

1. Discutons suivant la parité de ¢, :

® Si /, est pair, notons ¢, = 2p avec p entier,ce qui donne f; = d;. +2p.
di + fi

En cas de décalage a gauche, on pose dy.,, = d;. et fi..; = My, = d;. + p donc
Crir = ferri— e =p =4 /2.

En cas de décalage a droite, onpose d;.., =m ., +1=d.+p+1letfi,, =fi
donc €y = fir1 — ey =p—1< €y /2.

4
Dans ces deux cas, on a bien £, ; < ?k

L'étape k + 1 construit 'indice milieu m;.,; = L J =d, +p.

® Si /,. estimpair, notons ¢, =2p + 1 avec p entier, donc fj. = d;. +2p + 1.

di +
Lindice milieu est encore my;.,, = L k 5 ka =d. +p.
l
Les décalages a gauche et a droite donnent tous deux £, = p < ?k

La suite £, est donc une suite d’entiers strictement décroissante. Il existe donc un
rang k, tel que £, < 1. Or, dans 'hypothése ot la boucle ne termine jamais, on
a dy < fi, soit £ > 0. £ étant entier, on ne peut avoir a la fois £, < 1et £, > 0.
Lhypothese de non terminaison est donc fausse : la boucle s’arréte.

. Supposons maintenant que I'on sorte de laboucle while, on a doncla proposition

suivante « trouve==True Vv(d >= f) » qui est vérifiée, on a aussi I'invariant qui est
vérifié. Distinguons de nouveau deux cas :

1. Lorsque t ne contient pas v, la variable t rouve ne peut donc jamais étre mo-
difiée, comme elle est initialisée a False, elle aura donc encore cette valeur
en sortie de boucle, et la fonction renvoie le résultat attendu.

2. Lorsque t contient v, si en sortie de boucle on avait (d >= f), alors on aurait
que t[d: f] estuneliste vide, or I'invariant nous dit que cette liste contient
v, ce qui est absurde, par conséquent trouve ala valeur True.

Dans les deux cas, la valeur de trouve indique bien la présence ou non de v dans
t (c’est la postcondition).

Solution 2

. On peut proposer l'invariant suivant P(k) : « m; = L[p,] = max(L[0: k +1]) » .

Initialisation. P(0) est vraie, puisque m, = L[0] = L[0: 1] d’apres I'initialisation.

Hérédite. Supposons P(k) vraie pour un entier k avec k < n — 1, il y a donc une
itération k + 1, la valeur de i a l'itération k + 1 est i;,; = k + 1, on effectue le test.

® sil[k+1] >= m, alors m; ., = L[k+1] et py,; = k + 1, compte-tenu de 'hy-
pothese de récurrence on a bien m;.,; = max(L[0: k +2]) = L[pr.1],

® etsil[k+1] < my, alors my,; = my et pr,q = Py, etil est clair, compte-tenu
de I'hypothese de récurrence, que m;.,; = max(L[0: k +2]) = L[ps,;]-

Apres la derniere itération (numéro n — 1), on a P(n — 1) c'est a dire m,,_; =
L[p,_;] = max(L[0 : n]), mais L[0:n]=L, donc la valeur p,,_, renvoyée est bien
un indice ot se trouve le maximum de L (la derniére occurrence du maximum a
cause de I'inégalité large dans le test).

. 21) Lafonction :

def tri select(L: list)->None:

""" Réalise le tri par sélection en place de la liste L,
ol L est une liste de nombres """

n = len(L)

#la premiére étape se fait sur la liste en entier: L[:n]

#la deuxieme sur ses n-1 premiers éléments: L[:n-1]

#la derniére sur ses deux premiers éléments: L[:n-2]

for i in range(n-1):
p = pos max(L[:n-i])
Llpl, LIn-i-1] = L[n-i-1], L[pl

2.2) On remarque que sila liste L est de longueur au plus 1, la fonction ne fait rien,
ce qui est attendu. On suppose maintenant que l'on a une liste L. de longueur
nz=2.

La boucle for est exécutée n — 1 fois et se termine forcément. On peut pro-
poser l'invariant suivant pour la boucle P(k) : «la liste L[n-k : n] est triée
dans 'ordre croissant et tous ses éléments sont supérieurs ou égaux a ceux de
laliste L[:n-Kk] ».

Initialisation. P(0) est vraie car L[n:n] est vide (une liste vide est triée).

Hérédite. Supposons P(k) vraie avec k < n—1, ilya donc une itération k + 1,
la valeur de i a I'itération k + 1 est i,; = k, I'élément maximal de L[0:n-k]
est échangé et se retrouve alors a I'indice n —i —1 = n — k — 1, par hypothese
de récurrence cet élément est inférieur ou égal a tous ceux de L[n-k:n] (qui

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

eux sont dans l'ordre croissant), donclaliste L[n-k-1:n] est triée dans 'ordre
croissant, de plus, le plus petit élément de cette liste est L[n-k-1] qui était
I'élément maximal de L[0:n-k], par conséquent les élémentsde L[0:n-k-1]
sont tous inférieurs ou égaux a L[n-k-1] et donc inférieurs ou égaux a tous
ceuxdeL[n-k-1:n], donc P(k + 1) est vraie.

Correction. Alissue del'itération n—1 (derniere itération) I'invariant dit que
lalisteL[n-(n-1):n],cestadireL[1:n], esttriée dans]'ordre croissant, et ses
éléments sont supérieurs ou égaux a ceuxdeL[:n-(n-1)] cestadire L[0:1]
(quine contient que L[0]), par conséquent la liste L est bien triée dans I'ordre
croissant.

Solution 3

1. Pré-condition:«epsilon>0,a < b, f estcontinue, f(a)*f(b) <= Oetilyaune
unique solution sur [a, b] ». L'unicité de la solution est garantie lorsque f est stric-
tement monotone sur [a; b].

by — ay
2k

a donc une suite réelle de limite nulle, il existe un indice k tel que b, — a; <€, la

boucle s’arréte donc.

2. Ona q, = a, by, = b, on montre ensuite par récurrence que b, — a;. = , on

3. Lorsquelaprécondition est remplie, on sait qu’il existe un unique c € [a; b] tel que
f(c) =0.0n propose alors I'invariant P(k) : « fa, = f(ay), a<a,<c<b.<bet
flap) = f(be) <0».

Initialisation. P(0) est vraie (on suppose la précondition vérifiée).

Hérédite.
a + bk

SiP(k) est vraie et s'il y une itération k + 1 : la variable milieu contient

qui est le milieu de I'intervalle [a,; by], le test a deux issues possibles :

® Si fax fm <=0alors f(a;) et f m sont de signes contraires donc f s'annule
entre a; et le milieu (c’est forcément en ¢ par unicité), dans ce cas on by, =
milieu et a;,; = a;, donc fa,,, = fa, = f(a,) = f(ar,), a < ag,y < ¢ <
by s bet f(agyy) x f(bry) <O.

® Sifaxfm > 0alors f(a,) et f m sont de méme signe, donc par hypothése de
récurrence fm et f(b,) sont de signes contraires, f s'annule entre le milieu
et by (c’est forcément en ¢ par unicité), dans ce cas on by,; = by, a,, =
milieu, et fa,,, = f(milieu) = f(ai.1), a<ap, <c< b, sbetf(ag)x
f(bisr) = f(milieu) x £(B;) <O0.

Dans tous les cas P(k + 1) est vérifiée, ce qui achéve la récurrence.

Correction. Soit 7 le numéro de la derniére itération, P(n) est vraie, donc a,, <
¢ < b, et puisqu’il n’y a pas d’itération n+1, ona b,, — a,, < 2¢, ce qui entraine que

: a,+b,) N o el s ol
la distance entre c et — (qui est le résultat renvoyé) est inférieure ou égale a
€.

4. Version récursive :
def dichoRec(f: Callable, a:
— float)->float:

""" Calcule une valeur approchée a epsilon prés de l'unique
solution de f(x)=0 dans l'intervalle [a;b],
pré-condition : epsilon>0, a<b, f continue, |
— f(a)*f(b)<=0,

unique solution
if b-a <= 2*epsilon:
return (a+b)/2

else:
milieu = (a+b)/2
if f(a)*f(milieu) <= 0:

return dichoRec(f,a,milieu,epsilon)
else:
return dichoRec(f,milieu,b,epsilon)

float, b: float, epsilon: \

Solution 4

1. Lafonction:
def A(m: int, n:int)->int
""" Renvoie la valeur de A(m,n) (fonction d'Ackermann)
m et n sont des naturels (pré-condition) """
if m ==
return n+1
elif n ==
return A(m-1,1)
else:
return A(m-1,A(m,n-1))
>>> A(3, 1)
13

Essayez de faire grandir les parameétres; vous verrez que l'on atteint tres vite la
taille limite de la pile de récursivité.

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

. . n-2

) . eN.T 5) n(n-1)

2. On montre pour tout m, P(m) : « Vn € N, 'appel a A(m, n) se termine et renvoie Coneitens (1) = 2 + Z (n—i-1)=2+
un naturel » . i=0

Lalgorithme est de complexité asymptotique O (n?).
Initialisation. C’est vrai au rang m = 0, d’apreés le cas terminal.

Hérédite. Supposons P(m) pourun entier 72, on montre alors P(m+1) en faisant

! Solution 7
une recurrence sur ri.

. . 1.
® Pour n =0, A(m + 1,0) se termine et renvoie un naturel. n—6 i+d -6
® Supposons pour un entier n que A(m + 1, n) se termine et renvoie un natu- Cn)=)) 2=2) (i+4-(i-5)+1)=20(n-10)
rel, alors pour calculer A(m + 1, n+ 1), il faut calculer A(m,A(m+1,n)), orle 1=5j=1-5 =3

nombre p = A(m + 1, n) est calculable et c’est un naturel (hypotheése de ré- d'oli une complexité asymptotique O ().

currence sur 1), et donc A(m, p) se termine et renvoie un naturel (hypothése 5

€ . + i. n-1li-1j-1 n-1i-1 n-1;(;_ _ _
de récurrence sur m). Donc P(m + 1) est vrai =5 JZZ:ZZ SISy i(i—1) _ n(n-1)(n-2)
Ainsi, par principe de récurrence (sur m), P(m) est vraie pour tout m, d’ot1 le ré- i=0 j=0k=0 i=0 j=0 i 2 3
sultat. d’ot une complexité asymptotique O (n*).
Solution 5 Fonction IndiceMaxListe(L). Solution 8
def IndiceMaxListe(L:list)->int :
nun calcule le plus petit indice de 1'élément maximal 1. Lavariable N est divisée par 2 a chaque passage dans la boucle, donc, p + 1 fois et
d'une la liste L de flottants """ donc X est multiplié avec lui méme p + 1 fois, mais il y a aussi une autre multipli-

1g = len(L) cation quand N = 1 (R=R*X), ce qui fait p + 2 multiplications en tout. La méthode
maxi = L[0] naive impose quant a elle 2” — 1 multiplications!
idx = 0 .
for i in range(lg) : 2. OnaN;,,; = {jJ etN, = n,donc2? <N, < 2P*1 on en déduit par récurrence sur

if L[1] > maxi:

i que 277" < N; < 2P~ (faite dans le cours) puis que N,.1 = 0 et donc comme
maxi = L[i]

dans la question précédente, le nombre d’itérations est p + 1, a chaque itération

idx =1 on a 1 ou 2 multiplications, donc p + 1 < C(n) <2p +2 ou p = |log,(n)|, et donc
return idx llog,(n) +1 < C(n) < 2log,(n) +2]
Sionnote nlalongueur delaliste, alors, I'algorithme est de complexité asymptotique 3 34) Faisons une récurrence sur k.
O (n).
Initialisation. La formule est vraie au rang k = 1.

Solution 6 Notons 7 la longueur de la liste. Il y a n — 1 passages dans la boucle Hérédité. Supposons la vraie au rang k et soit n = 2P1 + .- + 2Pk+1 gavec 0 <
en i et pour chaque i € [0,n — 2], n — i — 1 passages dans la boucle en j. A chaque Py <+ < P+ des entiers.
passage dans cette boucle en j, il y a au plus deux opérations élémentaires (un test
et une affectation) et au mieux une seule opération élémentaire (seulement un test). ® Nva d'abord étre divisé par 2, p; fois, ce qui va donner p, fois le produit
On obtient donc : X*X.

n=2 ® Onaalors N = 1+2P27P1 ... 4 2Pk17P1 qui est impair, et on va alors avoir

Cpire(n) =2+ i;) 2(n-i-1)=2+n(n-1) deux multiplications supplémentaires (X = X * X et R = R * X).

ITC © 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

® On obtient alors N = 2P27P11 4 ... 4 2Pkni=P1=1 Par hypothese de ré- 3. def Fibo3(a:float,b:float,n:int)->float:
currence, il y restera p;.,; — p; — 1 + k + 1 produits, ce qui fait en tout : e
P1+2+pa—pPi—1+k+1=p, +k+2:cestlaformuleaurang k + 1. Détermine le terme F {n} d'une suite de Fibonacci ayant |
— pour a pour terme d'indice O et b pour terme d'indice 1
3.2) D’'une part, on remarque qu’il y a k — 1 entiers distincts non nuls p,, ..., p;
(on ne compte pas p, car on peut avoir p, = 0) dans l'intervalle [0, p;.] donc Parameters

pzEll e

a : float
D’autre part, on a py = |log,(n)|, d'ot 'encadrement p;, <log,(n) < p; +1.11 2 5 e
enrésulte : n : int
log,(n)<pir+1=sp.+k+1=<2p,.+2=<2log,(n)+2
&(n) <pr+1l=p Pr 8(n) I
=C(m
La borne de droite peut étre atteinte, lorsque . = 1 +2 + 2% + --- + 2%, float

la valeur du réel F {n}

Solution 9 o
1. def Fibol(n:int)->int : if n ==
U, v=o0,1 return a
for _ in range(n): else:
U, V=V, U-+V return Fibo3(b, a+b, n-1)
return U En appelant Fibo3(0,1,n), on obtient le terme F,, de la suite initiale de FiBo-
NAccl. En effet, on montrerait par récurrence double, que pour toutn = 1, F,, =
On trouve C(n) =2+ n x3 =|0(n)]| G,,_; ou (G,,) est la suite définie par :
2, def Fibo2(n:int)->int: Go=b, G,=a+b, VneN, G,,,=G,+G,,,.
if n == 0: On a alors une nouvelle fonction, qui est de complexité bien meilleure. Puisqu’'on
return 0 trouve C(0) = 1 (1 test), et C(n) = C(n—1)+2 (untest et une addition) d'ot1 C(n) =
elif n == 1: 2n+1:.
return 1
else:

return Fibo2(n-1) + Fibo2(n-2)

On trouve C(0) = 1 (un test), C(1) = 2 (2 tests) et :

Vnz2, Cn)=2+C(n-1)+C(n-2)+1=C(n-1)+C(n-2)+3,
en posant u, = C(n)+3,lasuite u est une suite de FIBONAccCI avec u, =4 etu; =5,
on en déduit 'expression de u,,, puis :

con=[eeag)[2] o)) o[

2 2

On obtient donc une complexité exponentielle!

	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:

