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TP (S2) 2 Preuves & Complexité

1 Preuve d’un programme . . . . . . . .

2 Complexité d’un algorithme . . . .

Objectifs
• Savoir prouver la terminaison d’une

boucle.
• Savoir prouver un programme simple

en utilisant un invariant de boucle.
• Savoir calculer la complexité tempo-

relle et/ou spatiale d’un programme.

1 PREUVE D’UN PROGRAMME

Exercice 1 Terminaison de la recherche dichotomique [Sol 1] On rappelle la
fonction de recherche dichotomique d’un élément dans une liste triée :
def present_dicho(t:[int], v:int)->bool:

'''

�Teste le présence de l'entier 'v' dans la liste 't', par méthode \

↪ dichotomique

�'''

    d = 0

    f = len(t)

    trouve = False

    # précondition (P) : t est une liste triée par ordre \

↪ croissant

    while not trouve and d < f:

        m = (d + f) // 2

        if t[m] == v:

            trouve = True

        elif t[m] < v:

            d = m + 1 #Décalage à droite

        else:

            f = m #Decalage à gauche

    # postcondition (Q) : trouve vaut True si 'v' appartient à \

↪ 't', False sinon.

    return trouve

Notons 𝑑𝑘 et 𝑓𝑘 le contenu des variables d et f à la fin de l’itération 𝑘, et ℓ𝑘 de la
tranche 𝑡[𝑑𝑘 ∶ 𝑓𝑘]. On a la relation 𝑓𝑘 = 𝑑𝑘 + ℓ𝑘. On suppose par l’absurde que la
boucle ne termine jamais.

1. Montrer que ℓ𝑘 est au moins divisé par deux pour chaque tour de boucle. En dé-
duire que l’algorithme termine.

2. On a prouvé dans le TP précédent l’invariant suivant : 𝒫(𝑘) «(𝑣 ∉ 𝑡) ou (𝑣 ∈
𝑡[𝑑𝑘 ∶ 𝑓𝑘])». En déduire que l’algorithme est correct.

Exercice 2 Le tri par sélection [Sol 2] Pour mettre en oeuvre ce tri nous aurons
besoin de la fonction suivante :
def pos_max(L: list)->int:

    """ Renvoie l'indice de la dernière occurrence du maximum de \

↪ L

        où L est une liste de nombres supposée non vide """

    m, p, n = L[0], 0, len(L) #initialisation avec le premier \

↪ élément

    for i in range(1, n): # on parcourt les éléments suivants

        if L[i] >= m: # si on trouve un élément supérieur ou \

↪ égal

            m, p = L[i], i # on met à jour nos variables

    return p
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1. Proposer un invariant pour la boucle for et faire la preuve de cette fonction.

2. Le principe de ce tri est le suivant :

• Première étape : on trouve le plus grand élément de L et on l’échange avec
le dernier élément de L.

• Deuxième étape : on trouve le plus grand élément parmi les 𝑛−1 premiers
éléments de L et on l’échange avec l’avant-dernier élément de L.

• etc.

2.1) Écrire la fonction tri_select(L: list)->None qui réalise à l’aide de la fonc-
tion précédente le tri par sélection en place de la liste L.

2.2) Faire la preuve de cette fonction.

Exercice 3 Méthode dichotomique continue [Sol 3] On considère la fonction
suivante qui met en œuvre la méthode dichotomique pour la résolution à ε près
d’une équation 𝑓(𝑥) = 0 possédant une solution unique dans un intervalle [𝑎;𝑏] :
def dicho(f: Callable, a: float, b: float, epsilon: \

↪ float)->float:

    """ Calcule une valeur approchée à epsilon près de l'unique

        solution de f(x)=0 dans l'intervalle [a;b],

        pré-condition : ... """

    fa = f(a)

    while b-a > 2*epsilon:

        milieu = (a+b)/2

        fm = f(milieu)

        if fa*fm <= 0:

            b = milieu

        else:

            a = milieu

            fa = fm

    return (a+b)/2

1. Compléter la pré-condition dans la docstring et commenter le code.

2. Établir la terminaison de la boucle while.

3. Proposer un invariant de boucle et faire la preuve.

4. Proposer une version récursive de cette fonction.

Exercice 4 Fonction d’ACKERMANN [Sol 4] Cette fonction est définie sur ℕ2 ré-
cursivement comme ceci :

∀(𝑚,𝑛) ∈ ℕ2, A(𝑚,𝑛) =
⎧⎪⎪
⎨⎪⎪
⎩

𝑛+1 si𝑚=0,
A(𝑚−1,1) si𝑚>0 et 𝑛 = 0,
A(𝑚−1,A(𝑚,𝑛−1)) si𝑚>0 et 𝑛 > 0.

1. Écrire la fonction A(m: int, n:int)->int qui renvoie la valeur de A(𝑚,𝑛), et la
tester.

2. Montrer que pour tout (𝑚,𝑛) ∈ ℕ2, l’appel à A(m,n) se termine et renvoie un na-
turel.

2 COMPLEXITÉ D’UN ALGORITHME

Exercice 5 Recherche d’un maximum [Sol 5] Écrire une fonction
IndiceMaxListe(L:list)->int qui renvoie le plus petit indice de l’élément
maximal d’une la liste L de flottants. Quelle est sa complexité temporelle?

Exercice 6 Fonctionmystère [Sol 6] On considère la fonction suivante :
def Mystere(L:list)->bool :

    lg = len(L)

    doublon = False

    for i in range(lg-1) :

        for j in range(i+1,lg):

            if L[j] == L[i] :

                doublon = True

    return doublon

Calculer sa complexité.

Exercice 7 Calculs de complexités [Sol 7] Évaluer la complexité exacte de cha-
cune des fonctions suivantes puis donner sa complexité asymptotique.
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1. for i in range(5, n-5):

    for j in range(i-5, i+5):

        x += 1

2. for i in range(n):

    for j in range(i):

        for k in range(j):

            x += 1

Exercice 8 Complexité de l’exponentiation rapide [Sol 8] On reprend l’algo-
rithme d’exponentiation rapide pour calculer 𝑥𝑛 qui a été présenté dans le cours :
def expR(x: float, n: int)-> float :

    """Renvoie x^n pour x réel et n entier naturel."""

    X = x

    N = n

    R = 1

    while N != 0 :

        if N%2 == 0 :

            N = N//2

        else :

            R = R*X

            N = (N-1)//2

        X = X*X

    return R

1. Compter le nombre de multiplications effectuées (X∗X et R∗X) dans l’algo-
rithme d’exponentiation rapide lorsque𝑛 = 2𝑝 (on néglige le temps d’exécution
des autres opérations élémentaires devant celui de la multiplication).

2. Lorsque 2𝑝 ⩽ 𝑛 < 2𝑝+1, donner un encadrement du nombre de multiplications
puis en déduire la complexité asymptotique.

3. [Meilleur encadrement] On peut obtenir un meilleur encadrement en dé-
composant 𝑛 en binaire. Plus précisément, on l’écrit sous la forme :
𝑛 = 2𝑝1+⋯+2𝑝𝑘 , avec : 0 ⩽ 𝑝1 <⋯<𝑝𝑘 entiers tels que 2𝑝𝑘 ⩽𝑛 < 2𝑝𝑘+1.
3.1) Montrer, par récurrence sur 𝑘, que le nombre de multiplications est 𝑝𝑘+

𝑘+1.
3.2) En déduire que le nombre C(𝑛) de multiplications vérifie :

log2(𝑛) < C(𝑛) ⩽ 2 log2(𝑛)+2. (On pourra remarquer en justifiant que 𝑘 ⩽𝑝𝑘+1)

Exercice 9 Suite de FIBONACCI [Sol 9] On s’intéresse dans cet exercice à la suite
de FIBONACCI dont on rappelle la définition :

F0 = 0, F1 = 1, et : ∀𝑛 ∈ℕ, F𝑛+2 = F𝑛+1+F𝑛.

1. Écrire une fonction itérative Fibo1 à qui on fournit un entier naturel 𝑛 et qui
renvoie F𝑛. Calculer la complexité temporelle de cette fonction.

2. Proposer une fonction récursive « naturelle » Fibo2 qui renvoie le même résul-
tat que Fibo1 et calculer sa complexité temporelle.

3. On propose la fonction récursive suivante :
def Fibo3(a, b, n):

    if n == 0:

        return a

    else:

        return Fibo3(b, a+b, n-1)

Déterminer la signature et la docstring de cette fonction, et expliquer comment
on pourrait l’utiliser pour calculer F𝑛. Calculer sa complexité.
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SOLUTIONS DES EXERCICES

Solution 1

1. Discutons suivant la parité de ℓ𝑘 :

• Si ℓ𝑘 est pair, notons ℓ𝑘 = 2𝑝 avec 𝑝 entier,ce qui donne 𝑓𝑘 = 𝑑𝑘+2𝑝.

L’étape 𝑘+1 construit l’indice milieu𝑚𝑘+1 = ⌊
𝑑𝑘+𝑓𝑘

2
⌋ = 𝑑𝑘+𝑝.

En cas de décalage à gauche, on pose 𝑑𝑘+1 = 𝑑𝑘 et 𝑓𝑘+1 =𝑚𝑘+1 = 𝑑𝑘+𝑝 donc
ℓ𝑘+1 = 𝑓𝑘+1−𝑑𝑘+1 =𝑝 = ℓ𝑘/2.
En cas de décalage à droite, on pose 𝑑𝑘+1 =𝑚𝑘+1+1 = 𝑑𝑘+𝑝+1 et 𝑓𝑘+1 = 𝑓𝑘
donc ℓ𝑘+1 = 𝑓𝑘+1−𝑑𝑘+1 =𝑝−1 < ℓ𝑘/2.

Dans ces deux cas, on a bien ℓ𝑘+1 ⩽
ℓ𝑘
2

.
• Si ℓ𝑘 est impair, notons ℓ𝑘 = 2𝑝+1 avec 𝑝 entier, donc 𝑓𝑘 = 𝑑𝑘+2𝑝+1.

L’indice milieu est encore𝑚𝑘+1 = ⌊
𝑑𝑘+𝑓𝑘

2
⌋ = 𝑑𝑘+𝑝.

Les décalages à gauche et à droite donnent tous deux ℓ𝑘+1 =𝑝 ⩽
ℓ𝑘
2

.

La suite ℓ𝑘 est donc une suite d’entiers strictement décroissante. Il existe donc un
rang 𝑘0 tel que ℓ𝑘0 < 1. Or, dans l’hypothèse où la boucle ne termine jamais, on
a 𝑑𝑘 < 𝑓𝑘, soit ℓ𝑘 > 0. ℓ𝑘 étant entier, on ne peut avoir à la fois ℓ𝑘0 < 1 et ℓ𝑘0 > 0.
L’hypothèse de non terminaison est donc fausse : la boucle s’arrête.

2. Supposonsmaintenant que l’on sorte de la boucle while, on adonc la proposition
suivante «trouve==True∨(𝑑 >= 𝑓) » qui est vérifiée, on a aussi l’invariant qui est
vérifié. Distinguons de nouveau deux cas :

1. Lorsque tne contient pas v, la variable trouvene peut donc jamais êtremo-
difiée, comme elle est initialisée à False, elle aura donc encore cette valeur
en sortie de boucle, et la fonction renvoie le résultat attendu.

2. Lorsque t contient v, si en sortie de boucle on avait (d >= f), alors on aurait
que t[d: f] est une liste vide, or l’invariant nous dit que cette liste contient
v, ce qui est absurde, par conséquent trouve a la valeur True.

Dans les deux cas, la valeur de trouve indique bien la présence ou non de v dans
t (c’est la postcondition).

Solution 2

1. On peut proposer l’invariant suivant P(𝑘) : «𝑚𝑘 = L[𝑝𝑘] =max(L[0 ∶ 𝑘+1]) » .

Initialisation. P(0) est vraie, puisque𝑚0 = L[0] = L[0 ∶ 1] d’après l’initialisation.

Hérédité. Supposons P(𝑘) vraie pour un entier 𝑘 avec 𝑘 < 𝑛−1, il y a donc une
itération 𝑘+1, la valeur de 𝑖 à l’itération 𝑘+1 est 𝑖𝑘+1 =𝑘+1, on effectue le test.

• si L[k+1] >=𝑚𝑘 alors𝑚𝑘+1 = L[k+1] et 𝑝𝑘+1 = 𝑘+1, compte-tenu de l’hy-
pothèse de récurrence on a bien𝑚𝑘+1 =max(L[0 ∶ 𝑘+2]) = L[𝑝𝑘+1],

• et si L[k+1] <𝑚𝑘, alors𝑚𝑘+1 =𝑚𝑘 et 𝑝𝑘+1 = 𝑝𝑘, et il est clair, compte-tenu
de l’hypothèse de récurrence, que𝑚𝑘+1 =max(L[0 ∶ 𝑘+2]) = L[𝑝𝑘+1].

Après la dernière itération (numéro 𝑛 − 1), on a P(𝑛 − 1) c’est à dire 𝑚𝑛−1 =
L[𝑝𝑛−1] = max(L[0 ∶ 𝑛]), mais L[0:n]=L, donc la valeur 𝑝𝑛−1 renvoyée est bien
un indice où se trouve le maximum de L (la dernière occurrence du maximum à
cause de l’inégalité large dans le test).

2. 2.1) La fonction :
def tri_select(L: list)->None:

    """ Réalise le tri par sélection en place de la liste L,

        où L est une liste de nombres """

    n = len(L)

    #la première étape se fait sur la liste en entier: L[:n]

    #la deuxième sur ses n-1 premiers éléments: L[:n-1]

    #la dernière sur ses deux premiers éléments: L[:n-2]

    for i in range(n-1):

        p = pos_max(L[:n-i])

        L[p], L[n-i-1] = L[n-i-1], L[p]

2.2) On remarque que si la liste L est de longueur au plus 1, la fonction ne fait rien,
ce qui est attendu. On suppose maintenant que l’on a une liste L de longueur
𝑛 ⩾ 2.

La boucle for est exécutée 𝑛−1 fois et se termine forcément. On peut pro-
poser l’invariant suivant pour la boucle P(𝑘) : « la liste L[n-k : n] est triée
dans l’ordre croissant et tous ses éléments sont supérieurs ou égaux à ceux de
la liste L[:n-k] » .

Initialisation. P(0) est vraie car L[n:n] est vide (une liste vide est triée).

Hérédité. Supposons P(𝑘) vraie avec𝑘 < 𝑛−1, il y a donc une itération𝑘+1,
la valeur de 𝑖 à l’itération 𝑘+1 est 𝑖𝑘+1 = 𝑘, l’élément maximal de L[0:n-k]

est échangé et se retrouve alors à l’indice 𝑛−𝑖−1 = 𝑛−𝑘−1, par hypothèse
de récurrence cet élément est inférieur ou égal à tous ceux de L[n-k:n] (qui
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eux sont dans l’ordre croissant), donc la liste L[n-k-1:n] est triée dans l’ordre
croissant, de plus, le plus petit élément de cette liste est L[n-k-1] qui était
l’élément maximal de L[0:n-k], par conséquent les éléments de L[0:n-k-1]
sont tous inférieurs ou égaux à L[n-k-1] et donc inférieurs ou égaux à tous
ceux de L[n-k-1:n], donc P(𝑘+1) est vraie.

Correction. À l’issue de l’itération𝑛−1 (dernière itération) l’invariant dit que
la liste L[n-(n-1):n], c’est à dire L[1:n], est triée dans l’ordre croissant, et ses
éléments sont supérieurs ou égaux à ceux de L[:n-(n-1)] c’est à dire L[0:1]
(qui ne contient que L[0]), par conséquent la liste L est bien triée dans l’ordre
croissant.

Solution 3

1. Pré-condition : «epsilon > 0, a < b, 𝑓 est continue, f(a)*f(b) <= 0 et il y a une
unique solution sur [𝑎,𝑏] ». L’unicité de la solution est garantie lorsque 𝑓 est stric-
tement monotone sur [𝑎;𝑏].

2. On a 𝑎0 = 𝑎, 𝑏0 = 𝑏, on montre ensuite par récurrence que 𝑏𝑘 −𝑎𝑘 =
𝑏0−𝑎0
2𝑘

, on
a donc une suite réelle de limite nulle, il existe un indice 𝑘 tel que 𝑏𝑘 −𝑎𝑘 ⩽ ε, la
boucle s’arrête donc.

3. Lorsque lapréconditionest remplie, on sait qu’il existeununique𝑐 ∈ [𝑎;𝑏] tel que
𝑓(𝑐) = 0. On propose alors l’invariant P(𝑘) : « 𝑓𝑎𝑘 = 𝑓(𝑎𝑘), 𝑎 ⩽ 𝑎𝑘 ⩽ 𝑐 ⩽ 𝑏𝑘 ⩽ 𝑏 et
𝑓(𝑎𝑘)×𝑓(𝑏𝑘) ⩽ 0 » .

Initialisation. P(0) est vraie (on suppose la précondition vérifiée).

Hérédité. Si P(𝑘) est vraie et s’il y une itération𝑘+1 : la variable milieu contient
𝑎𝑘+𝑏𝑘

2
qui est le milieu de l’intervalle [𝑎𝑘;𝑏𝑘], le test a deux issues possibles :

• Si 𝑓𝑎∗𝑓𝑚<= 0 alors 𝑓(𝑎𝑘) et 𝑓𝑚 sont de signes contraires donc 𝑓 s’annule
entre 𝑎𝑘 et le milieu (c’est forcément en 𝑐 par unicité), dans ce cas on 𝑏𝑘+1 =
milieu et 𝑎𝑘+1 = 𝑎𝑘, donc 𝑓𝑎𝑘+1 = 𝑓𝑎𝑘 = 𝑓(𝑎𝑘) = 𝑓(𝑎𝑘+1), 𝑎 ⩽ 𝑎𝑘+1 ⩽ 𝑐 ⩽
𝑏𝑘+1 ⩽ 𝑏 et 𝑓(𝑎𝑘+1)×𝑓(𝑏𝑘+1) ⩽ 0.

• Si𝑓𝑎∗𝑓𝑚> 0 alors𝑓(𝑎𝑘) et𝑓𝑚 sont demême signe, donc par hypothèse de
récurrence 𝑓𝑚 et 𝑓(𝑏𝑘) sont de signes contraires, 𝑓 s’annule entre le milieu
et 𝑏𝑘 (c’est forcément en 𝑐 par unicité), dans ce cas on 𝑏𝑘+1 = 𝑏𝑘, 𝑎𝑘+1 =
milieu, et 𝑓𝑎𝑘+1 = 𝑓(milieu) = 𝑓(𝑎𝑘+1), 𝑎 ⩽ 𝑎𝑘+1 ⩽ 𝑐 ⩽ 𝑏𝑘+1 ⩽ 𝑏 et 𝑓(𝑎𝑘+1)×
𝑓(𝑏𝑘+1) = 𝑓(milieu)×𝑓(𝑏𝑘) ⩽ 0.

Dans tous les cas P(𝑘+1) est vérifiée, ce qui achève la récurrence.

Correction. Soit 𝑛 le numéro de la dernière itération, P(𝑛) est vraie, donc 𝑎𝑛 ⩽
𝑐 ⩽ 𝑏𝑛 et puisqu’il n’y a pas d’itération𝑛+1, on a 𝑏𝑛−𝑎𝑛 ⩽ 2ε, ce qui entraîne que

la distance entre 𝑐 et
𝑎𝑛+𝑏𝑛

2
(qui est le résultat renvoyé) est inférieure ou égale à

ε.

4. Version récursive :
def dichoRec(f: Callable, a: float, b: float, epsilon: \

↪ float)->float:

    """ Calcule une valeur approchée à epsilon près de l'unique

        solution de f(x)=0 dans l'intervalle [a;b],

        pré-condition : epsilon>0, a<b, f continue, \

↪ f(a)*f(b)<=0,

                        unique solution """

    if b-a <= 2*epsilon:

        return (a+b)/2

    else:

        milieu = (a+b)/2

        if f(a)*f(milieu) <= 0:

            return dichoRec(f,a,milieu,epsilon)

        else:

            return dichoRec(f,milieu,b,epsilon)

Solution 4
1. La fonction :

def A(m: int, n:int)->int :

    """ Renvoie la valeur de A(m,n) (fonction d'Ackermann)

        m et n sont des naturels (pré-condition) """

    if m == 0:

        return n+1

    elif n == 0:

        return A(m-1,1)

    else:

        return A(m-1,A(m,n-1))

>>> A(3, 1)

13

Essayez de faire grandir les paramètres ; vous verrez que l’on atteint très vite la
taille limite de la pile de récursivité.
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2. On montre pour tout𝑚, P(𝑚) : «∀𝑛 ∈ ℕ, l’appel à A(𝑚,𝑛) se termine et renvoie
un naturel » .

Initialisation. C’est vrai au rang𝑚=0, d’après le cas terminal.

Hérédité. SupposonsP(𝑚)pour un entier𝑚, onmontre alorsP(𝑚+1) en faisant
une récurrence sur 𝑛.

• Pour 𝑛 = 0, A(𝑚+1,0) se termine et renvoie un naturel.
• Supposons pour un entier 𝑛 que A(𝑚+1,𝑛) se termine et renvoie un natu-

rel, alors pour calculerA(𝑚+1,𝑛+1), il faut calculerA(𝑚,A(𝑚+1,𝑛)), or le
nombre 𝑝 = A(𝑚+1,𝑛) est calculable et c’est un naturel (hypothèse de ré-
currence sur𝑛), et doncA(𝑚,𝑝) se termine et renvoie unnaturel (hypothèse
de récurrence sur𝑚). Donc P(𝑚+1) est vrai.

Ainsi, par principe de récurrence (sur𝑚), P(𝑚) est vraie pour tout𝑚, d’où le ré-
sultat.

Solution 5 Fonction IndiceMaxListe(L).
def IndiceMaxListe(L:list)->int :

    """ Calcule le plus petit indice de l'élément maximal

        d'une la liste L de flottants """

    lg = len(L)

    maxi = L[0]

    idx = 0

    for i in range(lg) :

        if L[i] > maxi:

            maxi = L[i]

            idx = i

    return idx

Si onnote𝑛 la longueurde la liste, alors, l’algorithmeest de complexité asymptotique
O(𝑛).

Solution 6 Notons 𝑛 la longueur de la liste. Il y a 𝑛− 1 passages dans la boucle
en 𝑖 et pour chaque 𝑖 ∈ J0,𝑛 − 2K, 𝑛− 𝑖 − 1 passages dans la boucle en 𝑗. À chaque
passage dans cette boucle en 𝑗, il y a au plus deux opérations élémentaires (un test
et une affectation) et aumieux une seule opération élémentaire (seulement un test).
On obtient donc :

Cpire(𝑛) = 2+
𝑛−2
∑
𝑖=0

2(𝑛−𝑖−1) = 2+𝑛(𝑛−1)

Cmeilleur(𝑛) = 2+
𝑛−2
∑
𝑖=0

(𝑛−𝑖−1) = 2+
𝑛(𝑛−1)

2
L’algorithme est de complexité asymptotiqueO (𝑛2).

Solution 7

1.

C(𝑛) =
𝑛−6
∑
𝑖=5

𝑖+4
∑

𝑗=𝑖−5
2 = 2

𝑛−6
∑
𝑖=5

(𝑖 +4−(𝑖−5)+1) = 20(𝑛−10)

d’où une complexité asymptotiqueO(𝑛).

2.

C(𝑛) =
𝑛−1
∑
𝑖=0

𝑖−1
∑
𝑗=0

𝑗−1
∑
𝑘=0

2 = 2
𝑛−1
∑
𝑖=0

𝑖−1
∑
𝑗=0

𝑗 = 2
𝑛−1
∑
𝑖=0

𝑖(𝑖 −1)
2

=
𝑛(𝑛−1)(𝑛−2)

3
d’où une complexité asymptotiqueO (𝑛3).

Solution 8

1. La variableN est divisée par 2 à chaque passage dans la boucle, donc, 𝑝+1 fois et
donc X est multiplié avec lui même 𝑝+1 fois, mais il y a aussi une autre multipli-
cation quandN= 1 (R=R*X), ce qui fait 𝑝+2multiplications en tout. La méthode
naïve impose quant à elle 2𝑝−1multiplications !

2. On aN𝑖+1 = ⌊
N𝑖

2
⌋ etN0 =𝑛, donc 2𝑝 ⩽N0 < 2𝑝+1, on en déduit par récurrence sur

𝑖 que 2𝑝−𝑖 ⩽ N𝑖 < 2𝑝−𝑖+1 (faite dans le cours) puis que N𝑝+1 = 0 et donc comme
dans la question précédente, le nombre d’itérations est 𝑝+1, à chaque itération
on a 1 ou 2multiplications, donc 𝑝+1 ⩽ C(𝑛) ⩽ 2𝑝+2 où 𝑝 = ⌊log2(𝑛)⌋, et donc
log2(𝑛)+1 ⩽ C(𝑛) ⩽ 2 log2(𝑛)+2 .

3. 3.1) Faisons une récurrence sur 𝑘.

Initialisation. La formule est vraie au rang 𝑘 = 1.

Hérédité. Supposons la vraie au rang 𝑘 et soit 𝑛 = 2𝑝1 +⋯+2𝑝𝑘+1 avec 0 ⩽
𝑝1 <⋯<𝑝𝑘+1 des entiers.

• N va d’abord être divisé par 2, 𝑝1 fois, ce qui va donner 𝑝1 fois le produit
X∗X.

• On a alorsN= 1+2𝑝2−𝑝1 +⋯+2𝑝𝑘+1−𝑝1 qui est impair, et on va alors avoir
deux multiplications supplémentaires (X= X∗X et R= R∗X).
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6 • On obtient alors N = 2𝑝2−𝑝1−1 +⋯ + 2𝑝𝑘+1−𝑝1−1. Par hypothèse de ré-

currence, il y restera 𝑝𝑘+1 −𝑝1 − 1+𝑘 + 1 produits, ce qui fait en tout :
𝑝1+2+𝑝𝑘+1−𝑝1−1+𝑘+1 = 𝑝𝑘+1+𝑘+2 : c’est la formule au rang 𝑘+1.

3.2) D’une part, on remarque qu’il y a 𝑘 − 1 entiers distincts non nuls 𝑝2,…,𝑝𝑘
(on ne compte pas 𝑝1 car on peut avoir 𝑝1 = 0) dans l’intervalle [0,𝑝𝑘] donc
𝑝𝑘 ≥𝑘−1 .

D’autre part, on a 𝑝𝑘 = ⌊log2(𝑛)⌋, d’où l’encadrement 𝑝𝑘 ≤ log2(𝑛) < 𝑝𝑘+1. Il
en résulte :

log2(𝑛) < 𝑝𝑘+1 ≤ 𝑝𝑘+𝑘+1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=C(𝑛)

≤ 2𝑝𝑘+2 ≤ 2 log2(𝑛)+2

La borne de droite peut être atteinte, lorsque 𝑛 = 1+2+22+⋯+2𝑘.

Solution 9
1. def Fibo1(n:int)->int :

    U, V = 0, 1

    for _ in range(n):

        U, V = V, U + V

    return U

On trouve C(𝑛) = 2+𝑛×3 = O(𝑛) .
2. def Fibo2(n:int)->int:

    if n == 0:

        return 0

    elif n == 1:

        return 1

    else:

        return Fibo2(n-1) + Fibo2(n-2)

On trouve C(0) = 1 (un test), C(1) = 2 (2 tests) et :
∀𝑛 ⩾ 2, C(𝑛) = 2+C(𝑛−1)+C(𝑛−2)+1 = C(𝑛−1)+C(𝑛−2)+3,

enposant𝑢𝑛 =C(𝑛)+3, la suite𝑢 est une suite deFIBONACCI avec𝑢0 = 4 et𝑢1 = 5,
on en déduit l’expression de 𝑢𝑛, puis :

C(𝑛) = (2+3
√5
5
)(
1+√5

2
)
𝑛

+(2−3
√5
5
)(
1−√5

2
)
𝑛

−3 = O((
1+√5

2
)
𝑛

)

On obtient donc une complexité exponentielle !

3. def Fibo3(a:float,b:float,n:int)->float:

    """

    Détermine le terme F_{n} d'une suite de Fibonacci ayant \

↪ pour a pour terme d'indice 0 et b pour terme d'indice 1

    Parameters

    ----------

    a : float

    b : float

    n : int

    Returns

    -------

    float

        la valeur du réel F_{n}

    """

    if n == 0:

        return a

    else:

        return Fibo3(b, a+b, n-1)

En appelant Fibo3(0,1,n), on obtient le terme F𝑛 de la suite initiale de FIBO-
NACCI. En effet, on montrerait par récurrence double, que pour tout 𝑛 ⩾ 1, F𝑛 =
G𝑛−1 où (G𝑛) est la suite définie par :

G0 = 𝑏, G1 = 𝑎+𝑏, ∀𝑛 ∈ ℕ, G𝑛+2 =G𝑛+G𝑛+1.
On a alors une nouvelle fonction, qui est de complexité bien meilleure. Puisqu’on
trouveC(0) = 1 (1 test), etC(𝑛) = C(𝑛−1)+2 (un test et une addition) d’oùC(𝑛) =
2𝑛+1 = O(𝑛) .
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