ITC € 2025-2026

Bonnes pratiques de
programmation

Chapitre (S2)1

Objectifs
® Savoir définir les spécifications (signa-
ture, docstring).
® Savoir annoter un bloc d’instruc-
tions (précondition, postcondition,
invariant).
® Savoir mettre au point un jeu de tests.

1 Fonctions et effet de bord......
2 Spécifications

Annotations d’un bloc d’ins-
rUCHiONS. e vvererernenenenannnns

4 JeuxdetestS....cocevveeinennnnn

n FONCTIONS ET EFFET DE BORD

n Copie de variables mutables et non mutables

Exercice 1 [sol 11 On considere le script suivant qui met en jeu une copie d'un
entier ou d'une liste :

X =0

y = X

x =1

L =[0]
Lp = L
L[O] = 1

Pouvez-vous prévoir les valeurs associée aux variables y et Lp aprés exécution du
script?

Pour comprendre la différence de traitement de ces instructions qui semblent si-
milaires, il faut préciser la gestion mémoire du contenu des variables dans le lan-
gage Python. Cette gestion est différente selon que la variable est non mutable (en-
tiers, flottants,chaine de caractére par exemple) ou mutable (listes, dictionnaires,
tableaux par exemple).

/M/ Lycée Michel MONTAIGNE — Bordeaux

Plus précisément, une variable peut étre vue comme une étiquette (un nom) donné
aun emplacement mémoire. Mais le contenu de cet emplacement dépend du carac-
tére mutable ou non de la variable :

® pour une variable non mutable, le nom désigne directement 'adresse mémoire
de la valeur (entier, flottant ou chaine de caractére) associée a la variable,

® pour une variable mutable, le nom désigne un objet particulier, appelé pointeur,
qui contient 'adresse mémoire de I'endroit ou est stockée la valeur associée a la
variable.

On peut alors représenter les deux situations de copie de variable vues dans
I'exemple introductif de la maniere suivante :

Frames Objects Frames Objects
Global frame Global frame list
0
0
y 0 Lp

FIGURE 1 : variable non mutable x FIGURE 2 : variable mutable L

Lors d’'une copie :

® pour un objet non mutable, par exemple pour I'instructiony = x, la variable y
désigne une nouvelle case mémoire contenant la méme valeur que celle de la
variable x et cette valeur est alors dupliquée (elle est présente deux fois dans la
mémoire),

® pour un objet mutable, par exemple pour l'instruction Lp = L, la variable Lp
désigne une nouvelle case mémoire contenant un pointeur désignant lui-méme
le méme emplacement mémoire que celui du pointeur de la variable L. Cette
dernieére valeur n’est alors pas dupliquée (elle n’est présente qu'une fois dans la
mémoire).

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Apres copie et modification des valeurs de x et L[0], on obtient donc la situation
suivante :

Frames Objects Frames Objects

Global frame Gleokal frame list

0
% |1 L 7/»1
y 0 Lp

FIGURE 3 : aprés modification de x FIGURE 4 : apres modification de L

Ceci permet d’expliquer le comportement observé, et cette différence de comporte-
ment peut se généraliser a tous les objets mutables et non mutables.

n Effets de bord sur les fonctions

Le comportement précédent explique aussi la facon dont les fonctions agissent sur
les variables mutables qui sont passées en parametre. Ce comportement porte le
nom deffet de bord (ou side effect en anglais), que 'on peut définir comme suit :

Définition 1| Fonction a effet de bord
En informatique, une fonction est dite a effet de bord si elle modifie un état en de-

hors de son environnement local, c’est-a-dire a une interaction observable avec
le monde extérieur autre que renvoyer une valeur.

Exemple 1 Prenonsl'exemple suivant :

def f(x):
x =1
X =0
f(x)
Apres exécution, on observe :
>>> X
0

>>> L

[1]

def g(L):
L[O] =1

L = [0]

g(L)

Pour comprendre cette différence de comportement, on peut comme précédem- o

ment représenter le contenu des différentes variables au cours de I'exécution du
script précédent :

Frames Objects Frames Objects
Global frame function Global frame function
£(x) g(L)
f g
x |0 L list
/,1‘7 o
£ o
x |0 L /

FIGURE 5 : avant modif. de x par f FIGURE 6 : avant modif. de L par g

Frames Objects Frames Objects
Global frame function Global frame function
£(x) g(L)
f g
x 0 L list
i}
_ 1
T g
x (1 L
Return Return
value Uz value Ve

FIGURE 7 : apres modif. de x par f FIGURE 8 : aprés modif. de L par g

Lors de I'appel des fonctions f ou g, il y a création d’une variable locale (x ou L),
qui n'a d’existence que durant I'exécution de la fonction (le fait que ces variables
aient le méme nom que les variables x et L du programme principal n’est pas gé-
nant car les variables n‘appartiennent en réalité pas au méme espace des noms). On
constate que pour la fonction f, qui agit sur la variable x non mutable, la variable
locale x a dupliqué le contenu de la variable globale x, alors que pour la fonction g,
la variable locale L pointe vers le méme emplacement mémoire que celui la variable
globale L (c’est le méme comportement que lors de la copie de variable, vue précé-
demment). On comprend donc que la modification de x dans la fonction f n’affecte
pas le contenu de la variable globale x, alors que la modification de L dans g affecte
la variable globale L.

Remarque 1 (Cas des tris)
® [Lestris en place sont généralement codés par des fonctions a effet de bord :
elles modifient alors directement la liste passée en argument.
® Les tris non en place renvoient une nouvelle liste, donc ce sont des fonc-
tions sans effet de bord.

Résumé Gestion des variables d’une fonction a effets de bords
Ceci illustre deux aspects fondamentaux pour le comportement des fonctions :

® la facon dont une fonction modifie le contenu d'une variable d’entrée dé-

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

O

pend du caractére mutable ou non de cette variable,
® il est possible de modifier la valeur associée a une variable d’entrée d'une
fonction sans qu'’il soit nécessaire pour la fonction d’avoir une valeur de
retour. Ainsi:
o pour modifier la valeur de la variable x non mutable dans le pro-
gramme principal, il faut exécuter x = f(x),
o pour modifier la valeur de la variable L mutable dans le programme
principal, il suffit d’exécuter g (L),

Cette différence de comportement n'est pas génante en soi a condition d’avoir bien
conscience lors de la conception des fonctions.

m Compléments sur l'affectation : expression vs instruction

Danslelangage Python, I'instruction d’affectation se note =, alors que le test d’égalité
se note ==, et ces deux symboles n'ont pas le méme statut vis a vis du langage. Plus
précisément :

® le symbole = est une instruction du langage, c’est a dire un symbole réservé qui
réalise une action et ne renvoie rien (comme import, for,while, if, else, etc.).
On peut notamment signaler que la commande print(a = 1) n'est pas com-
prise par l'interpréteur, vu que a = 1 ne renvoie rien, et que I'écriture de if a
= 1 provoque également une erreur (SyntaxError) lors de la compilation.

® le symbole ==, comme tout opérateur de test >, >=, <, <=, !=), permet de
construire une expression qui renvoie une valeur booléenne (True ou False).
Ainsi, print(a) renvoie True ou False (a condition que la variable a ait
été définie précédemment).

Cette distinction peut paraitre fastidieuse (et souvent source de confusion pour le
néophyte), mais permet de différencier les deux opérations dans le langage, ce qui
permet d’éviter des confusions susceptibles d’engendrer des erreurs. Ceci n'est pasle
cas dans tous les langages. Par exemple en C, 'opération d’affection est une expres-
sion (et pas une instruction) qui renvoie la valeur que 'on cherche a affecter (a=1
affecte la valeur 1 a a er renvoie 1). Ainsi la syntaxe if a = 1 est acceptée par le
compilateur C car a = 1 renvoie la valeur 1, et en C, une des facons de coder les
valeurs logiques True et False est d'utiliser 0 pour False et tout autre nombre pour
True (cette possibilité existe aussi en Python mais comme onl'avu, if a = 1 ren-
voie SyntaxError en Python).

n SPECIFICATIONS

m Le but : exprimer un besoin

Un programme informatique est en général composé de fonctions, chacune étant
congue pour répondre a un probleme donné, ce probleme pouvant étre issu de do-
maines trés variés (mathématique, physique, industrie, etc.). Par exemple, on peut
vouloir déterminer le plus court chemin entre deux points, résoudre numérique-
ment une équation différentielle, ou bien controler la vitesse d’'un avion en fonction
des parametres de vol.

La spécification est I'explication (en général sous la forme d’une description en lan-
gage courant) du role de la fonction, accompagnée de la description de ses para-
metres d’entrée, et de ses valeurs de sortie. Cette spécification est indépendante de
laméthode algorithmique mise en jeu pour répondre au probleme posé. La présence
de spécifications présente de nombreux avantages :

® meilleure compréhension du réle de la fonction, sans qu’il y ait nécessité de lire
le code informatique,

® meilleure compréhension de l'interaction entre fonctions au sein du méme pro-
gramme,

® relecture d'un ancien code plus facile,

® travail collaboratif entre plusieurs utilisateurs ou développeurs facilité.

m Syntaxes

La spécification d’'une fonction s’effectue a 'aide de précisions apportées dans le
code, et qui on vocation a étre lues par 'homme (contrairement au code informa-
tique en tant que tel, qui lui est lu et interprété par la machine). On dispose pour
cela essentiellement de deux outils, la signature d’'une fonction, et/ou la docstring
d’'une fonction. Nous avions déja présenté la premiere dans le Chapitre (S1) 1, nous
présentons ici la seconde.

2.21 Docstring Ladocstring (contraction de « documentation string ») est un
texte descriptif écrit par les programmeurs principalement pour eux-mémes dans le
but d’expliquer le réle d'une fonction, et de permettre une utilisation pertinente de
celle-ci. Les informations présentes dans la docstring précisent le role et I'utilisation
de la fonction, mais ne rentrent pas dans le détail du code (en cela elles different des
commentaires, que nous verrons plus loin).

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Le texte de la docstring figure juste apres la définition de la fonction, et est délimité
par des triples guillemets. Il est indenté comme le corps de la fonction. Les informa-
tions présentes dans la docstring d'une fonction func sont accessible par les expres-
sions func. doc__ ou help(func).Dans la communauté informatique, les regles
d’'usages pour I'écriture d'une docstring sont normées et il existe différentes normes
(reStructuredText, Numpydoc, Googledoc), mais nous ne rentrerons pas dans ces
raffinements. Nous pourrons par exemple utiliser un format de présentation proche
de celui de Numpydoc.

Les

principaux éléments qui doivent figurer sont les suivants :

une description de l'action de la fonction

une section Parameters (ou Parameétres), précisant les parametres (ou va-
riables) d’entrée, leur type et leur description (i.e. ce que représente chacun des
parametres d’entrée),

une section Returns (ou Renvoi), précisant la variable de sortie, son type et sa
description,

une section Examples (ou Exemples), non obligatoire mais fortement recom-
mandée, illustrant 'action de la fonction sur un jeu de variables d’entrée donné.

Exemple 2 (Fonction d’addition) Voici le script d’'une fonction add dont on a
précisé a la fois la signature et la docstring.

def add(x:float,y:float)->float:

Calculate the sum of 'x' and 'y'

Parameters
x : float

first value to add
y : float

second value to add

Returns

float
the sum of 'x' and 'y'

Examples

>>> add(1,2)

return x+y
Sur cet exemple introductif relatif a une fonction « simple » , I'intérét de la docs-

tring peut paraitre nul, mais il est cependant essentiel de prendre ’habitude de
documenter ses fonctions (et plus largement ses programmes). On remarque
également dans cet exemple que la documentation peut étre plus longue que le
code lui-méme.

Remarque 2 (Redondance entre docstring et signature) On voit que la docs-
tring précise les types des variables d’entrée et le type de la variable renvoyée,
elle contient donc toutes les informations présentes dansla signature. Il est donc
superflu de préciser a la fois signature et docstring pour une fonction donnée
(méme si dans les premier exemples qui suivent, les deux sont indiqués, a titre
d’entrainement). En pratique :
® dans le code informatique d'une fonction, on précisera toujours la dosc-
tring, et la signature est alors superflue,
® quand on décrit une fonction sans en donner le code, le fait d’écrire la si-
gnature de la fonction permet de mieux appréhender le réle de cette fonc-
tion. Par exemple pour une fonction add qui renvoie la somme des deux
nombres passés en arguments, I'écriture add (x,y) est moins précise que
I’écriture add (x: float,y:float)->float.

Remarque 3 (Signature et appel de la fonction) La signature d'une fonc-
tion est précisée lors de la définition de la fonction dans le script, mais ne
doit pas étre utilisée lors de l'appel de la fonction. Ainsi pour la fonction

add(x:float,y:float)->float, un exemple d’appel correct de la fonction est :
>>> add(2,3)

alors que la syntaxe suivante

>>> add(2:float,3:float)->float
File "<input>", line
add(2:float,3:float)->float

A

SyntaxError: invalid syntax
renvoie une erreur.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

m Exemples

On donne le code de la fonction f suivante :
def f(a, b):
if b ==
return a
return f(b, a%b)

On peut remarquer que :

® il n’est pas aisé de comprendre le role de cette fonction en premiere lecture,
® il est nécessaire de faire tourner l'algorithme a la main pour en comprendre le
role.

Exercice 2 Spécification [sol 2]

1. Appliquer la fonction a la main aux couples (15, 10) et (35,21). Que semble
faire cette fonction?

2. Réécrire la fonction en précisant la signature et la docstring. Il pourra également
étre utile de renommer la fonction.

Exercice 3 Recherche dichotomique [sol3] On donne iciunscript de recherche
dichotomique dans une liste triée (par ordre croissant), sans spécification ni signa-
ture :

def dicho(L, v):

i deb =0
i fin = len(L)
trouve = False

while not trouve
im= (i deb

and i deb < i fin:
+ 1 fin) // 2

if L[1i m] == v:
trouve = True
elif L[i m] < v:
ideb=1im+1
else:

i fin=1im
return trouve

Ecrire cette fonction en précisant sa signature et sa spécification.

Exercice 4 Triabulles [sol4 On considere lafonction tri_bulle suivante qui
s'applique a une liste (ou un tableau) d’entiers et qui trie la liste (en la modifiant par
effet de bord).
def tri bulle(L):
n = len(L)
t =n-1
fini = False
while t > 0 and not fini:
fini = True
for j in range(t):
if L[§] > L[j+11:
L{j1, L[j+1] = L[j+1], LIj]
fini = False

Ecrire cette fonction en précisant sa signature et sa spécification.

Instruction assert

La spécification présente la nature et la signification des parameétres d’entrée, mais
ne permet pas de s’assurer que lors de l'utilisation d’'une fonction, les valeurs des
parametres fournis a la fonction soient « corrects » . Par exemple, pour la fonction
racine carrée réelle qui s'applique uniquement sur des réels positifs ou nuls, I'appel
de cette fonction sur un réel négatif peut poser probléme.

Une des facons de résoudre ce probléme est de vérifier systématiquement les pro-
priétés des variables d’entrée est d'utiliser I'instruction assert, dont voici la syn-
taxe :

assert condition [,message] olu:

® conditionestun testeffectué sur une ou plusieurs variables d’entrées (exemple
x > 0,type(x) == ...,a < b, etc.),

® message, dont le caractere est optionnel, est une chaine de caractere précisant
la condition testée. Le crochet nest pas taper, il indique ici simplement le carac-
tere optionnel du message.

Lors del'exécution, sila condition est vérifiée, on passe alaligne suivante, et sinon, la
fonction s'interrompt en renvoyant AssertionError, suivi éventuellement du mes-
sage d’erreur. Cette vérification permet de s’assurer que les parametres d’entrée sont
bien de la forme attendue. Les instructions assert sont alors placées en tout début,

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

avant de rentrer dans le corps de l'algorithme. Cette pratique permet de rendre les
fonctions plus robustes vis-a-vis d'une mauvaise utilisation, et présente un intérét
quand les programmes sont destinés a étre utilisés par des utilisateurs variés. La dé-
marche s’'inscrit dans le cadre plus général de la programmation défensive.

Exemple3 (Exemple delafonctionracine) Prenonslafonction racine carrée,
basée sur la méthode de HERON, qui s'appuie sur le fait que pour x = 0, la suite :

1 X .
Ug=X, Uy, = 3 u, + o qui converge vers ﬁ
n

def sqrt(x:float,eps)->float:

Returns the square root of 'x'

Parameters

x ! float, assumed positive

eps : float, assumed strictly positive
fix the precision of calculus
Returns
float
square root of x
Examples

>>> sqrt(2,1e-2)
1.4142156862745097

assert type(x) == float or type(x) == int
assert x >=0, "la variable 'x' est négative"
assert type(eps) == float
assert eps >0
u= X
v = 0.5%(u+x/u)
while abs(v-u) > eps:
u, v =v, 0.5%(v+x/v)
return v

Lutilisation des instructions assert permet de s'assurer que x est bien un réel
(de type int ou float) positif, et que eps est bien un réel (de type float) stric-
tement positif.
Un appel a sqrt sur des parametres incorrects met en évidence le role de
assert.
>>> sqrt(-2, le-2)
Traceback (most recent call last):
File "<input>", line 1, in <module>
File "<input>", line 24, in sqrt
AssertionError: la variable 'x' est négative
Sans l'instruction assert x >= 0, on obtient pour un appel avec x = —2, une
boucle infinie.

Exercice 5 Recherche d’une sous chaine [sol 5] Lors de la recherche d'un mot
dans un texte, contenus dans deux chaines de caractere, on a utilisé une fonction
mot _en place(mot:str,texte:str,i:int)->bool, qui renvoie True si et seule-
ment si, en notant m la longueur de mot, ona:

mot[j] = texte[i+j],V je€[0,m—1], etFalsesinon.

1. Déterminer les contraintes que doivent vérifier les variables d’entrée de cette
fonction.

2. Ecrire les lignes de code correspondantes en utilisant assert.

n ANNOTATIONS D’UN BLOC D'INSTRUCTIONS

m Commentaires

Un code non commenté est un code inexploitable! Que ce soit pour d’autres lecteurs
éventuels (travail collaboratif par exemple), ou que ce soit pour soi-méme (mainte-
nance d’'un programme sur le long terme par exemple), le code doit étre assorti de
commentaires dont le role est en particulier d’éclairer le code (mais pas seulement,
comme nous le verrons plus loin).

Un commentaire doit étre précédé du caractere #, tout ce qui suit ce caractere jusqu’a
la fin de la ligne sera ignoré par I'interpréteur.

Quelques regles du bon usage des commentaires (extraits du PEP8) :

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

® Commentaire en ligne : un commentaire en ligne est un commentaire sur la
méme ligne qu'une déclaration. Les commentaires en ligne doivent étre sépa-
rés par au moins deux espaces de la déclaration. Ils doivent commencer par un
suivi d'un seul espace.

® Bloc de commentaires : ils s'appliquent généralement a une partie (ou a tout) du
code qui les suit et sont indentés au méme niveau que celui-ci. Chaque ligne du
bloc commence par un # suivi d'un seul espace (sauf s'il s'agit de texte en re-
trait a I'intérieur du commentaire). Les paragraphes a 'intérieur d'un bloc sont
séparés par une ligne contenant un seul #.

® [escommentaires qui contredisent le code sont pires que pas de commentaires du
tout! Ne pas oublier de mettre a jour les commentaires lorsque le code change!
Les commentaires doivent étre des phrases completes et pertinentes. Le pre-
mier mot doit &étre en majuscule, sauf s’il s’agit d'un identifiant qui commence
avec une lettre minuscule (ne jamais modifier la casse des identifiants!).

® [es blocs de commentaires consistent généralement en un ou plusieurs para-
graphes construits a partir de phrases completes, chaque phrase se terminant
par un point. Vous devez utiliser deux espaces apres le point de fin de phrase
sauf apres la derniére phrase.

On initialise deux variables x et y a 1. Puis on calcule la |\
— somme de x et y. (bloc de commentaire)

X =1 # Initialisation de x (commentaire en ligne)
y=1
Z = X+y

Mais aussi clair que puisse étre un code, cela ne prouve pas forcément qu'’il fait ce
que l'on attend de lui. Deux questions se posent systématiquement :

® [Question 1]
® [Question 2]

Est-ce que le code se termine?
Si oui, le résultat obtenu est-il celui attendu?

Ces questions nous amenerons dans un autre chapitre a la notion de preuve d’algo-
rithme.

On peut introduire dés a présent des outils pouvant figurer dans le code sous forme
de commentaire :

® Précondition ® Postcondition ® Invariant de boucles

m Précondition

Une précondition est une propriété (P) qui doit étre vérifiée avant I'exécution du

Définition 2 | Précondition
(code.

Considérons l'extrait de code S suivant, ou a et b désignent deux entiers naturels :

S est donc défini pour (a, b) € N?. Examinons 1'évolution

X, .y =a, b des valeurs du couple de variables (x, y) lorsqu’on exécute
wh11(::-x =y Saveca=14eth=9:
i X = (14,9) — (5,9) — (5,4) — (1,4) — (1,3) — (1,2) — (1,1)
X =X -
else
y=y -X

laboucle s’arréte et on obtient x = y = 1. Deuxieme exemple, on exécute S avec cette
fois-cia=14etb=0: (14,0) — (14,0) — (14,0)..., laboucle estinfinie, S ne se
termine donc jamais dans ce cas.

On peut alors partitionner I'ensemble de départ de S (N? ici) en deux parties :

® Lensemble {(a, b) € N*|S se termine et renvoie le résultat attendu},

® et son complémentaire qui est constitué des couples (a, b) € N? tels que S ne se
termine pas, ou bien se termine mais ne donne pas le résultat attendu. (ici, le
pgcddex ety)

La proposition permettant de décrire le premier ensemble s’appelle une précondi-
tion (propriété qui doit étre vérifiée avant d’exécuter le code), dans notre exemple
ce pourrait étre la proposition (P) suivante : « (a,b) e N?, @ >0, b > 0».

Cette précondition peut étre annotée dans le code sous forme d'un commentaire de
la maniere suivante :

Précondition (P): a et b sont des naturels strictement positifs

X, y=a,>b

while x != y:
if x > y:
X=X -Y
else:
y=y-X

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

m Postcondition

Caractériser les conditions qui font qu’'un code S s'exécute normalement et donne le
résultat voulu ne suffit pas, il faut également caractériser le résultat attendu.

Une postcondition est une propriété (Q) qui doit étre vérifiée apres I'exécution

Définition 3 | Postcondition
(du code.

Si on reprend I'exemple précédent, la postcondition pourrait étre la proposition (Q)
suivante : « x = y et x = pgcd(a, b) » .

Cette postcondition peut étre annotée également dans le code sous forme d'un com-
mentaire de la manieére suivante :
Précondition (P): a et b sont des naturels strictement positifs

X, y=a,b
while x != y:
if x > y:
X=X -Y
else:
y=y-X

Postcondition (Q): x = y et x = pgcd(a,b)

Lorsque le code S est le corps d'une fonction, alors la précondition et la postcondi-
tion peuvent étre mentionnées dans le docstring de la fonction.

Notion d’invariant

Définition 4 | Invariant
Un invariant est une proposition qui reste vraie tout au long de I'exécution du

code (ou d'une portion du code).

Cette notion d’invariant est utilisée notamment pour les preuves d’algorithmes.

Dans 'exemple précédent 'invariant est : « x et y sont des naturels non nuls, et
pged(x,y) = pged(a, b) » .

Lorsque la condition n’est plus remplie, c’est a dire lorsque x et y sont égaux, on sort
delaboucle, on aalors x = y et d’aprés l'invariant on a aussi pged(x, y) = pged(a, b),
or pged(x, y) = pged(x, x) = x (x est un naturel non nul), ce qui prouve la postcon-
dition (Q).

On peut alors noter I'invariant et la postcondition sous forme de commentaires dans
le code, comme ceci :
Précondition (P): a et b sont des naturels strictement positifs
X, y=a,>b
while x != y:
Invariant: x et y sont des naturels strictement positifs et |
— pgcd(x,y) = pgcd(a,b).
if x > y:
X =X-Yy #pgcd(x, y)
else:
y =y - Xx #pgcd(x, y) = pgcd(x, y - x)
Postcondition (Q): x = y et x = pgcd(a,b)

pgcd(x -y, y)

On remarquera que nous n'avons pas prouvé que la boucle se termine, ni que I'in-
variant proposé est correct (I'invariant doit étre vérifié avant la premiére itération
(itération dite n° 0), et doit étre vérifié également a la fin de chaque itération, ce qui
permet de I'utiliser pour prouver la postcondition). Ceci sera détaillé dans le chapitre
suivant.

En résumé, lorsque nous avons affaire a une boucle, nous pouvons représenter la
situation ainsi :

(Précondition) (Postcondition)

implique

v

Initialisation

1

1

1

1

1

1

1

1

1

1

1

1

i

1 .

1 instaure

: A 4
1

1 .
! Invariant
: '
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

et non

COnserve Progression
dans la boucle

FIGURE 9 : Les cases grisées correspondent a une action.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Exercice 6 [sol 6] Ecrire la fonction somme (n:
cification suivante :

int) -> intrespectant la spé-

® Précondition: n € N. .

® Postcondition : la valeur renvoyée est)_ k.
k=0

On précisera dans le code un invariant de la boucle.

Exercice 7
def f(a,
X, y, r=a,
while x '= 0:
if x%2 ==
X = X//2
else:

[sol 7] On considere la fonction (non documentée) suivante :
b):
b, ©

(x-1)//2
r+vy
return r

1. Compte tenu des opérations effectuées il faut que a et b soient des nombres, et
compte tenu de la division euclidienne faite sur x, il faut que a soit un entier natu-
rel au départ. Que se passe-t-il lorsque a = —1? On pourrait vérifier qu’il se passe
la méme chose pour tout entier a < 0.

2. Montrer que la proposition: «ab = xy + r» est un invariant pour la boucle while.

3. Réécrire le code de cette fonction mais sous forme documentée.

JEUX DE TESTS

BN i

Du point de vue purement intellectuel, une fois qu'un programme est clairement
spécifié et prouvé, il peut sembler inutile de le tester. Sauf que nous ne sommes pas
infaillibles dans nos démarches intellectuelles et que des erreurs peuvent se glisser
malgré tout. D’'ou1 la nécessité de multiplier les tests, que ce soit au niveau de chaque
fonction écrite, ou au niveau de 'ensemble du programme (articulation entre les
différentes parties du programme).

Contrairement a ce que I'on pourrait peut-étre penser, un test ne prouve pas le code,
mais pour reprendre la citation d’Edsger DIJKSTRA : « le test de programmes peut étre
une facon tres efficace de montrer la présence de bugs, mais il est désespérément in-
adéquat pour prouver leur absence » .

QUAND PREVOIR UN JEU DE TESTS? Lorsquon doit écrire une fonction, il est
conseillé en général de prévoir un jeu de tests des la spécification de la fonction, donc
bien avant I'écriture du code lui-méme! Un test est en fait la donnée de valeurs par-
ticulieres pour les parametres d’entrée de la fonction, et la valeur attendue en retour.
Comme nous 'avons vu plus haut, 'ensemble des valeurs possibles des parametres
se partitionne en (au moins) deux parties, celle qui correspond aux valeurs pour les-
quelles le code se termine et donne le résultat attendu, et la partie complémentaire,
c’est en général sur les cas limites que portent les tests.

Exemple

On veut écrire la fonction division(a, b) dontla spécification est la suivante :

® Parametres d’entrée : a et b sont des entiers positifs avec b non nul.

® Résultat renvoyé : le résultat de la fonction est le tuple (g, 7) ol g et r sont res-
pectivement le quotient et le reste de la division euclidienne de a par b (c'est a
dire vérifiant a = bq + r avec 0 < r < b).

Avant décrire le code documenté, il nous faut décider de ce que l'on va faire si la
contrainte (ou précondition) sur les parameétres d’entrée n’est pas remplie, et prévoir
un jeu de tests.

Pour la pré-condition non remplie, il y a plusieurs choix possibles :

® générer une erreur avec 'instruction assert,
® renvoyer un résultat particulier.

La premiére solution provoquera la fin du programme avec éventuellement un mes-
sage d’erreur, ce qui n’est pas toujours souhaitable. Nous allons opter pour la seconde
solution en convenant d’un résultat égal a None si la précondition n’est pas remplie.
Cette convention devra étre mentionnée dans la docstring.

Nous allons maintenant prévoir des tests pour les différents cas de figure, suivant que
a est positif ou négatif, et b est nul ou strictement négatif ou strictement positif, en
choisissant des valeurs pour a et b et en donnant le résultat qui devrait étre renvoyé
par la fonction, par exemple :

® g et b strictement positifs : division(19, 7) doitrenvoyer (2, 5),

ITC € 2025-2026

® g et b strictement positifs : division(7, 19) doit renvoyer (0, 7), >>> division(-19,-7)

® anul et b strictement positif: division(0, 19) doit renvoyer (0, 0), None

® gpositifet bnul:division(19, 0) doit renvoyer None, e

® g positif et b négatif: division(19, -7) doit renvoyer None,

® g négatif et b positif: division(-19, 7) doit renvoyer None, Nous pouvons maintenant passer a I'écriture du code. La post-condition nous four-
® gnégatifet bnul: division(-19, 0) doit renvoyer None, nit pratiquement l'invariant de la boucle que nous allons devoir écrire : a = bg +r,
® g négatif et b négatif: division(-19, -7) doit renvoyer None. q et r seront deux variables locales, il faut les initialiser de sorte que l'invariant soit

vérifié, il suffit de prendre g = 0 et r = a, la pré-condition nous dit alors que 0 < r. Si
On pourrait bien siir imaginer d’autres valeurs numériques, ou méme choisir des r < b, c’est terminé, mais si r = b, alors I'idée est d’enlever b a r et d'ajouter 1 a g car
valeurs aléatoirement dans chaque cas. Nous allons faire figurer ces tests dans la bqg +r = b(q + 1) + (r — b) (I'invariant est bien conservé), et on recommence le test
docstring sous forme d’exemples sur r (boucle).
def division(a: int, b: int) -> (int, int): def division(a: int, b: int) -> (int, int):

10

/M/ Lycée Michel MONTAIGNE — Bordeaux

Renvoie le quotient et le reste de la division de a par b

Paramétres:
a: int, entier naturel
b: int, entier strictement positif

Retour:
tuple (q, r) tel que a=bq+r avec O<=r<b
ou None si a<0 ou b<=0

Exemples:

>>> division(19,7)
(2,5)

>>> division(7,19)
(0,7)

>>> division(0,19)
(0,0)

>>> division(19,0)
None

>>> division(19, -7)
None

>>> division(-19,7)
None

>>> division(-19,0)
None

Renvoie le quotient et le reste de la division de a par b

Paramétres:
a: int, entier natuel
b: int, entier strictement positif

Retour:
tuple (q, r) tel que a=bq+r avec O<=r<b
ou None si a<0 ou b<=0

Exemples:

>>> division(19,7)
(2,5)

>>> division(7,19)
(0,7)

>>> division(0,19)
(0,0)

>>> division(19,0)
None

>>> division(19,-7)
None

>>> division(-19,7)
None,

>>> division(-19,0)
None

ITC € 2025-2026

=

/M/ Lycée Michel MONTAIGNE — Bordeaux

>>> division(-19,-7)
None

if (a < 0) or (b <= 0): # pré-condition non remplie
return None

q, r=20, a

while r >= b:

Invariant: a = bg+r et 0 <= r
q+= 1
r -=b # bg+r = b(q+1)+(r-b)

return (q, r)

Comment effectuer les tests prévus?

Une fois le code saisi et enregistré dans un fichier, on effectue les tests prévus. Nous
allons donner trois facons de procéder :

® [Laméthode naive] on ajoute a la suite de notre fonction une succession de

print (un par test), du style : print(division(19,7) == (2,5)), ce qui pro-
voquera a I'exécution I'affichage de True ou bien False suivant que le test est
positif ou négatif.
[Un peu plus élaboré] on écrit une fonction dédiée aux tests qui va utiliser
I'instruction assert pour chacun des tests :
def test division():

assert division(19,7) == (2,5), "erreur lorsque a=19 et \

— b=7"

assert division(7,19) == (0,7), "erreur lorsque a=7 et \

— b=19"

... etc

assert division(-19,-7) == None, "erreur lorsque a=-19 et \

— b=-7"

print("Tous les tests ont été réussis.")
IIn'y a plus alors qu’a exécuter cette fonction, s’il n'y a pas d’erreur d’assertion,
on affiche que tous les tests ont été passés avec succes. Attention cependant, si
un des tests provoque une boucle infinie le programme ne se terminera pas, et
on ne saura pas quel est le test défectueux.
[Tests automatiques] lorsque les tests sont explicités dansladocstring sous
une certaine forme, alors on peut faire passer automatiquement ceux-ci en
utilisant le module doctest et plus précisément sa fonction testmode(), qui

va tester 'ensemble des fonctions du programme. Pour chaque fonction, sa
docstring va étre analysée ' et les lignes commencant par >>> (trois chevrons
suivis d'une espace obligatoire) vont étre considérées comme des instructions
et étre exécutées, le résultat de cette exécution est comparé avec ce qui est lu
dans la ligne suivante, si cela ne coincide pas une erreur est signalée. Si aucune
erreur n'est signalée c’est que tous les tests ont été passés avec succes.
Attention : la docstring est une chaine de caracteres, il faut donc faire tres at-
tention a la facon dont 'on écrit les résultats attendus car ce sont des chaines de
caractéres qui vont étre comparées. Par exemple si on écrit dans la docstring
de notre fonction :
def division(a: int, b: int) -> (int, int):

>>> division(19,7)
(2,5)

...
alors a 'exécution de l'instruction doctest.testmod() nous verrons l'erreur

suivante :
3k 3k 3k 3k 3k Sk Sk 3k Sk Kk Sk Sk Kk ok ok ok ok ok
File "val.py", line 250, in _main__ .division
Failed example:
division(19,7)
Expected:
(2,5)
Got:
(2, 5)
notez 'espace manquante apres la virgule dans la docstring... De méme, si on
écrit :
def division(a: int, b: int) -> (int, int):

>>> division(19,-7)
None

...
alors a 'exécution de l'instruction doctest.testmod() nous verrons l'erreur

suivante :

1. on dit aussi « parsée », anglicisme issu du verbe o parse

ITC € 2025-2026

12

/M/ Lycée Michel MONTAIGNE — Bordeaux

3k 3k 3k 3k 3k Sk Sk ok Sk ok Sk ok ok ok ok
File "val.py", line 264, in _main_ .division
Failed example:
division(-19,-7)
Expected:
None

Got nothing
car None et "None" ce n’est pas la méme chose! Il est préférable d’opter pour

I’écriture suivante (ou de ne rien indiquer comme résultat et se contenter de
>>> division(19,-7) dansle code précédent):

def division(a: int, b: int) -> (int, int):
>>> division(19,-7) == None
True
#

alors a 'exécution de l'instruction doctest. testmod() il n'y aura plus d’erreur
(a condition d’écrire True correctement, et sans espace avant ni apres!).

Pour conclure, nous pouvons proposer ce code pour tester notre fonction :
import doctest
def division(a: int, b:

int) -> (int, int):

Renvoie le quotient et le reste de la division de a par b

Paramétres:

a: int, entier natuel
b: int, entier strictement positif

Retour:

tuple (q, r) tel que a=bqg+r avec O<=r<b
ou None si a<0@ ou b<=0

Exemples:

>>> division(19,7) == (2,5)
True

>>> division(7,19) == (0,7)

True

>>> division(0,19) == (0,0)
True

>>> division(19,0) == None
True

>>> division(19,-7) == None
True

>>> division(-19,7) == None
True

>>> division(-19,0) == None
True

>>> division(-19,-7) == None

True

if (a < 0) or (b <= 0):
return None

q, r=20, a

while r >= b:

pré-condition non remplie

Invariant: a = bg+r et 0 <= r

q+=1

r -=b # bg+r = b(g+1)+(r-b)

return (g, r)

doctest.testmod ()

Remarque 4
® Le module doctest contient d’autres fonctions, par exemple il est pos-

Lexécution ne provoque aucun affichage d’erreur ce qui signifie que tous les tests
ont été passés avec succes. Cet exemple sera repris en TP pour I’étendre a la division
dans Z.

sible de tester une fonction individuellement dans le programme (fonction
run_docstring examples).

® Jlexiste d’autres modules permettant des tests plus sophistiqués, mais nous

n'en parlerons pas dans ce cours.

ITC € 2025-2026

13

W/ Lycée Michel MONTAIGNE — Bordeaux

Tests de performance

Pour comparer des algorithmes, on peut étre amené a effectuer d’autres types de
tests, comme des tests de performance en temps d’exécution par exemple. Avec le
module time, il est possible de faire ces mesures. On reléve un instant initial, on exé-
cute un certain nombre de fois la fonction, on releve I'instant final etil n’y a plus qu’'a
faire la différence :

from import time # fonction time du module time

t1 = time() # instant initial

for in range(1000): # pour 1000 exécutions

r = fonction a tester()
t2 = time() # instant final
print("durée: ", (t2-t1)/1000) # en secondes

Suivant la précision de la machine, une seule exécution n’est peut-étre pas suffisante
pour avoir une mesure fiable.

Si on travaille dans un notebook, alors on peut plus simplement utiliser I'instruction
timeit fonction_a tester() quiva mesurer automatiquement le temps d’exécu-
tion de la fonction.

ITC € 2025-2026

W/ Lycée Michel MONTAIGNE — Bordeaux

SOLUTIONS DES EXERCICES

Solution 1 Lavariable y contientla valeur 0 et la variable Lp contient la liste [1].

Solution 2

1. ® Pour les valeurs initiales a = 15, b = 10,0n obtient successivement pour le
couple (a, b) : (10,5), (5,0). La valeur renvoiee est donc 5.
® Pour les valeurs initiales a = 35, b = 21,0n obtient successivement pour le
couple (a, b) : (21,14), (14,7), (7,0). La valeur renvoiee est donc 7.

Dans ces deux exemples, la fonction renvoie le pged (plus grand commun divi-
seur) de a, b.

2. Fonction avec spécifications :
def pgcd(a:int,b:int)->int:

Returns the pgcd of 'a' and 'b'

Parameters
a : int

first value to compute the pgcd
b : int

second value to compute the pgcd

Returns

pgcd of 'a' and 'b'

Examples

>>> pgcd(15,10)
5

>>> pgcd(35,21)
7

if b ==
return a
return f(b, a%b)

Solution 3 En rajoutant les éléments demandés, on peut proposer pour la partie
demandée (le code étant inchangé) :
def dicho(L:list, v:int)->bool:

Determines if value 'v' belongs to 'L' by dichotomic method.

Parameters
L : list

list of values sorted with L[O]<= L[1] <= ... <= L[n-1]
v ! int

value to be tested

Returns

True if value 'v' is in 'L', False in the other case

Examples

>>> dicho([1,3,5],5)
True

>>> dicho([1,3,5],4)
False

>>> dicho([],1)
False

Solution 4 On réécrit de méme :

def tri bulle(L:list)->None:
Sort the list in ascending order and return None. After |
— execution, the list is sorted in ascending order.

ITC € 2025-2026

15

Parameters

L : list
list to be sorted

Returns

>>> | = [2,3,1]
>>> tri bulle(L)
>>> |

[1,2,3]

def somme(n: int) -> int:

Returns 0+1+...+n

Parameters

>>> somme(10)
55

resultat = 0 # variable qui contiendra la somme cherchée

/M/ Lycée Michel MONTAIGNE — Bordeaux

for k in range(1,n+1): # pour k allant de 1 a n
Invariant : resultat est la somme des entiers de 0 a k

Solution 5

1. On peut lister plusieurs conditions : resultat = resultat + k
return resultat
® mot et texte doivent étre des chaines de caractere,
® i doit étre un entier positif ou nul,

® on doit avoir i + len(mot) < len(texte). Solution 7

1. Lorsque a = —1, la suite des valeurs de x est constamment égale a —1, la boucle

2. Les lignes correspondantes s’écrivent : i]
est donc infinie.

n = len(texte)

m = len(mot) 2, Avantlaboucleonax =a,y =betr =0, onadoncbien ab = xy + r. Supposons

assert type(mot) == str que cela soit vrai apres l'itération n et qu’il y ait une itération n + 1, on a donc
FREEIE peiiee) == Sir ab = xy + r, distinguons deux cas :
assert type(i) == int

assert i >= 0

b b
® sixestpairalorsx//2=—etab=xy+r =—x(2y)+r,onabienlarelation
assert i+m <= n 2

avec les nouvelles valeurs de x et de y (r n'a pas changé),
x-1
® si x estimpairalors x//2 = — (puisque x = 2 x xT'l +1letquel =x%2 car
x-1

Solution 6 Somme des entiers (pour I'invariant on convient que la valeur de k x(2y)+(y+r),onabienla

x-1
1<2)etab=xy+r=2——+1|y+r=
2
avant la boucle est nulle) :

relation avec les nouvelles valeurs de x, de y et de r,

ITC € 2025-2026

16

/M/ Lycée Michel MONTAIGNE — Bordeaux

donc a l'issue de 'itération n + 1 la relation ab = xy + r est encore vérifiée.

3. Sila boucle se termine, alors x est nul et la valeur renvoyée est r = r + xy = ab
(car x = 0). D’ol1 une documentation possible :
def f(a: int, b: float) -> float:

Returns a*b

Parameters

a: int assumed positive
b: float

Returns

float
product a*b

Examples

>>> f(5,1.5)
7.5

X, Yy, r=a, b, 0

while x != 0:
Invariant: x*y+r = a*b
if x%2 == 0: # x est pair
X = x//2
else: # x est impair
X = (x-1)//2
r=r+y
y = 2%y
return r

Cette fonction effectue donc le produit d'un entier a avec un nombre b en utili-
sant uniquement des additions, soustractions, ainsi que des divisions et multipli-
cations par 2 (principe de la multiplication russe). 1l serait également judicieux
de changer le nom de cette fonction pour quelque chose de plus explicite (par
exemple :multiplication russe).

	pbs@ARFix@136:
	pbs@ARFix@137:
	pbs@ARFix@138:
	pbs@ARFix@139:
	pbs@ARFix@140:
	pbs@ARFix@141:
	pbs@ARFix@142:
	pbs@ARFix@143:
	pbs@ARFix@144:
	pbs@ARFix@145:
	pbs@ARFix@146:
	pbs@ARFix@147:
	pbs@ARFix@148:
	pbs@ARFix@149:
	pbs@ARFix@150:
	pbs@ARFix@151:

