
/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

1
IT
C
Creative-Commons

20
25
-2
02
6

Chapitre (S2) 1
Bonnes pratiques de
programmation

1 Fonctions et effet de bord

2 Spécifications

3 Annotations d’un bloc d’ins-
tructions. .

4 Jeux de tests .

Objectifs
• Savoir définir les spécifications (signa-

ture, docstring).
• Savoir annoter un bloc d’instruc-

tions (précondition, postcondition,
invariant).

• Savoir mettre au point un jeu de tests.

1 FONCTIONS ET EFFET DE BORD

1.1 Copie de variables mutables et non mutables

Exercice 1 [Sol 1] On considère le script suivant qui met en jeu une copie d’un
entier ou d’une liste :
x = 0

y = x

x = 1

L =[0]

Lp = L

L[0] = 1

Pouvez-vous prévoir les valeurs associée aux variables y et Lp après exécution du
script?

Pour comprendre la différence de traitement de ces instructions qui semblent si-
milaires, il faut préciser la gestion mémoire du contenu des variables dans le lan-
gage Python. Cette gestion est différente selon que la variable est non mutable (en-
tiers, flottants,chaine de caractère par exemple) ou mutable (listes, dictionnaires,
tableaux par exemple).

Plus précisément, une variable peut être vue comme une étiquette (un nom) donné
à un emplacementmémoire.Mais le contenu de cet emplacement dépend du carac-
tère mutable ou non de la variable :

• pour une variable non mutable, le nom désigne directement l’adresse mémoire
de la valeur (entier, flottant ou chaine de caractère) associée à la variable,

• pourunevariablemutable, lenomdésigneunobjetparticulier, appelépointeur,
qui contient l’adressemémoire de l’endroit où est stockée la valeur associée à la
variable.

On peut alors représenter les deux situations de copie de variable vues dans
l’exemple introductif de la manière suivante :

FIGURE 1 : variable non mutable x FIGURE 2 : variable mutable L

Lors d’une copie :

• pour un objet non mutable, par exemple pour l’instruction y = x, la variable y
désigne une nouvelle case mémoire contenant la même valeur que celle de la
variable x et cette valeur est alors dupliquée (elle est présente deux fois dans la
mémoire),

• pour un objet mutable, par exemple pour l’instruction Lp = L, la variable Lp

désigneunenouvelle casemémoire contenantunpointeurdésignant lui-même
le même emplacement mémoire que celui du pointeur de la variable L. Cette
dernière valeur n’est alors pas dupliquée (elle n’est présente qu’une fois dans la
mémoire).

ITCCreative-Commons 2025-2026 1 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

2
IT
C
Creative-Commons

20
25
-2
02
6

Après copie et modification des valeurs de x et L[0], on obtient donc la situation
suivante :

FIGURE 3 : après modification de x FIGURE 4 : après modification de L

Ceci permet d’expliquer le comportement observé, et cette différence de comporte-
ment peut se généraliser à tous les objets mutables et non mutables.

1.2 Effets de bord sur les fonctions

Le comportement précédent explique aussi la façon dont les fonctions agissent sur
les variables mutables qui sont passées en paramètre. Ce comportement porte le
nom d’effet de bord (ou side effect en anglais), que l’on peut définir comme suit :

Définition 1 | Fonction à effet de bord
En informatique, une fonction est dite à effet de bord si ellemodifieunétat ende-
hors de son environnement local, c’est-à-dire a une interaction observable avec
le monde extérieur autre que renvoyer une valeur.

Exemple 1 Prenons l’exemple suivant :

def f(x):

x = 1

x = 0

f(x)

def g(L):

L[0] = 1

L = [0]

g(L)

Après exécution, on observe :
>>> x

0

>>> L

[1]

Pour comprendre cette différence de comportement, on peut comme précédem-
ment représenter le contenu des différentes variables au cours de l’exécution du
script précédent :

FIGURE 5 : avant modif. de x par 𝑓 FIGURE 6 : avant modif. de L par 𝑔

FIGURE 7 : après modif. de x par 𝑓 FIGURE 8 : après modif. de L par 𝑔

Lors de l’appel des fonctions f ou g, il y a création d’une variable locale (x ou L),
qui n’a d’existence que durant l’exécution de la fonction (le fait que ces variables
aient le même nom que les variables x et L du programme principal n’est pas gê-
nant car les variables n’appartiennent en réalité pas au même espace des noms). On
constate que pour la fonction f, qui agit sur la variable x non mutable, la variable
locale x a dupliqué le contenu de la variable globale x, alors que pour la fonction g,
la variable locale L pointe vers le même emplacement mémoire que celui la variable
globale L (c’est le même comportement que lors de la copie de variable, vue précé-
demment). On comprend donc que la modification de x dans la fonction f n’affecte
pas le contenu de la variable globale x, alors que la modification de L dans g affecte
la variable globale L.

Remarque 1 (Cas des tris)
• Les tris en place sont généralement codés par des fonctions à effet de bord :

elles modifient alors directement la liste passée en argument.
• Les tris non en place renvoient une nouvelle liste, donc ce sont des fonc-

tions sans effet de bord.

Résumé Gestion des variables d’une fonction à effets de bords
♥

Ceci illustre deux aspects fondamentaux pour le comportement des fonctions :
• la façon dont une fonction modifie le contenu d’une variable d’entrée dé-

/ Lycée Michel Montaigne – Bordeaux 2 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

3
IT
C
Creative-Commons

20
25
-2
02
6 ♥ pend du caractère mutable ou non de cette variable,

• il est possible de modifier la valeur associée à une variable d’entrée d’une
fonction sans qu’il soit nécessaire pour la fonction d’avoir une valeur de
retour. Ainsi :
⋄ pour modifier la valeur de la variable x non mutable dans le pro-

gramme principal, il faut exécuter x = f(x),
⋄ pour modifier la valeur de la variable L mutable dans le programme

principal, il suffit d’exécuter g(L),

Cette différence de comportement n’est pas gênante en soi à condition d’avoir bien
conscience lors de la conception des fonctions.

1.3 Compléments sur l’affectation : expression vs instruction

Dans le langagePython, l’instructiond’affectation senote=, alors que le test d’égalité
se note ==, et ces deux symboles n’ont pas le même statut vis à vis du langage. Plus
précisément :

• le symbole = est une instruction du langage, c’est à dire un symbole réservé qui
réalise une action et ne renvoie rien (comme import, for, while, if, else, etc.).
On peut notamment signaler que la commande print(a = 1) n’est pas com-
prise par l’interpréteur, vu que a = 1 ne renvoie rien, et que l’écriture de if a

= 1 provoque également une erreur (SyntaxError) lors de la compilation.
• le symbole ==, comme tout opérateur de test >, >=, <, <=, !=), permet de

construire une expression qui renvoie une valeur booléenne (True ou False).
Ainsi, print(a == 1) renvoie True ou False (à condition que la variable a ait
été définie précédemment).

Cette distinction peut paraître fastidieuse (et souvent source de confusion pour le
néophyte), mais permet de différencier les deux opérations dans le langage, ce qui
permet d’éviter des confusions susceptibles d’engendrer des erreurs. Ceci n’est pas le
cas dans tous les langages. Par exemple en C, l’opération d’affection est une expres-
sion (et pas une instruction) qui renvoie la valeur que l’on cherche à affecter (a=1
affecte la valeur 1 à a et renvoie 1). Ainsi la syntaxe if a = 1 est acceptée par le
compilateur C car a = 1 renvoie la valeur 1, et en C , une des façons de coder les
valeurs logiques True et False est d’utiliser 0 pour False et tout autre nombre pour
True (cette possibilité existe aussi en Python mais comme on l’a vu, if a = 1 ren-
voie SyntaxError en Python).

2 SPÉCIFICATIONS

2.1 Le but : exprimer un besoin

Un programme informatique est en général composé de fonctions, chacune étant
conçue pour répondre à un problème donné, ce problème pouvant être issu de do-
maines très variés (mathématique, physique, industrie, etc.). Par exemple, on peut
vouloir déterminer le plus court chemin entre deux points, résoudre numérique-
ment une équation différentielle, ou bien contrôler la vitesse d’un avion en fonction
des paramètres de vol.

La spécification est l’explication (en général sous la forme d’une description en lan-
gage courant) du rôle de la fonction, accompagnée de la description de ses para-
mètres d’entrée, et de ses valeurs de sortie. Cette spécification est indépendante de
laméthode algorithmiquemise en jeupour répondre auproblèmeposé. Laprésence
de spécifications présente de nombreux avantages :

• meilleure compréhension du rôle de la fonction, sans qu’il y ait nécessité de lire
le code informatique,

• meilleure compréhensionde l’interactionentre fonctions au seindumêmepro-
gramme,

• relecture d’un ancien code plus facile,
• travail collaboratif entre plusieurs utilisateurs ou développeurs facilité.

2.2 Syntaxes

La spécification d’une fonction s’effectue à l’aide de précisions apportées dans le
code, et qui on vocation à être lues par l’homme (contrairement au code informa-
tique en tant que tel, qui lui est lu et interprété par la machine). On dispose pour
cela essentiellement de deux outils, la signature d’une fonction, et/ou la docstring
d’une fonction. Nous avions déjà présenté la première dans le Chapitre (S1) 1, nous
présentons ici la seconde.

2.2.1 Docstring La docstring (contraction de « documentation string ») est un
texte descriptif écrit par les programmeurs principalement pour eux-mêmes dans le
but d’expliquer le rôle d’une fonction, et de permettre une utilisation pertinente de
celle-ci. Les informations présentes dans la docstring précisent le rôle et l’utilisation
de la fonction, mais ne rentrent pas dans le détail du code (en cela elles diffèrent des
commentaires, que nous verrons plus loin).

ITCCreative-Commons 2025-2026 3 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

4
IT
C
Creative-Commons

20
25
-2
02
6

Le texte de la docstring figure juste après la définition de la fonction, et est délimité
par des triples guillemets. Il est indenté comme le corps de la fonction. Les informa-
tions présentes dans la docstring d’une fonction func sont accessible par les expres-
sions func.__doc__ ou help(func). Dans la communauté informatique, les règles
d’usages pour l’écriture d’une docstring sont normées et il existe différentes normes
(reStructuredText, Numpydoc, Googledoc), mais nous ne rentrerons pas dans ces
raffinements. Nous pourrons par exemple utiliser un format de présentation proche
de celui de Numpydoc.

Les principaux éléments qui doivent figurer sont les suivants :

• une description de l’action de la fonction
• une section Parameters (ou Paramètres), précisant les paramètres (ou va-

riables) d’entrée, leur type et leur description (i.e. ce que représente chacun des
paramètres d’entrée),

• une section Returns (ou Renvoi), précisant la variable de sortie, son type et sa
description,

• une section Examples (ou Exemples), non obligatoire mais fortement recom-
mandée, illustrant l’action de la fonction sur un jeu de variables d’entrée donné.

Exemple 2 (Fonction d’addition) Voici le script d’une fonction add dont on a
précisé à la fois la signature et la docstring.
def add(x:float,y:float)->float:

"""

Calculate the sum of 'x' and 'y'

Parameters

x : float

first value to add

y : float

second value to add

Returns

float

the sum of 'x' and 'y'

Examples

>>> add(1,2)

3

"""

return x+y
Sur cet exemple introductif relatif à une fonction « simple » , l’intérêt de la docs-
tring peut paraître nul, mais il est cependant essentiel de prendre l’habitude de
documenter ses fonctions (et plus largement ses programmes). On remarque
également dans cet exemple que la documentation peut être plus longue que le
code lui-même.

Remarque 2 (Redondance entre docstring et signature) On voit que la docs-
tring précise les types des variables d’entrée et le type de la variable renvoyée,
elle contientdonc toutes les informationsprésentesdans la signature. Il est donc
superflu de préciser à la fois signature et docstring pour une fonction donnée
(même si dans les premier exemples qui suivent, les deux sont indiqués, à titre
d’entrainement). En pratique :
• dans le code informatique d’une fonction, on précisera toujours la dosc-

tring, et la signature est alors superflue,
• quand on décrit une fonction sans en donner le code, le fait d’écrire la si-

gnature de la fonction permet de mieux appréhender le rôle de cette fonc-
tion. Par exemple pour une fonction add qui renvoie la somme des deux
nombres passés en arguments, l’écriture add(x,y) est moins précise que
l’écriture add(x:float,y:float)->float.

Remarque 3 (Signature et appel de la fonction) La signature d’une fonc-
tion est précisée lors de la définition de la fonction dans le script, mais ne
doit pas être utilisée lors de l’appel de la fonction. Ainsi pour la fonction
add(x:float,y:float)->float, un exemple d’appel correct de la fonction est :
>>> add(2,3)

5
alors que la syntaxe suivante
>>> add(2:float,3:float)->float

File "<input>", line 1

add(2:float,3:float)->float

^

SyntaxError: invalid syntax
renvoie une erreur.

/ Lycée Michel Montaigne – Bordeaux 4 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

5
IT
C
Creative-Commons

20
25
-2
02
6

2.3 Exemples

On donne le code de la fonction f suivante :
def f(a, b):

if b == 0 :

return a

return f(b, a%b)

On peut remarquer que :

• il n’est pas aisé de comprendre le rôle de cette fonction en première lecture,
• il est nécessaire de faire tourner l’algorithme à la main pour en comprendre le

rôle.

Exercice 2 Spécification [Sol 2]

1. Appliquer la fonction à la main aux couples (15, 10) et (35,21). Que semble
faire cette fonction?

2. Réécrire la fonction en précisant la signature et la docstring. Il pourra également
être utile de renommer la fonction.

Exercice 3 Recherchedichotomique [Sol 3] Ondonne ici un script de recherche
dichotomique dans une liste triée (par ordre croissant), sans spécification ni signa-
ture :
def dicho(L, v):

i_deb = 0

i_fin = len(L)

trouve = False

while not trouve and i_deb < i_fin:

i_m = (i_deb + i_fin) // 2

if L[i_m] == v:

trouve = True

elif L[i_m] < v:

i_deb = i_m + 1

else:

i_fin = i_m

return trouve

Écrire cette fonction en précisant sa signature et sa spécification.

Exercice 4 Tri à bulles [Sol 4] On considère la fonction tri_bulle suivante qui
s’applique à une liste (ou un tableau) d’entiers et qui trie la liste (en la modifiant par
effet de bord).
def tri_bulle(L):

n = len(L)

t = n-1

fini = False

while t > 0 and not fini:

fini = True

for j in range(t):

if L[j] > L[j+1]:

L[j], L[j+1] = L[j+1], L[j]

fini = False

t -= 1

Écrire cette fonction en précisant sa signature et sa spécification.

2.4 Instruction assert

La spécification présente la nature et la signification des paramètres d’entrée, mais
ne permet pas de s’assurer que lors de l’utilisation d’une fonction, les valeurs des
paramètres fournis à la fonction soient « corrects » . Par exemple, pour la fonction
racine carrée réelle qui s’applique uniquement sur des réels positifs ou nuls, l’appel
de cette fonction sur un réel négatif peut poser problème.

Une des façons de résoudre ce problème est de vérifier systématiquement les pro-
priétés des variables d’entrée est d’utiliser l’instruction assert, dont voici la syn-
taxe :

assert condition [,message] où :

• condition est un test effectué suruneouplusieurs variables d’entrées (exemple
x > 0, type(x) == ..., a < b, etc.),

• message, dont le caractère est optionnel, est une chaine de caractère précisant
la condition testée. Le crochet n’est pas taper, il indique ici simplement le carac-
tère optionnel du message.

Lors de l’exécution, si la condition est vérifiée, onpasse à la ligne suivante, et sinon, la
fonction s’interrompt en renvoyant AssertionError, suivi éventuellement du mes-
sage d’erreur. Cette vérification permet de s’assurer que les paramètres d’entrée sont
bien de la forme attendue. Les instructions assert sont alors placées en tout début,

ITCCreative-Commons 2025-2026 5 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

6
IT
C
Creative-Commons

20
25
-2
02
6

avant de rentrer dans le corps de l’algorithme. Cette pratique permet de rendre les
fonctions plus robustes vis-à-vis d’une mauvaise utilisation, et présente un intérêt
quand les programmes sont destinés à être utilisés par des utilisateurs variés. La dé-
marche s’inscrit dans le cadre plus général de la programmation défensive.

Exemple 3 (Exemple de la fonction racine) Prenons la fonction racine carrée,
basée sur la méthode de HÉRON, qui s’appuie sur le fait que pour 𝑥 ≥ 0, la suite :

𝑢0 = 𝑥, 𝑢𝑛+1 =
1
2
(𝑢𝑛+

𝑥
𝑢𝑛

) qui converge vers√𝑥.

def sqrt(x:float,eps)->float:

"""

Returns the square root of 'x'

Parameters

x : float, assumed positive

eps : float, assumed strictly positive

fix the precision of calculus

Returns

float

square root of x

Examples

>>> sqrt(2,1e-2)

1.4142156862745097

"""

assert type(x) == float or type(x) == int

assert x >=0, "la variable 'x' est négative"

assert type(eps) == float

assert eps >0

u = x

v = 0.5*(u+x/u)

while abs(v-u) > eps:

u, v = v, 0.5*(v+x/v)

return v

L’utilisation des instructions assert permet de s’assurer que x est bien un réel
(de type int ou float) positif, et que eps est bien un réel (de type float) stric-
tement positif.
Un appel à sqrt sur des paramètres incorrects met en évidence le rôle de
assert.
>>> sqrt(-2, 1e-2)

Traceback (most recent call last):

File "<input>", line 1, in <module>

File "<input>", line 24, in sqrt

AssertionError: la variable 'x' est négative
Sans l’instruction assert x >= 0, on obtient pour un appel avec 𝑥 = −2, une
boucle infinie.

Exercice 5 Recherche d’une sous chaine [Sol 5] Lors de la recherche d’un mot
dans un texte, contenus dans deux chaines de caractère, on a utilisé une fonction
mot_en_place(mot:str,texte:str,i:int)->bool, qui renvoie True si et seule-
ment si, en notant𝑚 la longueur de mot, on a :

mot[j] = texte[i+j], ∀ j ∈ J0,𝑚−1K, et False sinon.

1. Déterminer les contraintes que doivent vérifier les variables d’entrée de cette
fonction.

2. Écrire les lignes de code correspondantes en utilisant assert.

3 ANNOTATIONS D’UN BLOC D’INSTRUCTIONS

3.1 Commentaires

Uncode non commenté est un code inexploitable ! Que ce soit pour d’autres lecteurs
éventuels (travail collaboratif par exemple), ou que ce soit pour soi-même (mainte-
nance d’un programme sur le long terme par exemple), le code doit être assorti de
commentaires dont le rôle est en particulier d’éclairer le code (mais pas seulement,
comme nous le verrons plus loin).

Uncommentairedoit êtreprécédéducaractère#, tout cequi suit ce caractère jusqu’à
la fin de la ligne sera ignoré par l’interpréteur.

Quelques règles du bon usage des commentaires (extraits du PEP8) :

/ Lycée Michel Montaigne – Bordeaux 6 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

7
IT
C
Creative-Commons

20
25
-2
02
6 • Commentaire en ligne : un commentaire en ligne est un commentaire sur la

même ligne qu’une déclaration. Les commentaires en ligne doivent être sépa-
rés par au moins deux espaces de la déclaration. Ils doivent commencer par un
suivi d’un seul espace.

• Bloc de commentaires : ils s’appliquent généralement à une partie (ou à tout) du
code qui les suit et sont indentés aumêmeniveau que celui-ci. Chaque ligne du
bloc commence par un # suivi d’un seul espace (sauf s’il s’agit de texte en re-
trait à l’intérieur du commentaire). Les paragraphes à l’intérieur d’un bloc sont
séparés par une ligne contenant un seul #.

• Les commentaires qui contredisent le code sont pires que pas de commentaires du
tout ! Ne pas oublier de mettre à jour les commentaires lorsque le code change!
Les commentaires doivent être des phrases complètes et pertinentes. Le pre-
mier mot doit être en majuscule, sauf s’il s’agit d’un identifiant qui commence
avec une lettre minuscule (ne jamais modifier la casse des identifiants !).

• Les blocs de commentaires consistent généralement en un ou plusieurs para-
graphes construits à partir de phrases complètes, chaque phrase se terminant
par un point. Vous devez utiliser deux espaces après le point de fin de phrase
sauf après la dernière phrase.

On initialise deux variables x et y à 1. Puis on calcule la \

↪ somme de x et y. (bloc de commentaire)

x = 1 # Initialisation de x (commentaire en ligne)

y = 1

z = x+y

Mais aussi clair que puisse être un code, cela ne prouve pas forcément qu’il fait ce
que l’on attend de lui. Deux questions se posent systématiquement :

• [Question 1] Est-ce que le code se termine?
• [Question 2] Si oui, le résultat obtenu est-il celui attendu?

Ces questions nous amènerons dans un autre chapitre à la notion de preuve d’algo-
rithme.

On peut introduire dès à présent des outils pouvant figurer dans le code sous forme
de commentaire :

Précondition• Postcondition• Invariant de boucles•

3.2 Précondition

Définition 2 | Précondition
Une précondition est une propriété (P) qui doit être vérifiée avant l’exécution du
code.

Considérons l’extrait de code S suivant, où 𝑎 et 𝑏 désignent deux entiers naturels :

x, y = a, b

while x != y:

if x > y:

x = x - y

else:

y = y - x

S est donc défini pour (𝑎,𝑏) ∈ ℕ2. Examinons l’évolution
des valeurs du couple de variables (𝑥,𝑦) lorsqu’on exécute
S avec 𝑎 = 14 et 𝑏 = 9 :

(14,9)→ (5,9)→ (5,4)→ (1,4)→ (1,3)→ (1,2)→ (1,1)

la boucle s’arrête et on obtient 𝑥 = 𝑦 = 1. Deuxième exemple, on exécute S avec cette
fois-ci 𝑎 = 14 et 𝑏 = 0 : (14,0)→ (14,0)→ (14,0)…, la boucle est infinie, S ne se
termine donc jamais dans ce cas.

On peut alors partitionner l’ensemble de départ de S (ℕ2 ici) en deux parties :

• L’ensemble {(𝑎,𝑏) ∈ ℕ2 | S se termine et renvoie le résultat attendu},
• et son complémentaire qui est constitué des couples (𝑎,𝑏) ∈ ℕ2 tels que S ne se

termine pas, ou bien se termine mais ne donne pas le résultat attendu. (ici, le
pgcd de x et y)

La proposition permettant de décrire le premier ensemble s’appelle une précondi-
tion (propriété qui doit être vérifiée avant d’exécuter le code), dans notre exemple
ce pourrait être la proposition (P) suivante : « (𝑎,𝑏) ∈ ℕ2, 𝑎 > 0, 𝑏 > 0 » .

Cette précondition peut être annotée dans le code sous forme d’un commentaire de
la manière suivante :
Précondition (P): a et b sont des naturels strictement positifs

x, y = a, b

while x != y:

if x > y:

x = x - y

else:

y = y - x

ITCCreative-Commons 2025-2026 7 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

8
IT
C
Creative-Commons

20
25
-2
02
6

3.3 Postcondition

Caractériser les conditions qui font qu’un code S s’exécute normalement et donne le
résultat voulu ne suffit pas, il faut également caractériser le résultat attendu.

Définition 3 | Postcondition
Une postcondition est une propriété (Q) qui doit être vérifiée après l’exécution
du code.

Si on reprend l’exemple précédent, la postcondition pourrait être la proposition (Q)
suivante : «𝑥 = 𝑦 et 𝑥 = pgcd(𝑎,𝑏) » .

Cette postconditionpeut être annotée également dans le code sous formed’un com-
mentaire de la manière suivante :
Précondition (P): a et b sont des naturels strictement positifs

x, y = a, b

while x != y:

if x > y:

x = x - y

else:

y = y - x

Postcondition (Q): x = y et x = pgcd(a,b)

Lorsque le code S est le corps d’une fonction, alors la précondition et la postcondi-
tion peuvent être mentionnées dans le docstring de la fonction.

3.4 Notion d’invariant

Définition 4 | Invariant
Un invariant est une proposition qui reste vraie tout au long de l’exécution du
code (ou d’une portion du code).

Cette notion d’invariant est utilisée notamment pour les preuves d’algorithmes.

Dans l’exemple précédent l’invariant est : « 𝑥 et 𝑦 sont des naturels non nuls, et
pgcd(𝑥,𝑦) = pgcd(𝑎,𝑏) » .

Lorsque la condition n’est plus remplie, c’est à dire lorsque 𝑥 et 𝑦 sont égaux, on sort
de la boucle, on a alors𝑥 = 𝑦 et d’après l’invariant on a aussi pgcd(𝑥,𝑦) = pgcd(𝑎,𝑏),
or pgcd(𝑥,𝑦) = pgcd(𝑥,𝑥) = 𝑥 (𝑥 est un naturel non nul), ce qui prouve la postcon-
dition (Q).

Onpeut alors noter l’invariant et la postcondition sous formede commentaires dans
le code, comme ceci :
Précondition (P): a et b sont des naturels strictement positifs

x, y = a, b

while x != y:

Invariant: x et y sont des naturels strictement positifs et \

↪ pgcd(x,y) = pgcd(a,b).

if x > y:

x = x - y # pgcd(x, y) = pgcd(x - y, y)

else:

y = y - x # pgcd(x, y) = pgcd(x, y - x)

Postcondition (Q): x = y et x = pgcd(a,b)

On remarquera que nous n’avons pas prouvé que la boucle se termine, ni que l’in-
variant proposé est correct (l’invariant doit être vérifié avant la première itération
(itération dite no 0), et doit être vérifié également à la fin de chaque itération, ce qui
permetde l’utiliser pourprouver lapostcondition). Ceci seradétaillé dans le chapitre
suivant.

En résumé, lorsque nous avons affaire à une boucle, nous pouvons représenter la
situation ainsi :

instaure

conserve

nonet

ouiet

implique

Précondition

Initialisation

Invariant

Postcondition

Progression
dans la boucle

Arrêt ?

FIGURE 9 : Les cases grisées correspondent à une action.

/ Lycée Michel Montaigne – Bordeaux 8 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

9
IT
C
Creative-Commons

20
25
-2
02
6

Exercice 6 [Sol 6] Écrire la fonction somme(n: int) -> int respectant la spé-
cification suivante :

• Précondition : 𝑛 ∈ℕ.
• Postcondition : la valeur renvoyée est

𝑛
∑
𝑘=0

𝑘.

On précisera dans le code un invariant de la boucle.

Exercice 7 [Sol 7] On considère la fonction (non documentée) suivante :
def f(a, b):

x, y, r = a, b, 0

while x != 0:

if x%2 == 0:

x = x//2

else:

x = (x-1)//2

r = r + y

y = 2*y

return r

1. Compte tenu des opérations effectuées il faut que 𝑎 et 𝑏 soient des nombres, et
compte tenude la division euclidienne faite sur𝑥, il faut que𝑎 soit un entier natu-
rel au départ. Que se passe-t-il lorsque 𝑎 =−1? On pourrait vérifier qu’il se passe
la même chose pour tout entier 𝑎 < 0.

2. Montrer que la proposition : «𝑎𝑏 = 𝑥𝑦+𝑟 » est un invariant pour la boucle while.

3. Réécrire le code de cette fonction mais sous forme documentée.

4 JEUX DE TESTS

4.1 Utilité

Du point de vue purement intellectuel, une fois qu’un programme est clairement
spécifié et prouvé, il peut sembler inutile de le tester. Sauf que nous ne sommes pas
infaillibles dans nos démarches intellectuelles et que des erreurs peuvent se glisser
malgré tout. D’où la nécessité demultiplier les tests, que ce soit au niveau de chaque
fonction écrite, ou au niveau de l’ensemble du programme (articulation entre les
différentes parties du programme).

Contrairement à ce que l’on pourrait peut-être penser, un test ne prouve pas le code,
mais pour reprendre la citation d’Edsger DIJKSTRA : « le test de programmes peut être
une façon très efficace de montrer la présence de bugs, mais il est désespérément in-
adéquat pour prouver leur absence » .

Quand prévoir un jeu de tests? Lorsqu’on doit écrire une fonction, il est
conseillé engénéral deprévoir un jeude tests dès la spécificationde la fonction, donc
bien avant l’écriture du code lui-même! Un test est en fait la donnée de valeurs par-
ticulières pour les paramètres d’entrée de la fonction, et la valeur attendue en retour.
Comme nous l’avons vu plus haut, l’ensemble des valeurs possibles des paramètres
se partitionne en (au moins) deux parties, celle qui correspond aux valeurs pour les-
quelles le code se termine et donne le résultat attendu, et la partie complémentaire,
c’est en général sur les cas limites que portent les tests.

4.2 Exemple

On veut écrire la fonction division(a, b) dont la spécification est la suivante :

• Paramètres d’entrée : 𝑎 et 𝑏 sont des entiers positifs avec 𝑏 non nul.
• Résultat renvoyé : le résultat de la fonction est le tuple (𝑞,𝑟) où 𝑞 et 𝑟 sont res-

pectivement le quotient et le reste de la division euclidienne de 𝑎 par 𝑏 (c’est à
dire vérifiant 𝑎 = 𝑏𝑞+𝑟 avec 0 ⩽ 𝑟 < 𝑏).

Avant décrire le code documenté, il nous faut décider de ce que l’on va faire si la
contrainte (ou précondition) sur les paramètres d’entrée n’est pas remplie, et prévoir
un jeu de tests.

Pour la pré-condition non remplie, il y a plusieurs choix possibles :

• générer une erreur avec l’instruction assert,
• renvoyer un résultat particulier.

La première solution provoquera la fin du programme avec éventuellement unmes-
saged’erreur, cequin’est pas toujours souhaitable.Nousallonsopterpour la seconde
solution en convenant d’un résultat égal à None si la précondition n’est pas remplie.
Cette convention devra être mentionnée dans la docstring.

Nousallonsmaintenantprévoir des testspour lesdifférents casdefigure, suivantque
𝑎 est positif ou négatif, et 𝑏 est nul ou strictement négatif ou strictement positif, en
choisissant des valeurs pour 𝑎 et 𝑏 et en donnant le résultat qui devrait être renvoyé
par la fonction, par exemple :

• 𝑎 et 𝑏 strictement positifs : division(19, 7) doit renvoyer (2, 5),

ITCCreative-Commons 2025-2026 9 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

10
IT
C
Creative-Commons

20
25
-2
02
6 • 𝑎 et 𝑏 strictement positifs : division(7, 19) doit renvoyer (0, 7),

• 𝑎 nul et 𝑏 strictement positif : division(0, 19) doit renvoyer (0, 0),
• 𝑎 positif et 𝑏 nul : division(19, 0) doit renvoyer None,
• 𝑎 positif et 𝑏 négatif : division(19, -7) doit renvoyer None,
• 𝑎 négatif et 𝑏 positif : division(-19, 7) doit renvoyer None,
• 𝑎 négatif et 𝑏 nul : division(-19, 0) doit renvoyer None,
• 𝑎 négatif et 𝑏 négatif : division(-19, -7) doit renvoyer None.

On pourrait bien sûr imaginer d’autres valeurs numériques, ou même choisir des
valeurs aléatoirement dans chaque cas. Nous allons faire figurer ces tests dans la
docstring sous forme d’exemples
def division(a: int, b: int) -> (int, int):

""""

Renvoie le quotient et le reste de la division de a par b

Paramètres:

a: int, entier naturel

b: int, entier strictement positif

Retour:

tuple (q, r) tel que a=bq+r avec 0<=r<b

ou None si a<0 ou b<=0

Exemples:

>>> division(19,7)

(2,5)

>>> division(7,19)

(0,7)

>>> division(0,19)

(0,0)

>>> division(19,0)

None

>>> division(19,-7)

None

>>> division(-19,7)

None

>>> division(-19,0)

None

>>> division(-19,-7)

None

"""

Nous pouvons maintenant passer à l’écriture du code. La post-condition nous four-
nit pratiquement l’invariant de la boucle que nous allons devoir écrire : 𝑎 = 𝑏𝑞+𝑟,
𝑞 et 𝑟 seront deux variables locales, il faut les initialiser de sorte que l’invariant soit
vérifié, il suffit de prendre 𝑞 = 0 et 𝑟 = 𝑎, la pré-condition nous dit alors que 0 ⩽ 𝑟. Si
𝑟 < 𝑏, c’est terminé, mais si 𝑟 ⩾ 𝑏, alors l’idée est d’enlever 𝑏 à 𝑟 et d’ajouter 1 à 𝑞 car
𝑏𝑞+𝑟 = 𝑏(𝑞+1)+ (𝑟 −𝑏) (l’invariant est bien conservé), et on recommence le test
sur 𝑟 (boucle).
def division(a: int, b: int) -> (int, int):

""""

Renvoie le quotient et le reste de la division de a par b

Paramètres:

a: int, entier natuel

b: int, entier strictement positif

Retour:

tuple (q, r) tel que a=bq+r avec 0<=r<b

ou None si a<0 ou b<=0

Exemples:

>>> division(19,7)

(2,5)

>>> division(7,19)

(0,7)

>>> division(0,19)

(0,0)

>>> division(19,0)

None

>>> division(19,-7)

None

>>> division(-19,7)

None,

>>> division(-19,0)

None

/ Lycée Michel Montaigne – Bordeaux 10 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

11
IT
C
Creative-Commons

20
25
-2
02
6

>>> division(-19,-7)

None

"""

if (a < 0) or (b <= 0): # pré-condition non remplie

return None

q, r = 0, a

while r >= b:

Invariant: a = bq+r et 0 <= r

q += 1

r -= b # bq+r = b(q+1)+(r-b)

return (q, r)

4.3 Comment effectuer les tests prévus?

Une fois le code saisi et enregistré dans un fichier, on effectue les tests prévus. Nous
allons donner trois façons de procéder :

• [Laméthode naïve] on ajoute à la suite de notre fonction une succession de
print (un par test), du style : print(division(19,7) == (2,5)), ce qui pro-
voquera à l’exécution l’affichage de True ou bien False suivant que le test est
positif ou négatif.

• [Un peu plus élaboré] on écrit une fonction dédiée aux tests qui va utiliser
l’instruction assert pour chacun des tests :
def test_division():

assert division(19,7) == (2,5), "erreur lorsque a=19 et \

↪ b=7"

assert division(7,19) == (0,7), "erreur lorsque a=7 et \

↪ b=19"

... etc

assert division(-19,-7) == None, "erreur lorsque a=-19 et \

↪ b=-7"

print("Tous les tests ont été réussis.")
Il n’y a plus alors qu’à exécuter cette fonction, s’il n’y a pas d’erreur d’assertion,
on affiche que tous les tests ont été passés avec succès. Attention cependant, si
un des tests provoque une boucle infinie le programme ne se terminera pas, et
on ne saura pas quel est le test défectueux.

• [Tests automatiques] lorsque les tests sont explicités dans ladocstring sous
une certaine forme, alors on peut faire passer automatiquement ceux-ci en
utilisant le module doctest et plus précisément sa fonction testmode(), qui

va tester l’ensemble des fonctions du programme. Pour chaque fonction, sa
docstring va être analysée¹ et les lignes commençant par >>> (trois chevrons
suivis d’une espace obligatoire) vont être considérées comme des instructions
et être exécutées, le résultat de cette exécution est comparé avec ce qui est lu
dans la ligne suivante, si cela ne coïncide pas une erreur est signalée. Si aucune
erreur n’est signalée c’est que tous les tests ont été passés avec succès.
Attention : la docstring est une chaîne de caractères, il faut donc faire très at-
tention à la façon dont l’on écrit les résultats attendus car ce sont des chaînes de
caractères qui vont être comparées. Par exemple si on écrit dans la docstring

de notre fonction :
def division(a: int, b: int) -> (int, int):

"""

...

>>> division(19,7)

(2,5)

...

"""

...
alors à l’exécution de l’instruction doctest.testmod() nous verrons l’erreur
suivante :
**

File "val.py", line 250, in __main__.division

Failed example:

division(19,7)

Expected:

(2,5)

Got:

(2, 5)
notez l’espace manquante après la virgule dans la docstring... De même, si on
écrit :
def division(a: int, b: int) -> (int, int):

"""

...

>>> division(19,-7)

None

...

"""

...
alors à l’exécution de l’instruction doctest.testmod() nous verrons l’erreur
suivante :

1. on dit aussi « parsée », anglicisme issu du verbe to parse

ITCCreative-Commons 2025-2026 11 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

12
IT
C
Creative-Commons

20
25
-2
02
6

**

File "val.py", line 264, in __main__.division

Failed example:

division(-19,-7)

Expected:

None

Got nothing
car None et "None" ce n’est pas la même chose! Il est préférable d’opter pour
l’écriture suivante (ou de ne rien indiquer comme résultat et se contenter de
>>> division(19,-7) dans le code précédent) :
def division(a: int, b: int) -> (int, int):

"""

...

>>> division(19,-7) == None

True

...

"""

...
alors à l’exécution de l’instruction doctest.testmod() il n’y aura plus d’erreur
(à condition d’écrire True correctement, et sans espace avant ni après !).

Pour conclure, nous pouvons proposer ce code pour tester notre fonction :
import doctest

def division(a: int, b: int) -> (int, int):

""""

Renvoie le quotient et le reste de la division de a par b

Paramètres:

a: int, entier natuel

b: int, entier strictement positif

Retour:

tuple (q, r) tel que a=bq+r avec 0<=r<b

ou None si a<0 ou b<=0

Exemples:

>>> division(19,7) == (2,5)

True

>>> division(7,19) == (0,7)

True

>>> division(0,19) == (0,0)

True

>>> division(19,0) == None

True

>>> division(19,-7) == None

True

>>> division(-19,7) == None

True

>>> division(-19,0) == None

True

>>> division(-19,-7) == None

True

"""

if (a < 0) or (b <= 0): # pré-condition non remplie

return None

q, r = 0, a

while r >= b:

Invariant: a = bq+r et 0 <= r

q += 1

r -= b # bq+r = b(q+1)+(r-b)

return (q, r)

doctest.testmod()

L’exécution ne provoque aucun affichage d’erreur ce qui signifie que tous les tests
ont été passés avec succès. Cet exemple sera repris enTP pour l’étendre à la division
dans ℤ.

Remarque 4
• Le module doctest contient d’autres fonctions, par exemple il est pos-

sible de tester une fonction individuellement dans le programme (fonction
run_docstring_examples).

• Il existe d’autresmodulespermettant des tests plus sophistiqués,maisnous
n’en parlerons pas dans ce cours.

/ Lycée Michel Montaigne – Bordeaux 12 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

13
IT
C
Creative-Commons

20
25
-2
02
6

4.4 Tests de performance

Pour comparer des algorithmes, on peut être amené à effectuer d’autres types de
tests, comme des tests de performance en temps d’exécution par exemple. Avec le
module time, il est possible de faire cesmesures. On relève un instant initial, on exé-
cute un certain nombre de fois la fonction, on relève l’instant final et il n’y a plus qu’à
faire la différence :
from time import time # fonction time du module time

t1 = time() # instant initial

for _ in range(1000): # pour 1000 exécutions

r = fonction_a_tester()

t2 = time() # instant final

print("durée: ", (t2-t1)/1000) # en secondes

Suivant la précision de lamachine, une seule exécution n’est peut-être pas suffisante
pour avoir une mesure fiable.

Si on travaille dans un notebook, alors on peut plus simplement utiliser l’instruction
timeit fonction_a_tester() qui va mesurer automatiquement le temps d’exécu-
tion de la fonction.

ITCCreative-Commons 2025-2026 13 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

14
IT
C
Creative-Commons

20
25
-2
02
6

SOLUTIONS DES EXERCICES

Solution 1 La variable y contient la valeur 0 et la variable Lp contient la liste [1].

Solution 2

1. • Pour les valeurs initiales 𝑎 = 15,𝑏 = 10,on obtient successivement pour le
couple (𝑎,𝑏) : (10,5), (5,0). La valeur renvoiee est donc 5.

• Pour les valeurs initiales 𝑎 = 35,𝑏 = 21,on obtient successivement pour le
couple (𝑎,𝑏) : (21,14), (14,7), (7,0). La valeur renvoiee est donc 7.

Dans ces deux exemples, la fonction renvoie le pgcd (plus grand commun divi-
seur) de 𝑎,𝑏.

2. Fonction avec spécifications :
def pgcd(a:int,b:int)->int:

"""

Returns the pgcd of 'a' and 'b'

Parameters

a : int

first value to compute the pgcd

b : int

second value to compute the pgcd

Returns

int

pgcd of 'a' and 'b'

Examples

>>> pgcd(15,10)

5

>>> pgcd(35,21)

7

"""

if b == 0 :

return a

return f(b, a%b)

Solution 3 En rajoutant les éléments demandés, on peut proposer pour la partie
demandée (le code étant inchangé) :
def dicho(L:list, v:int)->bool:

"""

Determines if value 'v' belongs to 'L' by dichotomic method.

Parameters

L : list

list of values sorted with L[0]<= L[1] <= ... <= L[n-1]

v : int

value to be tested

Returns

bool

True if value 'v' is in 'L', False in the other case

Examples

>>> dicho([1,3,5],5)

True

>>> dicho([1,3,5],4)

False

>>> dicho([],1)

False

"""

Solution 4 On réécrit de même :
def tri_bulle(L:list)->None:

"""

Sort the list in ascending order and return None. After \

↪ execution, the list is sorted in ascending order.

/ Lycée Michel Montaigne – Bordeaux 14 ITCCreative-Commons 2025-2026

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

15
IT
C
Creative-Commons

20
25
-2
02
6

Parameters

L : list

list to be sorted

Returns

None

Examples

>>> L = [2,3,1]

>>> tri_bulle(L)

>>> L

[1,2,3]

"""

Solution 5

1. On peut lister plusieurs conditions :

• mot et texte doivent être des chaines de caractère,
• i doit être un entier positif ou nul,
• on doit avoir 𝑖 + len(mot)≤ len(texte).

2. Les lignes correspondantes s’écrivent :
n = len(texte)

m = len(mot)

assert type(mot) == str

assert type(texte) == str

assert type(i) == int

assert i >= 0

assert i+m <= n

Solution 6 Somme des entiers (pour l’invariant on convient que la valeur de 𝑘
avant la boucle est nulle) :

def somme(n: int) -> int:

"""

Returns 0+1+...+n

Parameters

n: int assumed positive

Returns

float

0+1+...+n

Examples

>>> somme(10)

55

"""

resultat = 0 # variable qui contiendra la somme cherchée

for k in range(1,n+1): # pour k allant de 1 à n

Invariant : resultat est la somme des entiers de 0 à k

resultat = resultat + k

return resultat

Solution 7

1. Lorsque 𝑎 = −1, la suite des valeurs de 𝑥 est constamment égale à −1, la boucle
est donc infinie.

2. Avant la boucle on a 𝑥 = 𝑎, 𝑦 = 𝑏 et 𝑟 = 0, on a donc bien 𝑎𝑏 = 𝑥𝑦+𝑟. Supposons
que cela soit vrai après l’itération 𝑛 et qu’il y ait une itération 𝑛+ 1, on a donc
𝑎𝑏 = 𝑥𝑦+𝑟, distinguons deux cas :

• si 𝑥 est pair alors 𝑥//2 =
𝑥
2

et 𝑎𝑏 = 𝑥𝑦+𝑟 =
𝑥
2
×(2𝑦)+𝑟, on a bien la relation

avec les nouvelles valeurs de 𝑥 et de 𝑦 (𝑟 n’a pas changé),

• si 𝑥 est impair alors 𝑥//2 =
𝑥−1
2

(puisque 𝑥 = 2× 𝑥−1
2 +1 et que 1 = 𝑥%2 car

1 < 2) et 𝑎𝑏 = 𝑥𝑦+𝑟 = (2
𝑥−1
2

+1)𝑦+𝑟 =
𝑥−1
2

×(2𝑦)+(𝑦+𝑟), on a bien la
relation avec les nouvelles valeurs de 𝑥, de 𝑦 et de 𝑟,

ITCCreative-Commons 2025-2026 15 / Lycée Michel Montaigne – Bordeaux

/
Ly
cé
e
M
ic
he
lM

on
ta
ig
ne

–
Bo
rd
ea
ux

16
IT
C
Creative-Commons

20
25
-2
02
6

donc à l’issue de l’itération 𝑛+1 la relation 𝑎𝑏 = 𝑥𝑦+𝑟 est encore vérifiée.

3. Si la boucle se termine, alors 𝑥 est nul et la valeur renvoyée est 𝑟 = 𝑟 +𝑥𝑦 = 𝑎𝑏
(car 𝑥 = 0). D’où une documentation possible :
def f(a: int, b: float) -> float:

"""

Returns a*b

Parameters

a: int assumed positive

b: float

Returns

float

product a*b

Examples

>>> f(5,1.5)

7.5

"""

x, y, r = a, b, 0

while x != 0:

Invariant: x*y+r = a*b

if x%2 == 0: # x est pair

x = x//2

else: # x est impair

x = (x-1)//2

r = r + y

y = 2*y

return r

Cette fonction effectue donc le produit d’un entier 𝑎 avec un nombre 𝑏 en utili-
sant uniquement des additions, soustractions, ainsi que des divisions etmultipli-
cations par 2 (principe de la multiplication russe). Il serait également judicieux
de changer le nom de cette fonction pour quelque chose de plus explicite (par
exemple : multiplication_russe).

/ Lycée Michel Montaigne – Bordeaux 16 ITCCreative-Commons 2025-2026

	pbs@ARFix@136:
	pbs@ARFix@137:
	pbs@ARFix@138:
	pbs@ARFix@139:
	pbs@ARFix@140:
	pbs@ARFix@141:
	pbs@ARFix@142:
	pbs@ARFix@143:
	pbs@ARFix@144:
	pbs@ARFix@145:
	pbs@ARFix@146:
	pbs@ARFix@147:
	pbs@ARFix@148:
	pbs@ARFix@149:
	pbs@ARFix@150:
	pbs@ARFix@151:

