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Chapitre (S2) 2 Preuve et complexité

1 Introduction . . . . . . . . . . . . . . . . . . . .

2 Terminaison . . . . . . . . . . . . . . . . . . . .

3 Correction . . . . . . . . . . . . . . . . . . . . . .

4 Complexité . . . . . . . . . . . . . . . . . . . . .

Objectifs
• Savoir prouver la terminaison d’une

boucle.
• Savoir prouver un programme simple

en utilisant un invariant de boucle.
• Savoir calculer la complexité tempo-

relle et/ou spatiale d’un programme.

1 INTRODUCTION

Un algorithme est une suite finie de règles et d’opérations élémentaires mises en
oeuvre sur un nombre fini de données en vue de résoudre un problème spécifique.
Si un algorithme est susceptible de résoudre un problème, il convient également de
s’interroger sur sa validité et sur ses performances.

• L’algorithme termine-t-il ?
• L’algorithme répond-il aux spécifications?
• De combien de temps et de ressources mémoires a-t-il besoin?

Les deux premières questions soulèvent le problèmede la preuve d’un algorithme en
termes de terminaison et de correction de ce dernier. La troisième question a trait à
la complexité de l’algorithme, en termes temporels et spatiaux.

Pour fonctionner, un algorithme reçoit généralement un jeu de données en entrée.
Après leur traitement, il renvoie un résultat en sortie. Le traitement peut souvent se
décomposer en blocs simples :

• opérations d’affectation, entrées/sorties, manipulations de variables ;
• structures conditionnelles if, elif, else ;
• structures répétitives for, while.

Ce découpage essentiel en blocs simples permet l’analyse de l’algorithme pour en
établir la preuve et en évaluer la complexité.

Dans la suite du cours, tous les algorithmes sont exprimés sous la forme de pro-
grammes écrits enPython.Nousparleronsdepreuvedeprogrammes et de leur com-
plexité.

2 TERMINAISON

2.1 Exemple

Prouver qu’un programme termine, c’est montrer que, quel que soit le jeu de don-
nées passé en entrée respectant la pré-condition, chaque bloc simple est traité en
un nombre fini d’opérations.

Les opérations d’affectation, les entrées/sorties, les manipulations de variables ter-
minent toujours. Il en est demêmedes structures conditionnelles (if) et des boucles
inconditionnelles (for), sous réserve que la variable d’itération ne soit pas modi-
fiée¹.

Les boucles conditionnelles while requièrent une attention particulière. Mal pro-
grammées, elles peuvent être à l’origine de boucles infinies. Prenons l’exemple sui-
vant.
n = 5

while n != 0:

n -= 1

Avant d’entrer dans la boucle while, la variable n est initialisée avec la valeur 5. Cette
donnéed’entréeest traitéedans laboucleoù savaleur estdécrémentée.nprenddonc

1. Nous nous interdirons cette modification à l’avenir.
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successivement les valeurs 4, 3, 2, 1 et 0. Pour cette dernière valeur, la condition n

!= 0 n’étant plus vérifiée, la boucle se termine de sorte que le nombre d’opérations
effectuées par ce programme est fini.

L’exemple suivant présente une situation a priori proche mais de comportement ra-
dicalement différent.
n = -1

while n != 0:

n -= 1

La valeur initiale de n étant négative, la condition n != 0 sera vraie à chaque tour de
boucle car n ne fait que diminuer, et la boucle ne s’arrête jamais².

Ainsi, l’algorithmeprécédent termine sin est initialementunentier positif, c’est donc
une pré-condition possible pour la boucle. Nous avons vu dans un précédent cha-
pitre que cette pré-conditionpeut-être testée à l’aided’une assertion avant la boucle,
comme ceci :
assert n >= 0, "la valeur de n doit être positive"

while n != 0:

n -= 1

2.2 Une propriété mathématique

La preuve de la terminaison d’un algorithme repose généralement sur le résultat sui-
vant³.

Rappel (mathématiques)
• Si 𝑎 est un réel et (𝑢𝑖) une suite d’entiers strictement croissante (resp. stric-

tement décroissante), alors il existe un rang 𝑖0 pour lequel 𝑢𝑖0 > 𝑎 (resp.
𝑢𝑖0 < 𝑎).

• Autrement dit, une suite d’entiers strictement croissante (resp. strictement
décroissante), ne peut pas être majorée (resp. minorée).

Ce résultat exprime en particulier qu’il n’existe pas de suite infinie strictement dé-
croissante dans ℕ. Ainsi, pour établir la terminaison d’un programme, on peut par
exemple exhiber une suite d’entiers positifs, dépendant des données duprogramme,
à valeurs dans ℕ, qui décroît strictement à chaque passage dans la boucle, ou bien
plus généralement, une suite d’entiers minorée (resp. majorée) qui décroît (resp.
croît) strictement à chaque passage dans la boucle.

2. En pratique, les limites physiques de la machine vont mener le programme à se terminer.
3. Voir le cours de mathématiques pour une preuve.

Dans l’exemple précédent, en posant 𝑢𝑘 la valeur de 𝑛 à la fin de l’itération no 𝑘, on
a 𝑢0 = 𝑛 et, pour tout entier naturel 𝑘 strictement positif, 𝑢𝑘 = 𝑢𝑘−1 −1 (s’il y a une
itération 𝑘), la suite (𝑢𝑘) est donc une suite d’entiers strictement décroissante, et
plus précisément 𝑢𝑘 = 𝑛−𝑘. Si 𝑛 ⩾ 0, le passage dans la boucle se fait 𝑛 fois et le
programme termine (avec 𝑢𝑛 = 0). Dans le cas contraire, la boucle est infinie et le
programme ne termine pas.

Notation Évolution d’une variable dans une boucleΣ
Le contenu d’une variable évoluant généralement à chaque passage dans une
boucle, on utilisera la notation suivante : si var désigne le nom d’une variable,
on note :
• var𝑖 le contenu de cette variable à la fin du 𝑖e passage dans la boucle (ité-

ration 𝑖).
• Par convention, var0 désigne le contenu de la variable juste avant la pre-

mière exécution de la boucle (itération 0).

Exemple 1 Par exemple, considérons le programme :
S = 10

for k in range(2,5) :

S += k
Les valeurs successives de la variable S sont S0 = 10, S1 = 12, S2 = 15, S3 = 19.

Remarque 1 L’indice 𝑖 positionné sous la variable fait référence au numéro de
l’itération dans la boucle, et non aux éléments de la liste décrite par la boucle.
Dans notre exemple, 𝑖 parcourt les valeurs 0,1,2,3 alors que 𝑘 décrit les valeurs
2,3,4.

2.3 Exemple

Considérons l’algorithme d’exponentiation rapide qui calcule 𝑥𝑛, pour un réel 𝑥 et
un entier naturel 𝑛, en utilisant uniquement des produits, des soustractions par 1 et
des divisions par 2. Cet algorithme effectue généralement beaucoup moins de mul-
tiplications que les 𝑛 attendues par la définition.

𝑥𝑛 = 1×𝑥×𝑥×⋯×𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛mutliplications

.

def expR(x: float, n: int) -> float :

""" Renvoie x^n pour x réel et n entier naturel. """

X = x

N = n

R = 1
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while N != 0 :

if N%2 == 0 :

N = N//2

else :

R = R*X

N = (N-1)//2

X = X*X

return R

Avec la notation introduite plus haut, désignons parN𝑖 la valeur prise par la variable
N à la fin de l’itération 𝑖. Avant d’entrer dans la boucle while, N0 = 𝑛 ∈ ℕ par hypo-
thèse (pré-condition). Lors de la (𝑖 +1)e itération de la boucle while :

• siN𝑖 est pair, alorsN𝑖+1 =N𝑖//2 ;
• siN𝑖 est impair, alorsN𝑖+1 = (N𝑖−1)//2

Dans les deux cas, siN𝑖 ∈ ℕ, alorsN𝑖+1 ∈ ℕ (récurrence).
D’autre part, la suite (N𝑖)𝑖∈ℕ est strictement décroissante. En effet, pour 𝑖 ∈ ℕ, sup-
posons qu’il y ait une itération 𝑖 +1, c’est à dire queN𝑖 ≠ 0 :

• siN𝑖 est pair, alorsN𝑖+1 =N𝑖//2 <N𝑖 puisqueN𝑖 > 0 par hypothèse;
• siN𝑖 est impair, alorsN𝑖+1 = (N𝑖−1)//2 <N𝑖.

Supposons que la boucle ne se termine pas (raisonnement par l’absurde), alors, la
suite (N𝑖)𝑖∈ℕ est formée d’entiers positifs et elle est strictement décroissante, ce qui
absurde. La boucle while termine donc.

Exercice 1 [Sol 1] On considère un entier 𝑛 ⩾ 0 et 𝑥 un réel quelconque.

1. Que fait la fonction suivante dans le code ci-dessous? Établir sa terminaison et la
documenter.
def f(x: float, n: int)->float :

y = 1

for i in range(n) :

y *= x

return y

2. Mêmes questions pour la fonction ci-dessous.
def f(x: float, n: int)->float :

y = 1

i = 0

while i < n :

y *= x

i += 1

return y

2.4 Problème de l’arrêt

Établir la terminaison d’une boucle n’est pas toujours simple. Il est des problèmes
pour lesquels on ne peut que conjecturer le résultat. C’est le cas de la suite de SYRA-
CUSE, rappelée ci-après.

Soit (𝑢𝑝)𝑝∈ℕ une suite définie par son premier terme 𝑢0 = 𝑛, où 𝑛 est un entier na-
turel non nul et par la relation de récurrence suivante :

∀𝑝 ∈ℕ 𝑢𝑝+1 =
⎧
⎨
⎩

𝑢𝑝
2 si 𝑢𝑝 est pair,
3𝑢𝑝+1 si 𝑢𝑝 est impair.

La conjecture de SYRACUSE affirme que cette suite finit toujours par une répétition
de la séquence 4,2,1, quelque soit l’entier naturel non nul 𝑛 choisi. Mais ce résultat
n’est pas prouvé à ce jour.

En Python, la fonction suivante renvoie l’indice du premier terme égal à 1 :
def syracuse(n: int)->int:

""" Calcule les termes de la suite de Syracuse commençant par \

↪ l'entier strictement positif n jusqu'à ce qu'un terme \

↪ vaille 1 et renvoie l'indice de ce dernier """

u = n

indice = 0

while u != 1 :

if u%2 == 0 :

u = u//2

else :

u = 3*u + 1

indice += 1

return indice

Selon la conjecture, cette fonction termine pour toute valeur de𝑛. Mais sa terminai-
son n’est que conjecturée et donc non démontrée !
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3 CORRECTION

3.1 Invariant de boucle

Définition 1 | Correction d’un algorithme
• Un algorithme est dit correct, si quels que soient les valeurs des paramètres

d’entrée compatibles avec le fonctionnement de l’algorithme, ce dernier
renvoie le résultat attendu.Endécoupant l’algorithmeenblocs simples, cela
revient à montrer que chaque bloc remplit une fonction bien identifiée.

• Établir la correction d’un algorithme, c’est montrer qu’il est correct.

Dans le cas des opérations d’affectation, des entrées/sorties, des manipulations de
variables, des structures conditionnelles, l’analyse de leur action est relativement
aisée. Celle des boucles for et while l’est moins. La notion d’invariant de boucle,
qui a été introduite lors du chapitre précédent, permet d’établir la correction des
boucles.

Rappel (Invariant de boucle) Un invariant de boucle est une propriété qui dé-
pend des données de l’algorithme et qui est vérifiée juste avant la boucle, et
après chaque passage dans la boucle (c’est-à-dire après chaque itération).

Nous allons mettre en évidence et utiliser les invariants de boucle sur quelques
exemples d’algorithmes.

3.2 Moyenne d’une liste de nombres

Définition 2 | Moyenne d’une liste
Lamoyenne 𝑚 d’un ensemble L = {ℓ0,ℓ1,…,ℓ𝑛−1} de𝑛 valeurs est définie par la

relation suivante : 𝑚=
1
𝑛

𝑛−1
∑
𝑘=0

ℓ𝑘.

Compléter la fonction suivante pour qu’elle renvoie lamoyenne des nombres conte-
nus dans la liste L :

SQUARESQUARE Moyenne des éléments d’une liste
def moyenne(L: list)->float :

"""

Calcule la moyenne des éléments de la liste de nombres L

"""

S = 0

for e in L:

S += e

return S/len(L)

Preuve de correction. On se propose de montrer par récurrence simple, que
la propriété suivante est un invariant de boucle :

∀𝑖 ∈ {0,…,𝑛}, «S𝑖 =
𝑖−1
∑
𝑘=0

L[𝑘] » où 𝑖 désigne le numéro de l’itération.

Initialisation. Par convention, si𝑎 > 𝑏, on convient que
𝑏
∑
𝑘=𝑎

𝑢𝑘 = 0. Ainsi, pour 𝑖 = 0,

on a bien : S0 = 0 =
−1
∑
𝑘=0

L[𝑘].

Hérédité. Supposons la propriété vraie en un certain rang 𝑖 ∈ {0,…,𝑛−1}. Lors de
la (𝑖 + 1)e itération de la boucle, la variable e contient L[𝑖]⁴. L’instruction S += e

exécutée conduit à :

S𝑖+1 = S𝑖+L[𝑖] =
𝑖−1
∑
𝑘=0

L[𝑘]+L[𝑖] =
𝑖
∑
𝑘=0

L[𝑘]. Ce qui achève la récurrence.

Comme la dernière itération de la boucle a lieu pour 𝑖 = 𝑛, la valeur renvoyée par

la fonction est bien : S𝑛 =
𝑛−1
∑
𝑘=0

L[𝑘] et la dernière ligne renvoie bien la moyenne

des nombres contenus dans la liste L. Comme nous l’avons déjà conseillé, on écrit
l’invariant dans le code sous forme de commentaires :

SQUARESQUARE Moyenne des éléments d’une liste
def moyenne(L: list)->float :

"""

Calcule la moyenne des éléments de la liste de nombres L

"""

S = 0

for e in L:

# Invariant: S_i = L[0]+...+L[i-1]

S += e

return S/len(L)

4. Les listes sont indicées à partir de 0.
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3.3 Algorithme de Horner

On s’intéresse à l’évaluation en un réel 𝑥 d’une fonction polynomiale P à coefficients
réels (𝑎𝑖)𝑖∈{0,1,…,𝑛}, 𝑛 étant un entier naturel donné.

P(𝑥) = 𝑎𝑛𝑥𝑛+𝑎𝑛−1𝑥𝑛−1+⋯+𝑎2𝑥2+𝑎1𝑥+𝑎0
Le schéma de HORNER organise les calculs en minimisant le nombre de multiplica-
tions.

P(𝑥) = (((𝑎𝑛𝑥+𝑎𝑛−1)𝑥+⋯+𝑎2)𝑥+𝑎1)𝑥+𝑎0
Les coefficients étant stockés dans une liste LC = [𝑎𝑛,𝑎𝑛−1,…,𝑎2,𝑎1,𝑎0], la fonction
suivante met en oeuvre ce schéma.
def evalP(x: float, LC: list)->float :

"""Evalue en x le polynôme dont les coefficients sont donnés \

↪ dans la liste LC (par ordre de puissances \

↪ décroissantes)."""

P = 0

for c in LC :

P = P * x + c

return(P)

Preuve de correction. Pour prouver que cette fonction renvoie bien la valeur
attendue, nous allons d’abord prouver, par récurrence simple, que la propriété sui-
vante est un invariant de boucle :

∀𝑖 ∈ {0,…,ℓ}, «P𝑖 =
𝑖−1
∑
𝑘=0

LC[𝑘]×𝑥𝑖−1−𝑘 »

où ℓ désigne la longueur de la liste LC et 𝑖 le numéro de l’itération.

Initialisation. De même que précédemment, pour 𝑖 = 0, on a bien :

P0 = 0 =
−1
∑
𝑘=0

LC[𝑘]×𝑥−1−𝑘.

Hérédité. Supposons la propriété vraie en un certain rang 𝑖 ∈ {0,…,ℓ−1}. Lors de la
(𝑖 +1)e itération de la boucle, la variable c contient LC[𝑖]⁵. L’instruction P = P*x+c

exécutée conduit à :

P𝑖+1 = P𝑖×𝑥+LC[𝑖] = (
𝑖−1
∑
𝑘=0

LC[𝑘]×𝑥𝑖−1−𝑘)×𝑥+LC[𝑖] =
𝑖
∑
𝑘=0

LC[𝑘]×𝑥𝑖−𝑘.

Ce qui achève la récurrence.

5. Les listes sont indicées à partir de 0.

Comme la dernière itération de la boucle a lieu pour 𝑖 = ℓ, la valeur renvoyée par la
fonction est bien :

Pℓ =
ℓ−1
∑
𝑘=0

LC[𝑘]×𝑥ℓ−1−𝑘

= LC[0]×𝑥ℓ−1+LC[1]×𝑥ℓ−2+⋯+LC[ℓ−2]×𝑥+LC[ℓ−1]

= 𝑎𝑛𝑥𝑛+𝑎𝑛−1𝑥𝑛−1+⋯+𝑎1𝑥+𝑎0
si on note LC = [𝑎𝑛,𝑎𝑛−1,…,𝑎1,𝑎0] et ℓ = 𝑛+1.

3.4 Exponentiation rapide

Pour une boucle while, à la correction s’ajoute une étape préliminaire consistant à
établir la terminaison de l’algorithme. On suppose cette étape validée.

Pour illustrer notrepropos, établissons la correctionde l’algorithmed’exponentation
rapide.
def expR(x: float, n: int)-> float :

"""

Renvoie x^n pour x réel et n entier naturel.

"""

X = x

N = n

R = 1

while N != 0 :

if N%2 == 0 :

N = N//2

else :

R = R*X

N = (N-1)//2

X = X*X

return R

Preuve de correction. Montrons que la propriété suivante est un invariant
de boucle, où ℓ désigne le nombre d’itérations de la boucle while :

∀𝑖 ∈ {0,…,ℓ}, «R𝑖×X
N𝑖
𝑖 = 𝑥𝑛 »

Initialisation. Pour 𝑖 = 0, on a R0×X
N0
0 = 1×𝑥𝑛 = 𝑥𝑛.

Hérédité. Supposons la propriété vraie en un certain rang 𝑖 ∈ {0,…,ℓ−1}. Lors de
la (𝑖 +1)𝑒 itération de la boucle :

ITCCreative-Commons 2025-2026 5 / Lycée Michel Montaigne – Bordeaux
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N𝑖+1 =N𝑖//2 et X𝑖+1 =X2𝑖 donc :

R𝑖+1×X
N𝑖+1
𝑖+1 =R𝑖×(X2𝑖 )

N𝑖
2

=R𝑖×X
N𝑖
𝑖

= 𝑥𝑛.
• si N𝑖 est impair, alors les exécutions de R = R*X, N = (N-1)/2 et X = X*X

conduisent à R𝑖+1 =R𝑖×X𝑖,N𝑖+1 =
N𝑖−1
2

et X𝑖+1 =X2𝑖 donc :

R𝑖+1×X
N𝑖+1
𝑖+1 =R𝑖×X𝑖×(X2𝑖 )

N𝑖−1
2

=R𝑖×X
N𝑖
𝑖

= 𝑥𝑛.

Ce qui achève la récurrence. Comme la dernière itération de la boucle a lieu pour
𝑖 = ℓ, et que l’on a Nℓ = 0 sans quoi le programme continuerait à boucler, la valeur
renvoyée par la fonction est bien :

Rℓ =Rℓ×X
Nℓ
ℓ⏟
=1

= 𝑥𝑛

Exercice 2 Partie entière [Sol 2] Pour 𝑥 réel positif, on rappelle que la partie
entière de𝑥 est le plus grand entier naturel inférieur ou égal à𝑥. La fonction suivante
en effectue le calcul :
def ParEnt(x: float)->float :

""" Calcule la partie entière du réel positif x """

n = 0

while n + 1 <= x :

n += 1

return n

Faire la preuve de cette fonction.

3.5 Et avec une fonction récursive?

Comme on peut s’en douter, avec une fonction récursive on peut envisager une
preuve (terminaison + correction) à l’aide d’un raisonnement par récurrence. Par
exemple, soit la fonction :
def f(a: int, b: int)->int :

""" Calcul récursif du pgcd, a et b sont supposés naturels \

↪ """

if b == 0:

return a

else:

return f(b, a%b)

On peut établir la terminaison et la correction en montrant par récurrence sur le
paramètre 𝑏 :

𝒫(𝑏) «∀𝑎 ∈ℕ, 𝑓(𝑎,𝑏) se termine et renvoie pgcd(𝑎,𝑏)».

Initialisation. Il est clair que𝒫(0) est vrai (c’est le cas terminal et pgcd(𝑎,0) = 𝑎).

Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’à un naturel 𝑏.
Soit 𝑎 ∈ ℕ. Lorsqu’on appelle 𝑓(𝑎,𝑏 + 1), comme 𝑏 + 1 ≠ 0, on renvoie la valeur
de 𝑓(𝑏 + 1,𝑟) où 𝑟 est le reste de la division de 𝑎 par 𝑏 + 1 : 𝑎 = (𝑏 + 1)𝑞 + 𝑟. Or,
0 ⩽ 𝑟 ⩽ 𝑏 et on sait par hypothèse que 𝑓(𝑏+1,𝑟) se termine et renvoie pgcd(𝑏 +1,𝑟),
donc 𝑓(𝑎,𝑏 +1) se termine et renvoie pgcd(𝑏 +1,𝑟). Or, d’après le cours de mathé-
matique, pgcd(𝑎,𝑏 +1) = pgcd(𝑏 +1,𝑟), donc 𝒫(𝑏 +1) est vraie, ce qui termine la
récurrence.

3.6 Tout n’est pas si simple

Il y a des exemples de codes simples en apparence mais dont la preuve peut être
très difficile. En voici un exemple : un théorème mathématique dit que tout nombre
premier congru à 1 modulo 4 est une somme de deux carrés. La fonction suivante
fournit une telle décomposition :

SQUARESQUARE Décomposition en somme de deux carrés
def decompPremier(p: int)-> (int,int):

""" Renvoie deux entiers u et v tels que p = u^2+v^2

p doit être un nombre premier congru à 1 modulo 4 """

# fonction locale

def f(a: int, b: int, c: int)->(int, int, int) :

""" La fonction magique """

if a > b+c:

return (a-b-c, b, 2*b+c)

else:

return (b+c-a, a, 2*a-c)

# corps de la fonction principale

a, b, c = (p-1)//4, 1, 1

while a != b:

a, b, c = f(a, b, c)
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return (2*a,c)

>>> decompPremier(601)

(24, 5)

On a bien : 601 = 242+52.

La terminaison de la boucle et la preuve de cet algorithme ne sont absolument pas
triviales !

4 COMPLEXITÉ

4.1 Complexité temporelle

Étudier la complexité temporelle d’un algorithme permet d’en mesurer l’« efficacité »
en terme de temps de calcul. Bien sûr, la durée d’exécution d’un programmedépend
de la « taille » des données sur lesquelles il est appelé. Par exemple, on s’attend à
ce qu’un programme calculant la moyenne d’une liste de nombres ait un temps de
calcul d’autant plus longque la liste est longue. C’est précisément cette relation entre
taille des données et durée d’exécution que va exprimer la complexité temporelle.

L’intérêt de cette évaluation est multiple. D’une part, connaître la complexité d’un
algorithme recevant en entrée un certain volumede données permet d’en discuter la
pertinence temporelle : le programme s’exécutera-t-il en un temps « raisonnable »?
D’autre part, plusieurs algorithmes différents peuvent résoudre unmêmeproblème.
Une étude de leur complexité permet d’identifier le plus rapide d’entre eux, pour un
une taille de données fixée.

Remarque 2 Dans ce cadre, la notion de complexité ne correspond pas à la diffi-
culté ressentie à concevoir un algorithme. Un programme peut être très facile à
écrire, mais avoir un temps d’exécution très long, alors qu’un autre programme
beaucoup plus sophistiqué pourra être nettement plus efficace.

4.2 Méthode

Pour évaluer la complexité temporelle d’un algorithme, on commence par détermi-
ner un entier naturel 𝑛 mesurant la « taille » des données fournies au programme.
Cet entier n’a pas besoin d’être la mesure précise en octets de l’espace mémoire né-
cessaire à stocker ces données, mais peut être une grandeur plus simple qui lui soit

corrélée. Par exemple, si le programme doit traiter une liste, 𝑛 peut être son nombre
d’éléments.

On détermine ensuite, en fonction de la taille 𝑛 des données, le nombre d’« ins-
tructions significatives » exécutées par le programme. Ces instructions peuvent dé-
pendre du type d’algorithme étudié, et sont généralement des instructions élémen-
taires du langage : stockage d’une valeur dans une variable, comparaison de deux
valeurs, addition, multiplication, etc.

Les durées d’exécution de chacune de ces instructions élémentaires ne sont pas
identiques⁶, mais on estime qu’elles restent d’un même « ordre de grandeur » . Le
nombre d’opérations élémentaires effectuées par le programme est donc approxi-
mativement proportionnel à son temps d’exécution. Pour estimer le temps d’exécu-
tion, il faut estimer la duréed’uneopération élémentaire, qui dépendde la puissance
du microprocesseur et donc varie d’un ordinateur à un autre.

Se contenter de comptabiliser le nombre d’opérations élémentaires, et non leurs du-
rées, permet donc de s’affranchir de l’ordinateur sur lequel le programme est exé-
cuté : la complexité temporelle mesure réellement la performance de l’algorithme,
et non celle de l’ordinateur sur lequel il est exécuté. Si un algorithme a une meilleur
complexité qu’un autre, son temps d’exécution sera plus faible quelque soit l’ordi-
nateur sur lequel on l’exécute.

Remarque 3 Notez bien que la complexité temporelle sera une fonction de 𝑛,
exprimée sans unité puisqu’il s’agit d’un nombre d’instructions, et non en unité
de temps comme le serait un temps d’exécution.

4.3 Un premier exemple

Intéressons-nous à la fonction qui permet de calculer la moyenne des éléments
d’une liste de nombres donnée en argument.

SQUARESQUARE Moyenne des éléments d’une liste
def moyenne(L: list)->float :

"""Calcule la moyenne des éléments

de la liste de nombres L"""

S = 0

for e in L:

S += e

6. Le temps requis pour effectuer une multiplication est supérieur à celui d’une addition par
exemple.
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return S/len(L)

Pour calculer la complexité temporelle de cette fonction, notons 𝑛 le nombre d’élé-
ments contenus dans la liste L. Le nombre d’affectations et d’opérations arithmé-
tiques (additions et divisions) effectuées par le programme est :

• une affection avant la boucle for,
• dans la boucle for : une addition et une affectation, qui sont répétées pour les

𝑛 éléments de la liste,
• une division dans la dernière ligne (on suppose que la fonction len s’effectue

en un temps négligeable devant les autres.

La complexité temporelle de cet algorithme est :
C(𝑛) = 1+(1+1)×𝑛+1 = 2𝑛+2

Attention
Exclamation

Pour les syntaxes ramassées +=, -=, *= etc., pensez à bien décomposer dans le
calcul de la complexité : 1 affectation et 1 opération (+, -, *).

Exercice 3 [Sol 3] Calculer la complexité des deux fonctions suivantes :
def f1(n: int)->int:

x = 0

for i in range(n):

for j in range(n):

x = x+1

return x

def f2(n: int)->int:

x = 0

for i in range(n):

for j in range(i):

x += 1

return x

4.4 Classification de la complexité

Les algorithmes sont classés suivant leurs complexités temporelles en les comparant
à certaines formes de référence. Le tableau suivant présente plusieurs complexités
usuelles et, pour différentes valeurs de 𝑛, une estimation du temps d’exécution cor-
respondant si le processeur exécute chaque opération élémentaire en une nanose-
conde (1 ns = 10−9 s).

𝑛 10 100 1000 10000 100000

ln𝑛 2 ns 5 ns 7 ns 9 ns 12 ns

𝑛 10 ns 0.1 μs 1 μs 10 μs 0.1 ms

𝑛 ln𝑛 20 ns 0.5 μs 7 μs 90 μs 1 ms

𝑛2 0.1 μs 10 μs 1 ms 0.1 s 10 s

𝑛3 1 μs 1 ms 1 s 17 h 12 j

2𝑛 1 μs 3.1013 a … … …

Un des enseignements de ce tableau est que pour certaines formes de complexité,
la croissance du temps d’exécution est telle qu’il devient prohibitif même pour des
valeurs assez faibles de 𝑛. C’est spectaculairement le cas pour la complexité 2𝑛 dont
la durée de calcul s’estime pour seulement𝑛 = 100 à trentemille milliards d’année⁷ !
Un algorithme possédant cette complexité ne pourra donc être utilisé que pour de
très petites données, ce qui en limite énormément l’intérêt pratique.

4.5 Notation de Landau

Pour comparer la complexité temporelle d’un algorithme aux expressions de réfé-
rence, onutilise la relationdedominationentre suites. Si (𝑢𝑛) et (𝑣𝑛) sontdeux suites
réelles, on note 𝑢𝑛 = O(𝑣𝑛) si et seulement si on peut écrire, à partir d’un certain
rang,𝑢𝑛 = α𝑛𝑣𝑛 où (α𝑛) est une suite bornée. Si la suite (𝑣𝑛)ne possède aucun terme
nul (ce qui sera le cas lorsqu’on manipulera des complexités), cela revient à :

𝑢𝑛 =O(𝑣𝑛) ⟺ la suite (
𝑢𝑛
𝑣𝑛

) est bornée.

Le plus souvent, la suite 𝑢 sera polynomiale et on dira que 𝑢 est un grand O de son
plus grand monôme.

Exemple 2 (Fonctionmoyenne)
1. On a vu que la complexité temporelle de la fonction moyenne s’exprime par

C(𝑛) = 2𝑛+2. Or 2𝑛+2 = O(𝑛) ; en effet 2𝑛+2 =
2𝑛+2
𝑛

×𝑛, avec
2𝑛+2
𝑛

borné puisque converge vers 2. On dira alors que la fonction moyenne « a
une complexité enO(𝑛) ».

2. On aurait pu tout aussi bien affirmer que la fonction moyenne a une com-

plexité en O (𝑛2). En effet 2𝑛+2 =
2𝑛+2
𝑛2 ×𝑛2, avec

2𝑛+2
𝑛2 borné puisque

converge vers 0. Mais cette information est moins intéressante que la pré-

7. À titre de comparaison, on estime l’âge de l’univers à 13 milliards d’années.
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cédente puisque 𝑛2 a une croissance plus rapide que 𝑛. Une classification
pertinente consiste donc à comparer la complexité à une expression de ré-
férence ayant la croissance la plus faible possible.

3. À l’inverse, onnepouvait pas dire que la fonctionmoyenne aune complexité

enO(ln𝑛) puisque
2𝑛+2
ln𝑛

tend vers +∞ et donc n’est pas bornée.

O(1) complexité constante O(𝑛 ln𝑛) complexité quasi-linéaire

O(ln𝑛) complexité logarithmique O (𝑛𝑘) complexité polynomiale

O(𝑛) complexité linéaire O(2𝑛) complexité exponentielle

Définition 3 | Vocabulaire
• Déterminer la complexité exacte d’un programme, c’est donner l’expression

explicite du nombre d’opérations en fonction de la taille des données.
• Déterminer la complexité asymptotique d’un programme, c’est donner le

nombre d’opérations en fonction de la taille des données sous la formed’un
grandO.

Exercice 4 Listes de CÉSARO [Sol 4] Étant donnée une liste de réels 𝑢 =
[𝑢0,𝑢1,…,𝑢𝑛], on appelle liste de CÉSARO associée la liste 𝑣 = [𝑣0,𝑣1,…,𝑣𝑛] dont
chaque terme est égal à la moyenne des premiers termes de 𝑢 :

𝑣0 =
𝑢0
1
, 𝑣1 =

𝑢0+𝑢1
2

, … 𝑣𝑛 =
𝑢0+𝑢1+⋯+𝑢𝑛

𝑛+1
.

Le terme 𝑣𝑘 apparaît ainsi comme la moyenne des termes 𝑢0,…,𝑢𝑘 de la suite 𝑢. La
fonction suivante prend comme argument une liste u et renvoie la liste correspon-
dante pour la suite 𝑣 associée.
def cesaro(u: list)->list :

"""Calcul de la liste de Césaro associée à la liste u"""

v = []

for k in range(len(u)) :

m = moyenne(u[:k+1])

v += [m]

return v

1. Calculer la complexité temporelle de la fonction cesaro en fonction du dernier
indice 𝑛 de la liste u, et classifier celle-ci.

2. Écrire une autre version de la fonction cesaro ayant une complexité temporelle
« significativement meilleure » .

Exercice 5 Cas d’un while [Sol 5] On considère la fonction ci-après :

def compte_it(n:int)->int:

i = n

x = 0

while i > 1:

i = i//2

x += 1

return x

1. Prouver la terminaison de cette fonction.
2. Justifier l’existence et l’unicité de 𝑝 entier tel que : 2𝑝 ⩽𝑛 < 2𝑝+1.
3. Donner et prouver un invariant sur 𝑖𝑘 de la forme 𝑖𝑘 ∈ [𝑎𝑘,𝑏𝑘[ où 𝑎𝑘,𝑏𝑘 dé-

pendent de 𝑘 et 𝑝.
4. En déduire la complexité temporelle de compte_it. Quel est le rôle de 𝑥?

Dans l’exercice précédent, 𝑥 compte le nombre d’appels récursifs.

4.6 Complexité dans le meilleur ou dans le pire des cas

Considérons maintenant la fonction nbPositifs suivante, qui renvoie le nombre
d’éléments strictement positifs d’une liste de nombres.
def nbPositifs(lst: list)->int :

"""Nombre d'éléments positifs d'une liste"""

nb = 0

for e in lst:

if e > 0 :

nb = nb + 1

return nb

Pour en calculer la complexité en fonction de la taille𝑛 de la liste, on est confronté à
une difficulté : l’affection nb = nb+1 de la ligne 6 n’est effectuée que si la condition
e > 0 est vraie, ce qui dépend de la liste fournie. Autrement dit, contrairement aux
exemples précédents où le nombre d’opérations élémentaires ne dépendait que de
la taille des données, ici ce nombre peut varier entre deux données de même taille.
On introduit alors les notions de complexité dans le meilleur et dans le pire des cas,
consistant à calculer respectivement le nombre minimal et maximal d’opérations
élémentaires parmi l’ensemble des données de taille𝑛. Ces deux valeurs fournissent
alors un encadrement de la complexité pour une donnée quelconque de taille 𝑛.

Sur notre exemple, la complexité dans lemeilleur des cas est obtenue lorsque l’affec-
tation nb = nb+1n’est jamais effectuée, ce qui est le cas lorsqu’il n’y a pas d’éléments
positifs. On dénombre alors les opérations élémentaires :
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• pour chacun des 𝑛 éléments de liste, un test e > 0, mais aucune affectation
nb = nb+1.

On trouve donc : Cmeilleur(𝑛) = 1+𝑛×1 = 𝑛+1.

Le calcul de la complexité dans le pire des cas (une liste dont les termes sont stricte-
ment positifs) se fait bien sûr en ajoutant une addition et une affectation nb = nb+1

pour chacun des 𝑛 éléments de liste, soit Cpire(𝑛) = 1+𝑛×3 = 3𝑛+1.

Remarquons qu’ici la complexité dans le meilleur et dans le pire des cas sont tous
deux enO(𝑛).

Exercice 6 [Sol 6] Considérons la fonction suivante qui permet de rechercher un
indiceàpartir duquel la sommedesélémentsd’une listedenombrespositifs dépasse
un seuil fixé. Le programme renvoie −1 si cet indice n’existe pas.
def depasse(L: list, seuil: float)->int:

"""Renvoie l'indice où la somme des éléments de L dépasse \

↪ seuil, -1 en cas de non-existence"""

S = 0

trouve = False

k = 0

while not(trouve) and (k < len(L)):

S = S + L[k]

if S > seuil:

trouve = True

else:

k += 1

if not(trouve):

k = -1

return k

Calculer la complexité de cette fonction dans le meilleur et dans le pire des cas.

4.7 Complexité d’une fonction récursive

Une fonction récursive s’appelant elle-même, le calcul de sa complexité temporelle
se fait naturellement par récurrence. Pour mieux le comprendre, intéressons-nous à
la fonction FactorielleRec suivante, qui calcule la factorielle d’un entier naturel 𝑛
en récursif.

def FactorielleRec(n: int)->int :

if n == 0:

return 1

else:

return n*FactorielleRec(n-1)

Notons C(𝑛) la complexité temporelle de cette fonction lorsque le paramètre d’en-
trée est 𝑛. On trouve C(0) = 1 (car si 𝑛 = 0, on compare juste 𝑛 à 0) et C(𝑛+ 1) =
2+C(𝑛) (on fait une comparaison à 0, une multiplication puis C(𝑛) opérations élé-
mentaires en appelant la fonction avec le paramètre 𝑛). On obtient donc une suite
arithmétique de raison 2, ce qui donne après calculs C(𝑛) = 1+2𝑛 =O(𝑛).

Exercice 7 [Sol 7] Considérons la fonction SuiteU récursive suivante :
def SuiteU(n: int)->float :

if n == 0:

return 1

else:

return 2*SuiteU(n-1)+1/SuiteU(n-1)

1. Que calcule cette fonction?
2. Calculer sa complexité temporelle.
3. Proposer une fonction SuiteU2 ayant une meilleure complexité.

4.8 Complexité spatiale

De la même façon que l’on définit la complexité temporelle d’un algorithme pour
évaluer sa performance en temps de calcul, on peut définir sa complexité spatiale
pour évaluer sa consommation en espace mémoire. Le principe est le même sauf
qu’au lieu de compter les opérations élémentaires, on compte les entités élémen-
taires de mémoire allouée pour l’exécution du programme, toujours en fonction de
la taille𝑛 des données. Ces entités élémentaires demémoire sont celles qui stockent
les valeurs de type élémentaires (entier, flottant, caractère, etc). Un type complexe
comme une liste de réels, par exemple, comptera pour autant d’entité élémentaires
qu’elle contient de réels. Notez qu’ici encore il s’agit de compter des entités élémen-
taires, et pas de mesurer la mémoire utilisée. La complexité spatiale sera exprimée
sans unité, et pas en octets. Cependant, on notera que la complexité spatiale est bien
moins que la complexité temporelle un frein à l’utilisation d’un algorithme : on dis-
pose aujourd’hui le plus souvent d’une quantité pléthorique demémoire vive, ce qui
rend moins important la détermination de la complexité spatiale.
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SOLUTIONS DES EXERCICES

Solution 1
1. La fonction calcule 𝑥𝑛 si 𝑛 est un entier naturel, cette fonction contient une

unique boucle for, elle se termine donc forcément.

2. La fonction calcule également 𝑥𝑛 si 𝑛 est un entier naturel. La suite (𝑖𝑘) des va-
leurs contenues dans la variable 𝑖 vérifie 𝑖0 = 0 et 𝑖𝑘+1 = 𝑖𝑘 +1. On a donc 𝑖𝑘 = 𝑘
pour 𝑘 ⩾ 0. Cette suite d’entiers étant strictement croissante, il existe un rang 𝑘0
tel que 𝑖𝑘0 ⩾𝑛, ce qui assure la terminaisonde la boucle (sinon on aurait une suite
d’entiers strictement croissante et majorée par 𝑛).

Solution 2
1. Prouvons d’abord la terminaison de la boucle while. Pour cela, raisonnons par

l’absurde et supposons que celle-ci ne se termine pas. Montrons alors l’invariant
de boucle :

∀𝑖 ∈ ℕ, «𝑛𝑖 ∈ ℕ».

Initialisation. Pour 𝑖 = 0, on a 𝑛0 = 0 ∈ ℕ.

Hérédité. Supposons la propriété vraie enun certain rang 𝑖 ∈ ℕ. Lors de la (𝑖+1)𝑒

itération de la boucle while, l’exécution de n += 1 conduit à𝑛𝑖+1 =𝑛𝑖+1 ∈ ℕ. Ce
qui achève la récurrence.

D’autre part, la suite (𝑛𝑖)𝑖∈ℕ est strictement croissante puisque pour tout 𝑖 ∈ ℕ on
a 𝑛𝑖+1 =𝑛𝑖+1 > 𝑛𝑖.

La suite (𝑛𝑖)𝑖∈ℕ est formée d’entiers et est strictement croissante, donc il existe un
rang 𝑖0 pour lequel elle sera strictement supérieure à𝑥−1. Onaura alors𝑛𝑖0+1 > 𝑥
et la boucle while s’arrête, contrairement à l’hypothèse.

Ce qui achève la preuve de terminaison de la boucle while.

Reste à montrer que le programme renvoie bien le résultat attendu. Pour cela,
montrons l’invariant de boucle, où ℓ désigne le nombre d’itérations de la boucle
while :

𝑖 ∈ {0,…,ℓ}, «𝑛𝑖 ⩽ 𝑥».

Initialisation. Pour 𝑖 = 0, on a 𝑛0 ⩽ 𝑥 puisque 𝑛0 = 0 et que 𝑥 est positif par hy-
pothèse.

Hérédité. Supposons la propriété vraie en un certain rang 𝑖 ∈ {0,…,ℓ−1}. Lors
de la (𝑖 +1)e itération de la boucle while, comme on est entré dans cette boucle,
c’est que la condition exprimée dans le while était vraie, à savoir que 𝑛𝑖 +1 ⩽ 𝑥.
Or 𝑛𝑖+1 =𝑛𝑖+1, donc on a bien 𝑛𝑖+1 ⩽ 𝑥.

Ce qui achève la récurrence.

Comme la dernière itération de la boucle while a lieu pour 𝑖 = ℓ, on a à la fois
𝑛ℓ ⩽ 𝑥 d’après la propriété précédente, et 𝑛ℓ + 1 > 𝑥 puisque la boucle s’arrête
à cette étape. Ainsi, la valeur 𝑛ℓ renvoyée par la fonction est bien le plus grand
entier naturel inférieur ou égal à 𝑥.

Solution 3

• Pour la fonction 𝑓1, on commence par une affectation à la ligne 2. On a ensuite
deux opérations élémentaires à la ligne 5 répétées n fois dans la boucle forde la
ligne 4, soit 2𝑛 opérations élémentaires pour les lignes 4 et 5. Ces 2𝑛 opérations
sont répétées𝑛 fois chacunedans la boucle forde la ligne 3, soit 2𝑛2 opérations
élémentaires pour les lignes 3 à 5. Au total, on adoncune complexité de𝑓1 égale
à 1+2𝑛2.

• Pour la fonction 𝑓2, on commence également par une affectation à la ligne 2.
On a ensuite deux opérations élémentaires à la ligne 5 répétées i fois dans la
boucle for de la ligne 4, soit 2𝑖 opérations élémentaires pour les lignes 4 et 5.
Avec la boucle for de la ligne 3, on a donc :

2∗1+2∗2+2∗3+2∗4+…+2∗(𝑛−1) = 2×
(𝑛−1)𝑛

2
= (𝑛−1)𝑛

opérations élémentaires pour les lignes 3 à 5. Au total, on a doncune complexité
de 𝑓2 égale à 1+(𝑛−1)𝑛.

Solution 4

1. On dénombre :

• une affectation v = [] ;
• pour l’indice𝑘de labouclefor (𝑘 allant de0 à𝑛), l’appelmoyenne(u[:k+1])

sur une liste de longueur 𝑘+ 1 se fait en 2+ 2(𝑘 + 1) instructions élémen-
taires auxquelles s’ajoute l’affectation dans la variable m et la ligne suivante
contient deux instructions élémentaires (une concaténation et une affecta-
tion). On compte donc 7+2𝑘 instructions élémentaires pour l’indice 𝑘.
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Ainsi, la complexité temporelle est :

C(𝑛) = 1+
𝑛
∑
𝑘=0

(7+2𝑘) = 1+7
𝑛
∑
𝑘=0

1+2
𝑛
∑
𝑘=0

𝑘 = 1+7(𝑛+1)+2
𝑛(𝑛+1)

2
= 8+8𝑛+𝑛2 .

Comme
8+8𝑛+𝑛2

𝑛2 converge vers 1, cette fonction a une complexité en O (𝑛2) .

2. Pour éviter de re-sommer à chaque fois les premiers termes de la suite, on peut
constater que l’on a la relation suivante :

∀𝑘 ∈ J0 , 𝑛K, 𝑣𝑘 =
S𝑘
𝑘+1

,où : S𝑘 =𝑢0+⋯+𝑢𝑘.

La variable S𝑘 pouvant être créée à l’aide d’une boucle for.
def cesaro2(u: list)->list :

"""Calcul de la liste de Césaro associée à la liste u"""

v = []

S = 0

for k in range(len(u)) :

S = S + u[k]

v = v + [S/(k+1)]

return v

Calculons la nouvelle complexité :

• deux affectations pour v = [] et S = 0 ;
• pour chacune des 𝑛+1 itérations de la boucle for, une somme et une af-

fectation pour S = S+u[k] et 4 opérations élémentaires (une somme, une
division, une somme de listes et une affectation.

On trouve donc une complexité en O(𝑛) puisque :
C(𝑛) = 2+6(𝑛+1) = 8+6𝑛 .

Solution 5

1. Supposons que le while ne s’arrête pas. Alors la suite (𝑖𝑘)𝑘∈ℕ est une suite stric-
tement décroissante d’entiers. En effet, soit 𝑘 ∈ℕ :
• si 𝑖𝑘 est pair, alors 𝑖𝑘+1 =

𝑖𝑘
2
< 𝑖𝑘 puisque 𝑖𝑘 ≠ 0 (en effet, si on rentre dans

la boucle alors c’est que 𝑖𝑘 > 1).

• Si 𝑖𝑘 est impair, alors 𝑖𝑘+1 =
𝑖𝑘−1
2

< 𝑖𝑘.
Ainsi, puisque (𝑖𝑘)𝑘∈ℕ est une suite strictement décroissante d’entiers, il existe
un rang à partir duquel 𝑖𝑘 ⩽ 1— Contradiction.
La boucle termine.

2. On reformule en passant au log2 :
2𝑝 ⩽𝑛 < 2𝑝+1 ⟺ 𝑝⩽ log2(𝑛) < 𝑝+1

⟺ log2(𝑛)−1 < 𝑝 ⩽ log2(𝑛).

On reconnait là la définition de la partie entière : 𝑝 = ⌊log2(𝑛)⌋ .
3. Onpeutmontrer que : 2𝑝−𝑘 ⩽ 𝑖𝑘 < 2𝑝+1−𝑘 pour tout𝑘 ∈ {0,…,N}oùNdésigne

le nombre d’itérations de la boucle while.
Initialisation. Pour 𝑘 = 0, puisque 𝑖0 = 𝑛 on applique simplement la question
précédente.
Hérédité. Supposons que 2𝑝−𝑘 ⩽ 𝑖𝑘 < 2𝑝+1−𝑘 pour 𝑘 ∈ {0,…,N−1} fixé. Il y a
donc une itération 𝑘+1. On fait là encore deux cas :
• si 𝑖𝑘 est pair, alors 𝑖𝑘+1 =

𝑖𝑘
2

donc d’après l’invariant :

2𝑝−𝑘−1 ⩽ 𝑖𝑘+1 =
𝑖𝑘
2
< 2𝑝−𝑘.

C’est exactement ce que l’on voulait montrer.

• Si 𝑖𝑘 est impair, alors 𝑖𝑘+1 =
𝑖𝑘−1
2

, donc d’après l’invariant :

2𝑝−𝑘−1−
1
2
=
2𝑝−𝑘−1

2
⩽ 𝑖𝑘+1 =

𝑖𝑘−1
2

<
2𝑝+1−𝑘−1

2
= 2𝑝−𝑘−

1
2
< 2𝑝−𝑘.

Comme 𝑖𝑘+1 est un entier, l’encadrement donne aussi :
2𝑝−𝑘−1 ⩽ 𝑖𝑘+1 < 2𝑝−𝑘.

L’invariant est donc prouvé par principe de récurrence.
4. L’invariant précédent donne 𝑖𝑝 ∈ [1,2[ alors que 𝑖𝑝−1 ne peut valoir 1. Ainsi, le

nombre d’itérations du while est exactement 𝑝 = ⌊log2(𝑛)⌋. Faisons mainte-
nant le bilan des opérations : on a C(𝑛) = 2+5𝑝 = 2+5⌊log2(𝑛)⌋ =O (log2(𝑛)).
Les 5 opérations venant des 4 affectations/addition/quotient et du test d’entrée
dans la boucle.

Solution 6 Là encore, le nombre d’opérations élémentaires ne dépend pas uni-
quement de la taille𝑛de la liste fournie. Dans lemeilleur des cas, le premier élément
est supérieur à seuil et la boucle while est répétée une seule fois. Les opérations élé-
mentaires sont :

• trois affectations avant la boucle ;
• trois tests not(trouve), k < len(liste) (condition du while), S > seuil

(condition du if), une addition, une affectation, et une affectation trouve

= True ; le tout est effectué une seule fois, mais n’oublions pas un dernier
test not(trouve) pour déterminer que la boucle s’arrête (l’autre test k <

len(liste) n’est pas effectué puisque le précédent est faux) ;
• un test if not(trouve).
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Ainsi, Cmeilleure(𝑛) = 11. Ici, la complexité dans le meilleur des cas est indépendante
de la taille de la liste, elle est donc enO(1).

Le pire des cas s’obtient quand la somme des éléments de la liste est inférieure au
seuil. Il faut alors parcourir la liste en entier :

• toujours trois affectations avant la boucle ;
• les trois tests, deux affectations et deux additions sont répétés 𝑛 fois, puis les

deux tests not(trouve) et k < len(liste) une dernière fois pour déterminer
que la boucle s’arrête ;

• puis enfin un test et une affectation k = -1

On trouve donc Cpire(𝑛) = 3+(3+2+2)𝑛+2+2 = 7𝑛+7. La complexité dans le pire
des cas est donc enO(𝑛).

Solution 7
1. Cette fonction permet de calculer le terme d’indice 𝑛 de la suite (𝑢𝑛) définie

par : 𝑢0 = 1 et ∀𝑛 ∈ℕ, 𝑢𝑛+1 = 2𝑢𝑛+
1
𝑢𝑛

.

2. Notons C(𝑛) la complexité de cette fonction lorsque le paramètre d’entrée est
𝑛. On trouve C(0) = 1 et C(𝑛+1) = C(𝑛)+C(𝑛)+4 (on fait une multiplication,
une addition, unedivision et 2×C(𝑛)opérations élémentaires en appelant deux
fois la fonction avec le paramètre 𝑛). On obtient donc une suite arithmético-
géométrique ce qui donne après calculs C(𝑛) = 5×2𝑛−4.

3. Considérons la fonction suivante :
def SuiteU2(n:int)->float :

if n == 0:

return 1

else:

a = SuiteU2(n-1)

return 2*a+1/a

On trouve C
′
(0) = 1 (seulement un test lorsque 𝑛 = 0). Si 𝑛 ≥ 1, C

′
(𝑛) =

5+C
′
(𝑛−1) (on fait un test, une affectation, une multiplication, une addition,

une division et C
′
(𝑛−1) opérations élémentaires en appelant la fonction avec

le paramètre 𝑛−1). On obtient donc une suite arithmétique qui donne après
calculs C

′
(𝑛) = 5𝑛+1. On obtient une complexité linéaire : le gain est énorme!
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