ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

Chapitre (S2) 2

Preuve et complexité

. Objectifs
1 Introduction.................... ® Savoir prouver la terminaison d'une
2 Terminaisonceeuueeenn.. boucle.
3 Correction.......coeeveeeeennenns * SaVOI.r Jprouver un programme simple
en utilisant un invariant de boucle.
4 Complexitecvveverenenenns ® Savoir calculer la complexité tempo-

relle et/ou spatiale d'un programme.

n INTRODUCTION

Un algorithme est une suite finie de régles et d'opérations élémentaires mises en
oeuvre sur un nombre fini de données en vue de résoudre un probléme spécifique.
Si un algorithme est susceptible de résoudre un probléme, il convient également de
s'interroger sur sa validité et sur ses performances.

® [Lalgorithme termine-t-il?
® Lalgorithme répond-il aux spécifications?
® De combien de temps et de ressources mémoires a-t-il besoin?

Les deux premiéres questions soulévent le probléme de la preuve d’'un algorithme en
termes de terminaison et de correction de ce dernier. La troisieme question a trait a
la complexité de I'algorithme, en termes temporels et spatiaux.

Pour fonctionner, un algorithme recoit généralement un jeu de données en entrée.
Apres leur traitement, il renvoie un résultat en sortie. Le traitement peut souvent se
décomposer en blocs simples :

® opérations d’affectation, entrées/sorties, manipulations de variables;
® structures conditionnelles if, elif, else;
® structures répétitives for, while.

Ce découpage essentiel en blocs simples permet l'analyse de I'algorithme pour en
établir la preuve et en évaluer la complexité.

Dans la suite du cours, tous les algorithmes sont exprimés sous la forme de pro-
grammes écrits en Python. Nous parlerons de preuve de programmes et de leur com-
plexité.

n TERMINAISON

m Exemple

Prouver qu’'un programme termine, c'est montrer que, quel que soit le jeu de don-
nées passé en entrée respectant la pré-condition, chaque bloc simple est traité en
un nombre fini d’opérations.

Les opérations d’affectation, les entrées/sorties, les manipulations de variables ter-
minent toujours. Il en est de méme des structures conditionnelles (if) et des boucles
inconditionnelles (for), sous réserve que la variable d’itération ne soit pas modi-
fiée'.

Les boucles conditionnelles while requiérent une attention particuliere. Mal pro-
grammées, elles peuvent étre a I'origine de boucles infinies. Prenons I'exemple sui-
vant.

n=2>5
while n !'= 0:
n -=1

Avant d’entrer dans la boucle while, la variable n est initialisée avec la valeur 5. Cette
donnée d’entrée est traitée dans la boucle o1 sa valeur est décrémentée. n prend donc

1. Nous nous interdirons cette modification a I'avenir.

ITC € 2025-2026

o

/M/ Lycée Michel MONTAIGNE — Bordeaux

successivement les valeurs 4, 3, 2, 1 et 0. Pour cette derniere valeur, la condition n
I= 0 n’étant plus vérifiée, la boucle se termine de sorte que le nombre d'opérations
effectuées par ce programme est fini.

Lexemple suivant présente une situation a priori proche mais de comportement ra-
dicalement différent.

n=-1
while n != 0:
n -=1
Lavaleur initiale de n étant négative, la conditionn != 0 sera vraie a chaque tour de

boucle car n ne fait que diminuer, et la boucle ne s’arréte jamais .

Ainsi, 'algorithme précédent termine si n est initialement un entier positif, c’est donc
une pré-condition possible pour la boucle. Nous avons vu dans un précédent cha-
pitre que cette pré-condition peut-étre testée al'aide d'une assertion avantla boucle,
comme ceci :

assert n >= 0, "la valeur de n doit étre positive"

while n != 0:

m Une propriété mathématique

La preuve de la terminaison d'un algorithme repose généralement sur le résultat sui-
vant®.

Rappel (mathématiques)
® Siaestunréel et (1;) une suite d’entiers strictement croissante (resp. stric-
tement décroissante), alors il existe un rang i, pour lequel u; > a (resp.
u; < a).
® Autrement dit, une suite d’entiers strictement croissante (resp. strictement
décroissante), ne peut pas étre majorée (resp. minorée).

Ce résultat exprime en particulier qu’il n'existe pas de suite infinie strictement dé-
croissante dans N. Ainsi, pour établir la terminaison d’'un programme, on peut par
exemple exhiber une suite d’entiers positifs, dépendant des données du programme,
a valeurs dans N, qui décroit strictement a chaque passage dans la boucle, ou bien
plus généralement, une suite d’entiers minorée (resp. majorée) qui décroit (resp.
croit) strictement a chaque passage dans la boucle.

2. En pratique, les limites physiques de la machine vont mener le programme a se terminer.
3. Voir le cours de mathématiques pour une preuve.

Dans I'exemple précédent, en posant u; la valeur de n ala fin de l'itération n° k, on
a u, = n et, pour tout entier naturel k strictement positif, u; = u;_, —1 (s'ily a une
itération k), la suite (u;) est donc une suite d’entiers strictement décroissante, et
plus précisément u; = n — k. Si n = 0, le passage dans la boucle se fait n fois et le
programme termine (avec u,, = 0). Dans le cas contraire, la boucle est infinie et le
programme ne termine pas.

Notation Evolution d'une variable dans une boucle

Le contenu d’une variable évoluant généralement a chaque passage dans une
boucle, on utilisera la notation suivante : si var désigne le nom d'une variable,
on note :
® var,; le contenu de cette variable a la fin du i® passage dans la boucle (ité-
ration i).
® Par convention, var, désigne le contenu de la variable juste avant la pre-
miére exécution de la boucle (itération 0).

Exemple 1 Par exemple, considérons le programme :

S =10
for k in range(2,5)
S += k

Les valeurs successives de la variable S sont S, =10, S; =12, S, =15, S; = 19.

Remarque 1 Lindice i positionné sous la variable fait référence au numéro de
I'itération dans la boucle, et non aux éléments de la liste décrite par la boucle.
Dans notre exemple, i parcourt les valeurs 0, 1, 2, 3 alors que k décrit les valeurs
2,3,4.

m Exemple

Considérons l'algorithme d’exponentiation rapide qui calcule x", pour un réel x et
un entier naturel 7, en utilisant uniquement des produits, des soustractions par 1 et
des divisions par 2. Cet algorithme effectue généralement beaucoup moins de mul-
tiplications que les n attendues par la définition.

XT=1xxX XX XXX,
n mutliplications
def expR(x: float, n: int) -> float
""" Renvoie x~n pour x réel et n entier naturel.

X =X
N=n
R=1

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

while N != 0
if N%2 ==
N = N//2
else :
R = R*X
N = (N-1)//2
X = X*X
return R

Avec la notation introduite plus haut, désignons par N; la valeur prise par la variable
N ala fin de I'itération i. Avant d’entrer dans la boucle while, N, = n € N par hypo-
these (pré-condition). Lors de la (i + 1)¢ itération de la boucle while :

® siN; est pair, alors N;,; =N;//2;
® siN; estimpair, alorsN;,; = (N;-1)//2

Dans les deux cas, si N; € N, alors N;,; € N (récurrence).
D’autre part, la suite (N;);cy €st strictement décroissante. En effet, pour i € N, sup-
posons qu'il y ait une itération i + 1, c’est adire que N; # 0 :

® siN; est pair, alors N;,; = N;//2 <N;, puisque N; > 0 par hypothese;
® siN; estimpair, alors N;,; = (N; -1)//2 <N;.

Supposons que la boucle ne se termine pas (raisonnement par 'absurde), alors, la
suite (N;);cn est formée d’entiers positifs et elle est strictement décroissante, ce qui
absurde. La boucle while termine donc.

Exercice 1 [Sol 11 On considére un entier n = 0 et x un réel quelconque.

1. Que fait la fonction suivante dans le code ci-dessous? Etablir sa terminaison et la
documenter.
def f(x: float, n:
y =1
for i in range(n)
y *= X
return y

int)->float

2. Mémes questions pour la fonction ci-dessous.
def f(x: float, n: int)->float
y =1
i=0
while i < n
y *= X
i+=1

return y

Probléme de larrét

Etablir la terminaison d’une boucle n’est pas toujours simple. Il est des problémes
pour lesquels on ne peut que conjecturer le résultat. C'est le cas de la suite de SyRra-
CUSE, rappelée ci-apres.

Soit (u,) yen Une suite définie par son premier terme u, = 1, ou n est un entier na-
turel non nul et par la relation de récurrence suivante :

up . .

- Si u,, est pair
Vp eN up+1 = 2 . P p , .

3u,+1 siu,estimpair.

La conjecture de SYRACUSE affirme que cette suite finit toujours par une répétition
de la séquence 4,2, 1, quelque soit 'entier naturel non nul n choisi. Mais ce résultat
n'est pas prouvé a ce jour.

En Python, la fonction suivante renvoie I'indice du premier terme égal a1 :
def syracuse(n: int)->int:
""" Calcule les termes de la suite de Syracuse commencant par |\
— l'entier strictement positif n jusqu'a ce qu'un terme |\
— vaille 1 et renvoie l'indice de ce dernier """
u=n
indice = 0
while u !'= 1
if u%2 ==
u=u//2
else :
u= 3%+ 1
indice += 1
return indice

Selon la conjecture, cette fonction termine pour toute valeur de n. Mais sa terminai-
son n'est que conjecturée et donc non démontrée!

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

n CORRECTION
m Invariant de boucle

— Définition 1| Correction d’'un algorithme
® Un algorithme est dit correct, si quels que soient les valeurs des parameétres

d’entrée compatibles avec le fonctionnement de I'algorithme, ce dernier
renvoie le résultat attendu. En découpantl’algorithme en blocs simples, cela
revient a montrer que chaque bloc remplit une fonction bien identifiée.

® FLtablir la correction d’un algorithme, c'est montrer qu’il est correct.

Dans le cas des opérations d’affectation, des entrées/sorties, des manipulations de
variables, des structures conditionnelles, 'analyse de leur action est relativement
aisée. Celle des boucles for et while 'est moins. La notion d’invariant de boucle,
qui a été introduite lors du chapitre précédent, permet d’établir la correction des
boucles.

Rappel (Invariant de boucle) Un invariant de boucle est une propriété qui dé-
pend des données de l'algorithme et qui est vérifiée juste avant la boucle, et
apres chaque passage dans la boucle (c’est-a-dire apres chaque itération).

Nous allons mettre en évidence et utiliser les invariants de boucle sur quelques
exemples d’algorithmes.

m Moyenne d’une liste de nombres

Définition 2 | Moyenne d’une liste

La moyenne m d'un ensemble L = {¢, ¢, ..., ¢,,_,} de n valeurs est définie par la

. . 1 7=l
relation suivante: m=—)_ ¢,.
N k=0

Compléter la fonction suivante pour qu'’elle renvoie la moyenne des nombres conte-
nus dans la liste L :

mm Moyenne des éléments d’une liste
def moyenne(L: list)->float

Calcule la moyenne des éléments de la liste de nombres L

S =0
for e in L:
S += e

return S/len(L)

PREUVE DE CORRECTION. On se propose de montrer par récurrence simple, que
la propriété suivante est un invariant de boucle :

i—1
Vie{0,...,n}, «S;=) L[k]» ouidésignelenuméro de l'itération.
k=0

b
Initialisation. Par convention, si @ > b, on convientque) u; = 0. Ainsi, pouri =0,
k=a
-1
onabien: S,=0=) L[k].
k=0

Hérédité. Supposons la propriété vraie en un certain rang i € {0, ..., n — 1}. Lors de
la (i + 1)¢ itération de la boucle, la variable e contient L[i]*. Linstruction S += e
exécutée conduit a :
i-1 i
Sis1=S;+L[i] =) L[k]+L[i]=) L[k]. Ce quiachevelarécurrence.

k=0 k=0

Comme la derniere itération de la boucle a lieu pour i = n, la valeur renvoyée par
n-1

la fonction est bien: S, = Y L[k] et la derniére ligne renvoie bien la moyenne

k=0
des nombres contenus dans la liste L. Comme nous I'avons déja conseillé, on écrit
I'invariant dans le code sous forme de commentaires :

mm Moyenne des éléments d’une liste
def moyenne(L: list)->float

Calcule la moyenne des éléments de la liste de nombres L

S=0

for e in L:
Invariant: S 1 = L[O]+...+L[i-1]
S += e

return S/len(L)

4. Les listes sont indicées a partir de 0.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

m Algorithme de HORNER

On s’intéresse al’évaluation en un réel x d'une fonction polynomiale P a coefficients
réels (a;)eqo,1,..., > 1 €tant un entier naturel donné.
P(x)=a,x" +a, ;x" '+ +a,x*+a,x +a,
Le schéma de HORNER organise les calculs en minimisant le nombre de multiplica-
tions.
P(x)=(((a,x+a,_))x+-+a))x+a,)x+a,
Les coefficients étant stockés dans une liste LC = [a,,, a,,_;, ..., a5, a1, a,], la fonction
suivante met en oeuvre ce schéma.
def evalP(x: float, LC: list)->float
"""Fvalue en x le polynome dont les coefficients sont donnés |
— dans la liste LC (par ordre de puissances |
— décroissantes)."""
P =20
for c in LC
P=P*x+c
return(P)

PREUVE DE CORRECTION. Pour prouver que cette fonction renvoie bien la valeur
attendue, nous allons d’abord prouver, par récurrence simple, que la propriété sui-
vante est un invariant de boucle :
i-1
Vie{0,...,0}, «P;=Y LC[k]xx"'k)
k=0
ou ¢ désigne la longueur de la liste LC et i le numéro de I'itération.

Initialisation. De méme que précédemment, pour i = 0, on a bien :

-1
Po=0= Y LC[k]xx'7F.
k=0

Hérédité. Supposons la propriété vraie en un certainrangi € {0,...,#—1}. Lorsdela
(i + 1)® itération de la boucle, la variable c contient LC[{]°. Linstruction P = P*x+c
exécutée conduit a:

i-1 . i .
P,,, =P; xx +LC[i] = (Z LC[k] x x’_l_k) x x+LC[i] =) LC[k] x x"°F.
k=0 k=0

Ce qui acheve la récurrence.

5. Les listes sont indicées a partir de 0.

Comme la derniére itération de la boucle a lieu pour i = ¢, la valeur renvoyée par la

fonction est bien :
-1
P, =Y LC[k]x x/ 17k
k=0

=LC[0] x x’ '+ LC[1] x x’ 2+ -+ LC[¢ - 2] x x + LC[£ - 1]

— n n-1
=|a, X"+ a,_ X"+ + ayx +ay)|

sionnote LC = [a,,a,_q,...,a;,a0] et £ = n+1.

m Exponentiation rapide

Pour une boucle while, a la correction s’ajoute une étape préliminaire consistant a
établir la terminaison de I'algorithme. On suppose cette étape validée.

Pour illustrer notre propos, établissons la correction de I'algorithme d’exponentation
rapide.
def expR(x: float, n:

int)-> float

Renvoie x™n pour x réel et n entier naturel.

X =X
N =n
R=1
while N !'= 0
if N%2 ==
N = N//2
else :
R = R*X
N = (N-1)//2
X = X*X
return R

PREUVE DE CORRECTION. Montrons que la propriété suivante est un invariant
de boucle, ou1 ¢ désigne le nombre d’itérations de la boucle while:

vielo,...,0}, «R; XXll.\]i =x"»

e e . N,
Initialisation. Pouri=0,onaRyxX;’ =1xx" =x".

Hérédité. Supposons la propriété vraie en un certain rang i € {0, ..., ¢ — 1}. Lors de
la (i + 1)e itération de la boucle :

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

® siN; est pair, alorsles exécutionsdeN = N/2etX = X*XconduisentaR;,; =R;,
Ni+1 =Ni//28tXi+1 :X? dOIlCZ

Niyp 2 N;
Rin ><Xi+1 =R; x (X,’) 2
N.
= Ri X Xi !
=x".

® si N; est impair, alors les exécutions de R = R*X, N = (N-1)/2 et X = X*X

. N Ni -1 2
conduisentaR;,; =R; xX;, N;;; = 5 etX;,; =Xj donc:

Ni1 2 Ni~1
Ri x X7 =Ry x X, x (X5) 72
N;
= Ri X Xl !
:xn

Ce qui achéve la récurrence. Comme la derniére itération de la boucle a lieu pour
i =/, etquel'onaN, = 0 sans quoi le programme continuerait a boucler, la valeur
renvoyée par la fonction est bien :
— Ny [T
Ry =Ry xX," =

=1

Exercice 2 Partie entiere [sol 2] Pour x réel positif, on rappelle que la partie
entiére de x est le plus grand entier naturel inférieur ou égal a x. La fonction suivante
en effectue le calcul :
def ParEnt(x: float)->float

""" Calcule la partie entiére du réel positif x """

n=20

while n + 1 <= X :

n +=1
return n

Faire la preuve de cette fonction.

m Et avec une fonction récursive?

Comme on peut s’en douter, avec une fonction récursive on peut envisager une
preuve (terminaison + correction) a I'aide d'un raisonnement par récurrence. Par
exemple, soit la fonction :
def f(a: int, b: int)->int
""" Calcul récursif du pgcd, a et b sont supposés naturels |

- nnn

if b == 0:
return a
else:
return f(b, a%b)

On peut établir la terminaison et la correction en montrant par récurrence sur le
parametre b :

2(b) «YaeNlN, f(a,b)setermine etrenvoie pgced(a, b)».

Initialisation. 1l est clair que £2(0) est vrai (c’est le cas terminal et pged(a, 0) = a).

Hérédité. Supposons la propriété vraie pour tous les entiers jusqu’a un naturel b.
Soit a € N. Lorsqu’on appelle f(a,b + 1), comme b + 1 # 0, on renvoie la valeur
de f(b +1,r) ou r est le reste de la division de a par b+1:a = (b + 1)q + r. Or,
0 < r < betonsait par hypotheése que f(b+1, r) se termine et renvoie pged(b + 1,71),
donc f(a, b + 1) se termine et renvoie pged(b + 1, 7). Or, d’apres le cours de mathé-
matique, pged(a, b + 1) = pged(b + 1,7), donc (b + 1) est vraie, ce qui termine la
récurrence.

m Tout n’est pas si simple

Il y a des exemples de codes simples en apparence mais dont la preuve peut étre
trés difficile. En voici un exemple : un théoreme mathématique dit que tout nombre
premier congru a 1 modulo 4 est une somme de deux carrés. La fonction suivante
fournit une telle décomposition :

mm Décomposition en somme de deux carrés
def decompPremier(p: int)-> (int,int):
""" Renvoie deux entiers u et v tels que p = u"2+v"2
p doit étre un nombre premier congru a 1 modulo 4 """
fonction locale
def f(a: int, b: int, c: int)->(int,
""" la fonction magique """
if a > b+c:
return (a-b-c, b, 2*b+c)
else:
return (b+c-a, a, 2*a-c)
corps de la fonction principale
a, b, c=(p-1)//4, 1, 1
while a != b:
a, b, c=f(a, b, c)

int, int)

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

return (2*a,c)
>>> decompPremier(601)
(24, 5)
Onabien: 601 =242 +52.

La terminaison de la boucle et la preuve de cet algorithme ne sont absolument pas
triviales!

COMPLEXITE

Complexité temporelle

Etudier la complexité temporelle d'un algorithme permet d’en mesurer I'« efficacité »
en terme de temps de calcul. Bien siir, la durée d’exécution d'un programme dépend
de la « taille » des données sur lesquelles il est appelé. Par exemple, on s’attend a
ce qu'un programme calculant la moyenne d’une liste de nombres ait un temps de
calcul d’autant plus long que la liste est longue. C’est précisément cette relation entre
taille des données et durée d’exécution que va exprimer la complexité temporelle.

Lintérét de cette évaluation est multiple. D’'une part, connaitre la complexité d’'un
algorithme recevant en entrée un certain volume de données permet d’en discuter la
pertinence temporelle : le programme s’exécutera-t-il en un temps « raisonnable »?
D’autre part, plusieurs algorithmes différents peuvent résoudre un méme probléeme.
Une étude de leur complexité permet d’identifier le plus rapide d’entre eux, pour un
une taille de données fixée.

Remarque2 Dans ce cadre, la notion de complexité ne correspond pas ala diffi-
culté ressentie a concevoir un algorithme. Un programme peut étre trés facile a
écrire, mais avoir un temps d’exécution tres long, alors qu'un autre programme
beaucoup plus sophistiqué pourra étre nettement plus efficace.

Méthode

Pour évaluer la complexité temporelle d'un algorithme, on commence par détermi-
ner un entier naturel n mesurant la « taille » des données fournies au programme.
Cet entier n’a pas besoin d’étre la mesure précise en octets de I'espace mémoire né-
cessaire a stocker ces données, mais peut étre une grandeur plus simple qui lui soit

corrélée. Par exemple, sile programme doit traiter une liste, n peut étre son nombre
d’éléments.

On détermine ensuite, en fonction de la taille n des données, le nombre d’«ins-
tructions significatives » exécutées par le programme. Ces instructions peuvent dé-
pendre du type d’algorithme étudié, et sont généralement des instructions élémen-
taires du langage : stockage d’'une valeur dans une variable, comparaison de deux
valeurs, addition, multiplication, etc.

Les durées d’exécution de chacune de ces instructions élémentaires ne sont pas
identiques®, mais on estime qu’elles restent d'un méme « ordre de grandeur » . Le
nombre d'opérations élémentaires effectuées par le programme est donc approxi-
mativement proportionnel a son temps d’exécution. Pour estimer le temps d’exécu-
tion, il faut estimer la durée d'une opération élémentaire, qui dépend de la puissance
du microprocesseur et donc varie d'un ordinateur a un autre.

Se contenter de comptabiliser le nombre d’opérations élémentaires, et non leurs du-
rées, permet donc de s'affranchir de 'ordinateur sur lequel le programme est exé-
cuté : la complexité temporelle mesure réellement la performance de l'algorithme,
et non celle de 'ordinateur sur lequel il est exécuté. Si un algorithme a une meilleur
complexité qu'un autre, son temps d’exécution sera plus faible quelque soit 'ordi-
nateur sur lequel on I'exécute.

Remarque 3 Notez bien que la complexité temporelle sera une fonction de n,
exprimée sans unité puisqu’il s’agit d’'un nombre d’instructions, et non en unité
de temps comme le serait un temps d’exécution.

Un premier exemple

Intéressons-nous a la fonction qui permet de calculer la moyenne des éléments
d’une liste de nombres donnée en argument.

mm Moyenne des éléments d’une liste

def moyenne(L: list)->float
"""Calcule la moyenne des éléments
de la liste de nombres L"""

S =0
for e in L:
S += e

6. Le temps requis pour effectuer une multiplication est supérieur a celui d'une addition par
exemple.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

return S/len(L)

Pour calculer la complexité temporelle de cette fonction, notons n le nombre d’élé-
ments contenus dans la liste L. Le nombre d’affectations et d'opérations arithmé-
tiques (additions et divisions) effectuées par le programme est :

® une affection avant la boucle for,

® dans la boucle for : une addition et une affectation, qui sont répétées pour les
n éléments de la liste,

® une division dans la derniere ligne (on suppose que la fonction len s’effectue
en un temps négligeable devant les autres.

La complexité temporelle de cet algorithme est :

C(n)=1+(1+1)xn+1=2n+2]

Attention
Pour les syntaxes ramassées +=, -=, *= efc., pensez a bien décomposer dans le
calcul de la complexité : 1 affectation et 1 opération (+, -, *).
Exercice 3 [sol3] Calculer la complexité des deux fonctions suivantes :
def fl(n: int)->int:
X =0

for i in range(n):
for j in range(n):
X = x+1
return x
def f2(n: int)->int:
x =0
for i in range(n):
for j in range(i):
X +=1
return x

Classification de la complexité

Les algorithmes sont classés suivant leurs complexités temporelles en les comparant
a certaines formes de référence. Le tableau suivant présente plusieurs complexités
usuelles et, pour différentes valeurs de n, une estimation du temps d’exécution cor-
respondant si le processeur exécute chaque opération élémentaire en une nanose-
conde (1 ns=107%5s).

100000
Inn 2ns 5ns 7 ns 9 ns 12 ns
n 10 ns 0.1 ps 1 us 10 ps 0.1 ms
ninn 20 ns 0.5 us 7 s 90 ps 1ms
n? 0.1 us 10 us 1 ms 0.1s 10s
n® 1 us 1 ms s 17h 12
2n 1 us 3.101% a

Un des enseignements de ce tableau est que pour certaines formes de complexité,
la croissance du temps d’exécution est telle qu’il devient prohibitif méme pour des
valeurs assez faibles de n. C’est spectaculairement le cas pour la complexité 2" dont
la durée de calcul s'estime pour seulement n = 100 a trente mille milliards d’année ”!
Un algorithme possédant cette complexité ne pourra donc étre utilisé que pour de
tres petites données, ce qui en limite énormément I'intérét pratique.

Notation de LANDAU

Pour comparer la complexité temporelle d'un algorithme aux expressions de réfé-
rence, on utilise la relation de domination entre suites. Si («,,) et (v,,) sont deux suites
réelles, on note u,, = O(v,) si et seulement si on peut écrire, a partir d'un certain
rang, u,, = a, v, ou («,,) est une suite bornée. Sila suite (v,) ne possede aucun terme
nul (ce qui sera le cas lorsqu'on manipulera des complexités), cela revient a :

u
u,=0(v,) < lasuite (—") est bornée.

Un

Le plus souvent, la suite u sera polynomiale et on dira que u est un grand O de son
plus grand monéme.

Exemple 2 (Fonction moyenne)
1. On a vu que la complexité temporelle de la fonction moyenne s’exprime par

2n+2 2n+2
C(n)=2n+2.0r2n+2=0(n);eneffet2n+2 =
n

n
borné puisque converge vers 2. On dira alors que la fonction moyenne «a
une complexité en O (n) ».

2. On aurait pu tout aussi bien affirmer que la fonction moyenne a une com-

X N, avec

2
borné puisque

2n+2
plexité en O (n?). En effet 2n + 2 = —— x n?, avec —;
n n

converge vers 0. Mais cette information est moins intéressante que la pré-

7. Atitre de comparaison, on estime I’dge de 'univers a 13 milliards d’années.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

cédente puisque n? a une croissance plus rapide que 7. Une classification
pertinente consiste donc a comparer la complexité a une expression de ré-
férence ayant la croissance la plus faible possible.

3. Alinverse, on ne pouvait pas dire que la fonction moyenne a une complexité

. 2n+2 , ,
en O (In n) puisque tend vers +oo et donc n'est pas bornée.

0(1) complexité constante O(nlnn) | complexité quasi-linéaire
O(Inn) | complexité logarithmique 0] (nk) complexité polynomiale
O(n) complexité linéaire 0(2") complexité exponentielle

— Définition 3 | Vocabulaire -
® Déterminer la complexité exacte d'un programme, c’est donner 'expression

explicite du nombre d’opérations en fonction de la taille des données.

® Déterminer la complexité asymptotique d'un programme, c’est donner le
nombre d’opérations en fonction de la taille des données sous la forme d'un
grand O.

Exercice 4 Listes de CESARO [sol 4] Etant donnée une liste de réels u =

[ug, Uy, ..., U,], on appelle liste de CEsaro associée la liste v = [y, vy, ..., V,] dont
chaque terme est égal a la moyenne des premiers termes de u :
uo u0+u1 u0+u1+"'+un
=—" U=—T" .. U,= .
1 2 n+1
Le terme v, apparait ainsi comme la moyenne des termes u, ..., #; de la suite u. La

fonction suivante prend comme argument une liste u et renvoie la liste correspon-
dante pour la suite v associée.
def cesaro(u: list)->list
"""Calcul de la liste de Césaro associée a la liste u
v =[]

for k in range(len(u))

m = moyenne(u[:k+11)
v += [m]
return v

1. Calculer la complexité temporelle de la fonction cesaro en fonction du dernier
indice n de laliste u, et classifier celle-ci.

2. Ecrire une autre version de la fonction cesaro ayant une complexité temporelle
«significativement meilleure » .

Exercice 5 Cas dunwhile [sol5] On considére la fonction ci-apreés :

def compte it(n:int)->int:

i=n

x =0

while i > 1:
i=1//2
X += 1

return x

-

. Prouver la terminaison de cette fonction.

2. Justifier 'existence et 'unicité de p entier tel que: 2P < n <2P*!,

3. Donner et prouver un invariant sur i; de la forme i, € [ay, b,[ou ay, b, dé-
pendent de k et p.

4, En déduire la complexité temporelle de compte it. Quel estle role de x?

Dans l'exercice précédent, x compte le nombre d’appels récursifs.

Complexité dans le meilleur ou dans le pire des cas

Considérons maintenant la fonction nbPositifs suivante, qui renvoie le nombre
d’éléments strictement positifs d'une liste de nombres.
def nbPositifs(lst: list)->int

"""Nombre d'éléments positifs d'une liste"""

nb = 0

for e in lst:

if e > 0
nb = nb + 1
return nb

Pour en calculer la complexité en fonction de la taille n de la liste, on est confronté a
une difficulté : I'affection nb = nb+1 de la ligne 6 n'est effectuée que si la condition
e > 0 estvraie, ce qui dépend de la liste fournie. Autrement dit, contrairement aux
exemples précédents ou le nombre d'opérations élémentaires ne dépendait que de
la taille des données, ici ce nombre peut varier entre deux données de méme taille.
On introduit alors les notions de complexité dans le meilleur et dans le pire des cas,
consistant a calculer respectivement le nombre minimal et maximal d’opérations
élémentaires parmil’ensemble des données de taille n. Ces deux valeurs fournissent
alors un encadrement de la complexité pour une donnée quelconque de taille 7.

Sur notre exemple, la complexité dans le meilleur des cas est obtenue lorsque 'affec-
tationnb = nb+1 n'estjamais effectuée, ce quiestle caslorsqu’iln’y a pas d’éléments
positifs. On dénombre alors les opérations élémentaires :

ITC € 2025-2026

10

/M/ Lycée Michel MONTAIGNE — Bordeaux

® une affectation pour l'instruction nb = 0,
® pour chacun des 7 éléments de liste, un test e > 0, mais aucune affectation
nb = nb+1.

Ontrouvedonc: Cpejenr(2)=1+nx1=n+1.

Le calcul de la complexité dans le pire des cas (une liste dont les termes sont stricte-
ment positifs) se fait bien str en ajoutant une addition et une affectationnb = nb+1
pour chacun des n éléments de liste, soit C(n) =1+ nx3=3n+1.

Remarquons qu’ici la complexité dans le meilleur et dans le pire des cas sont tous
deuxen O (n).

Exercice 6 [sols] Considérons lafonction suivante qui permet de rechercher un
indice a partir duquel la somme des éléments d'une liste de nombres positifs dépasse
un seuil fixé. Le programme renvoie —1 si cet indice n'existe pas.
def depasse(L: list, seuil: float)->int:
"""Renvoie l'indice ou la somme des éléments de L dépasse |
— seuil, -1 en cas de non-existence"""
S=0
trouve =
k =0
while not(trouve) and (k < len(L)):
S =S + L[k]
if S > seuil:
trouve =
else:
k += 1
if not(trouve):
k = -1
return k

False

True

Calculer la complexité de cette fonction dans le meilleur et dans le pire des cas.

Complexité d’une fonction récursive

Une fonction récursive s’appelant elle-méme, le calcul de sa complexité temporelle
se fait naturellement par récurrence. Pour mieux le comprendre, intéressons-nous a
la fonction FactorielleRec suivante, qui calcule la factorielle d'un entier naturel n
en récursif.

def FactorielleRec(n: int)->int
if n ==

return 1
else:

return n*FactorielleRec(n-1)

Notons C(7n) la complexité temporelle de cette fonction lorsque le parametre d’en-
trée est n. On trouve C(0) = 1 (car si n = 0, on compare juste n a2 0) et C(n+1) =
2+ C(n) (on fait une comparaison a 0, une multiplication puis C(n) opérations élé-
mentaires en appelant la fonction avec le parametre n). On obtient donc une suite
arithmétique de raison 2, ce qui donne apres calculs C(n) =1+2n =0(n).

Exercice 7
def SuiteU(n:
if n ==
return 1
else:
return 2*SuiteU(n-1)+1/SuiteU(n-1)

[sol 7] Considérons la fonction SuiteU récursive suivante :
int)->float

1. Que calcule cette fonction?
2. Calculer sa complexité temporelle.
3. Proposer une fonction SuiteU2 ayant une meilleure complexité.

Complexite spatiale

De la méme facon que l'on définit la complexité temporelle d'un algorithme pour
évaluer sa performance en temps de calcul, on peut définir sa complexité spatiale
pour évaluer sa consommation en espace mémoire. Le principe est le méme sauf
qu'au lieu de compter les opérations élémentaires, on compte les entités élémen-
taires de mémoire allouée pour I'exécution du programme, toujours en fonction de
la taille n des données. Ces entités élémentaires de mémoire sont celles qui stockent
les valeurs de type élémentaires (entier, flottant, caractere, etc). Un type complexe
comme une liste de réels, par exemple, comptera pour autant d’entité élémentaires
qu’elle contient de réels. Notez qu’ici encore il s’agit de compter des entités élémen-
taires, et pas de mesurer la mémoire utilisée. La complexité spatiale sera exprimée
sans unité, et pas en octets. Cependant, on notera que la complexité spatiale est bien
moins que la complexité temporelle un frein a l'utilisation d'un algorithme : on dis-
pose aujourd’hui le plus souvent d'une quantité pléthorique de mémoire vive, ce qui
rend moins important la détermination de la complexité spatiale.

ITC € 2025-2026

/M/ Lycée Michel MONTAIGNE — Bordeaux

SOLUTIONS DES EXERCICES

Solution 1

1.

La fonction calcule x” si n est un entier naturel, cette fonction contient une
unique boucle for, elle se termine donc forcément.

La fonction calcule également x" si n est un entier naturel. La suite (i) des va-
leurs contenues dans la variable i vérifie iy =0 et i;,; = i, + 1. Onadonc i} = k
pour k = 0. Cette suite d’entiers étant strictement croissante, il existe un rang k,
tel que iy, = n, ce quiassure la terminaison de la boucle (sinon on aurait une suite
d’entiers strictement croissante et majorée par n).

Solution 2

1.

Prouvons d’abord la terminaison de la boucle while. Pour cela, raisonnons par
I'absurde et supposons que celle-ci ne se termine pas. Montrons alors I'invariant
de boucle:

VieN, «n;eN».

Initialisation. Pouri=0,onan,=0€eN.

Hérédité. Supposonsla propriété vraie en un certainrang i € N. Lorsdela (i+1)°
itération de la boucle while, I'exécutionden += 1conduitan;,, =n;+1€N.Ce
qui acheve la récurrence.

D’autre part, la suite (7;);cy €St strictement croissante puisque pour tout i € N on
an;,=n;+1>n,;.

La suite (n;);cn est formée d’entiers et est strictement croissante, donc il existe un
rang iy pour lequel elle sera strictement supérieure a x—1. On aura alors n; +1 > x
etlaboucle while s’arréte, contrairement a ’hypothese.

Ce qui acheve la preuve de terminaison de la boucle while.

Reste a montrer que le programme renvoie bien le résultat attendu. Pour cela,

montrons I'invariant de boucle, o1 £ désigne le nombre d’itérations de la boucle

while:
iefo,..., 0},

«N; < X».

Initialisation.
pothese.

Pour i =0, on a ny < x puisque n, = 0 et que x est positif par hy-

Hérédité. Supposons la propriété vraie en un certain rang i € {0,...,¢ — 1}. Lors
dela (i + 1) itération de la boucle while, comme on est entré dans cette boucle,
c’est que la condition exprimée dans le while était vraie, a savoir que n; + 1 < x.
Or n;,; = n;+1,doncon abien n,,; < x.

Ce qui achéve la récurrence.

Comme la derniere itération de la boucle while a lieu pour i = ¢, on a a la fois
n, < x d’apres la propriété précédente, et n, + 1 > x puisque la boucle s’arréte
a cette étape. Ainsi, la valeur n, renvoyée par la fonction est bien le plus grand
entier naturel inférieur ou égal a x.

Solution 3

® Pour la fonction f1, on commence par une affectation a la ligne 2. On a ensuite
deux opérations élémentaires a laligne 5 répétées n fois dans la boucle for de la
ligne 4, soit 2n opérations élémentaires pour les lignes 4 et 5. Ces 2n opérations
sont répétées n fois chacune dans laboucle for delaligne 3, soit 2n* opérations
élémentaires pour les lignes 3 a 5. Au total, on a donc une complexité de f'1 égale
al+2n?

® Pour la fonction f2, on commence également par une affectation a la ligne 2.
On a ensuite deux opérations élémentaires a la ligne 5 répétées i fois dans la
boucle for de la ligne 4, soit 2i opérations élémentaires pour les lignes 4 et 5.
Avec la boucle for de laligne 3, on a donc:

n:(n—l)n

(n-1)
2*1+2*2+2*3+2*4+...+2*(n—l)=2><T

opérations élémentaires pour les lignes 3 a 5. Au total, on a donc une complexité
de f2 égaleal+(n—-1)n.

Solution 4

1. On dénombre :

® une affectationv = [];

® pourl’indice k delaboucle for (k allantde 0 a n), 'appelmoyenne (u[:k+1])
sur une liste de longueur k + 1 se fait en 2 + 2(k + 1) instructions élémen-
taires auxquelles s’ajoute l'affectation dans la variable m et la ligne suivante
contient deux instructions élémentaires (une concaténation et une affecta-
tion). On compte donc 7 + 2k instructions élémentaires pour l'indice k.

ITC € 2025-2026

12

/M/ Lycée Michel MONTAIGNE — Bordeaux

Ainsi, la complexité temporelle est :

n n n 1
C(n)=1+Y (7+2k)=1+7Y 142 k= 1+7(n+1)+2% =[8+8n+n?

k=0 k=0 k=0
8+8n+n?

Comme 5
n

converge vers 1, cette fonction a une complexité en|O (n?)|.
2. Pour éviter de re-sommer a chaque fois les premiers termes de la suite, on peut
constater que l'on a la relation suivante :

Vk €0, n], ,OU: Sy = Uy + -+ + Uy.

Sk
k+1
La variable S; pouvant étre créée al'aide d'une boucle for.

def cesaro2(u: list)->list

"""Calcul de la liste de Césaro associée a la liste u"""

v = []

Uk:

S=0
for k in range(len(u))
S =S + u[k]
v =vVv + [S/(k+])]
return v

Calculons la nouvelle complexité :

® deux affectations pourv = []etS = 0;

® pour chacune des n + 1 itérations de la boucle for, une somme et une af-
fectation pour S = S+u[k] et 4 opérations élémentaires (une somme, une
division, une somme de listes et une affectation.

On trouve donc une complexité en puisque :

C(n)=2+6(n+1)=[8+6n]

Solution 5

1. Supposons que le while ne s’arréte pas. Alors la suite (i;) ¢y €St Une suite stric-
tement décroissante d’entiers. En effet, soit k € N :

® si i, est pair, alors iy, = Ek < i} puisque i} # 0 (en effet, si on rentre dans

la boucle alors c’est que i; > 1).
. . : -1 .
® Si i, estimpair, alors ij,; = * < If.
Ainsi, puisque (i})ren €St une suite strictement décroissante d’entiers, il existe
un rang a partir duquel i;, < 1 — Contradiction.

La boucle termine.

2. On reformule en passant au log, :
2P <n<2P"! < p<log,(n)<p+1
< log,(n)-1<p <log,(n).

On reconnait 12 la définition de la partie entiere : |p = |log,(n)]|
3. Onpeutmontrerque: 277 < i, <2P* 1"k pourtout k € {0, ...,N} ot1 N désigne
le nombre d’itérations de la boucle while.

Initialisation.
précédente.

Pour k = 0, puisque i, = n on applique simplement la question

Hérédité. Supposons que 2P % < i, < 2P*1"F pour k € {0,...,N -1} fixé. llya
donc une itération k + 1. On fait la encore deux cas :
.. . , l s s .
® si i, est pair, alors iy, ; = Ek donc d’apres 'invariant :

i
k-1 _ Lk -k
2P Sy = E < 2P7FK,
C’est exactement ce que I'on voulait montrer.

.. . . . ip—1 N .
® Si i, estimpair, alors i,.,; = ——, donc d’apres l'invariant :
k k+1

2p+l—k -1 1

p-k _
1:—2 1 :2p_k——<2p_k.

zp—k—l__ ik_l <
2 2 2 2
Comme iy, est un entier, 'encadrement donne aussi :
2Pkl <, <2P7k,
Linvariant est donc prouvé par principe de récurrence.

4. Linvariant précédent donne i, € [1,2[alors que i,_, ne peut valoir 1. Ainsi, le
nombre d’itérations du while est exactement p = |log,(n)]. Faisons mainte-
nant le bilan des opérations : ona C(n) =2 +5p = 2+ 5[log,(n)| = O(log,(n)).
Les 5 opérations venant des 4 affectations/addition/quotient et du test d’entrée
dans la boucle.

S gy =

Solution 6 La encore, le nombre d’'opérations élémentaires ne dépend pas uni-
quement de la taille 7 de la liste fournie. Dans le meilleur des cas, le premier élément
est supérieur a seuil et la boucle while est répétée une seule fois. Les opérations élé-
mentaires sont :

® trois affectations avant la boucle;

® trois tests not(trouve), k < len(liste) (condition du while), S > seuil
(condition du if), une addition, une affectation, et une affectation trouve
= True; le tout est effectué une seule fois, mais n'oublions pas un dernier
test not(trouve) pour déterminer que la boucle s’arréte (l'autre test k <
len(liste) n'est pas effectué puisque le précédent est faux);

® untestif not(trouve).

ITC € 2025-2026

13

/M/ Lycée Michel MONTAIGNE — Bordeaux

Ainsi, Cpeitteure (72) = 11. Ici, la complexité dans le meilleur des cas est indépendante
de la taille de la liste, elle est donc en O (1).

Le pire des cas s'obtient quand la somme des éléments de la liste est inférieure au
seuil. Il faut alors parcourir la liste en entier :

® toujours trois affectations avant la boucle;

® les trois tests, deux affectations et deux additions sont répétés n fois, puis les
deux tests not (trouve) etk < len(liste) une derniére fois pour déterminer
que la boucle s’arréte;

® puis enfin un test et une affectation k = -1

On trouve donc Cpie(n) =3+ (3+2+2)n+2+2=7n+7. La complexité dans le pire
des cas est donc en O (n).

Solution 7

1. Cette fonction permet de calculer le terme d’indice n de la suite (u,,) définie
1
par:ug=letVneN, u,,,=2u,+—.

2. Notons C(n) la complexité de cette fonction lorsque le parameétre d’entrée est
n.On trouve C(0) = 1 et C(n + 1) = C(n) + C(n) + 4 (on fait une multiplication,
une addition, une division et 2 x C(n) opérations élémentaires en appelant deux
fois la fonction avec le parametre n). On obtient donc une suite arithmético-
géométrique ce qui donne apres calculs C(n) =5 x 2" — 4.

3. Considérons la fonction suivante :

def SuiteU2(n:int)->float
if n ==
return 1
else:
a = SuiteU2(n-1)
return 2*a+l/a
On trouve C (0) = 1 (seulement un test lorsque n = 0). Si n = 1, C(n) =
5+C (n—1) (on fait un test, une affectation, une multiplication, une addition,
une division et C (1 — 1) opérations élémentaires en appelant la fonction avec
le parametre n — 1). On obtient donc une suite arithmétique qui donne aprées
calculs C' (n) = 5n + 1. On obtient une complexité linéaire : le gain est énorme!

	pbs@ARFix@152:
	pbs@ARFix@153:
	pbs@ARFix@154:
	pbs@ARFix@155:
	pbs@ARFix@156:
	pbs@ARFix@157:
	pbs@ARFix@158:
	pbs@ARFix@159:
	pbs@ARFix@160:
	pbs@ARFix@161:
	pbs@ARFix@162:
	pbs@ARFix@163:
	pbs@ARFix@164:

