SEMESTRE 2 / COURS 1 - BONNES PRATIQUES DE PROGRAMMATION

ITC MPSI & PCSI - Année 2025-2026

LYCEE MONTAIGNE

SOMMAIRE

1. Fonctions et effet de bord

2. Spécifications

3. Annotations d'un bloc d'instructions

4. Jeux de tests

1/50

FONCTIONS ET EFFET DE BORD

COPIE DE VARIABLES

Exemple
X =0
y = X
X =1
L = [0]
Lp = L
Lfe]l = 1

Donner le contenu des variables y et Lp apres exécution du code.

2/50

COPIE DE VARIABLES

Exemple
X =0
y = X
X =1
L = [0]
Lp = L
Lfe]l = 1

Donner le contenu des variables y et Lp apres exécution du code.

>>> y
0
>>> Lp

[1]

2/50

COPIE DE VARIABLES

Explications
® variable < étiquette (nom) donné a un emplacement mémoire,

3/50

COPIE DE VARIABLES

Explications

® variable < étiquette (nom) donné a un emplacement mémoire,
® variable non mutable = le nom désigne une valeur (entier, flottant,
chaine de caractére,...),

3/50

COPIE DE VARIABLES

Explications

® variable < étiquette (nom) donné a un emplacement mémoire,
® variable non mutable = le nom désigne une valeur (entier, flottant,
chaine de caractére,...),

® variable mutable = le nom désigne un pointeur pointant vers une va-
leur.

3/50

COPIE DE VARIABLES

Exemple
X = 0
y = X
x =1
L =[o]
Lp = L
L[] = 1

Représentation

Frames Objects
Frames Objects
Global frame
Global frame list
x 0

0
v o L?O
tp

Figure 1: copie de la variable non

mutable x Figure 2: copie de la variable mutable L

4/50

FONCTIONS ET VARIABLES

Exemple
def f(x):
x =1

f(x)
def g(L):
L[e] = 1

L = [0]
g(L)

5/50

FONCTIONS ET VARIABLES

Exemple
def f(x):

f(x)

def g(L):
L[e] = 1

L = [o0]

g(L)

Apres exécution :

® |a valeur associée a la variable x est :

5/50

FONCTIONS ET VARIABLES

Exemple
def f(x):

f(x)

def g(L):
L[e] = 1

L = [o0]

g(L)

Apres exécution :

® |a valeur associée a la variable x est: 0

5/50

FONCTIONS ET VARIABLES

Exemple
def f(x):

f(x)

def g(L):
L[e] = 1

L = [o0]

g(L)

Apres exécution :

® |a valeur associée a la variable x est: 0
® (3 valeur associée a la variable L est :

5/50

FONCTIONS ET VARIABLES

Exemple
def f(x):

f(x)

def g(L):
Lfe] = 1

L = [0]

g(L)

Apres exécution :

® |a valeur associée a la variable x est: 0
® |a valeur associée a la variable L est: [1].

5/50

FONCTIONS ET VARIABLES

Exemple
def f(x):

f(x)

def g(L):
L[e] = 1

L = [o0]

g(L)

Apres exécution :

® |a valeur associée a la variable x est: 0
® |a valeur associée a la variable L est: [1].

= différence de comportement des fonctions suivant le caractére mutable

ou non des variables. S50

FONCTIONS ET VARIABLES

Exemple

>>> x = 0
>>> f(x)
>>> X

0

>>> L = [0]
>>> g(L)
>>> L

[1]

6/50

LIEN AVEC LA COPIE DE VARIABLES

Représentation

Frames Objects Frames Objects
Global frame function Global frame function
(=) gll)
f g
x 0 L list

o
0
£ El /
0 L

Figure 3 : avant modification de x par f Figure & : avant modification de L par g

7/50

LIEN AVEC LA COPIE DE VARIABLES

Représentation
Frames Objects Frames Objects
Global frame function Global frame function
£(x) gl(L)
f g
x 0 L list
o
/ 0
£ g /
x 0 L
Figure 3 : avant modification de x par f Figure & : avant modification de L par g
Frames Objects Frames Objects
Global frame function Glokal Erame function
£(x) gl(z)
f g
x 0 L list
i}
/ i
0 g
x (1 L
Sralua [None R None

Figure 5: aprés modification de x par f Figure 6: apres modification de L par Q/
7/50

CONCLUSIONS

Effet de bord . o . .)
En informatique, une fonction est dite a effet de bord si elle modifie un état

en dehors de son environnement local, c’est-a-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

8/50

CONCLUSIONS

Effet de bord . o . .)
En informatique, une fonction est dite a effet de bord si elle modifie un état

en dehors de son environnement local, c’est-a-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

® [a facon dont une fonction modifie le contenu d'une variable d’entrée
dépend du caractére mutable ou non de cette variable,

8/50

CONCLUSIONS

Effet de bord . o . .)
En informatique, une fonction est dite a effet de bord si elle modifie un état

en dehors de son environnement local, c’est-a-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

® [a facon dont une fonction modifie le contenu d'une variable d’entrée
dépend du caractére mutable ou non de cette variable,
® deux comportements distincts :

8/50

CONCLUSIONS

Effet de bord . o . .)
En informatique, une fonction est dite a effet de bord si elle modifie un état

en dehors de son environnement local, c’est-a-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

® [a facon dont une fonction modifie le contenu d'une variable d’entrée
dépend du caractére mutable ou non de cette variable,
® deux comportements distincts :
< modification de la valeur de x, non mutable, dans le programme
principal = x = f(x),

8/50

CONCLUSIONS

Effet de bord . o . .)
En informatique, une fonction est dite a effet de bord si elle modifie un état

en dehors de son environnement local, c’est-a-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

® [a facon dont une fonction modifie le contenu d'une variable d’entrée
dépend du caractére mutable ou non de cette variable,
® deux comportements distincts :
< modification de la valeur de x, non mutable, dans le programme
principal = x = f(x),
o modification de la valeur de L, mutable, dans le programme prin-
cipal = g(L),

8/50

INSTRUCTION VS EXPRESSION

L'instruction d’affectation =
® réalise une action (associe une valeur a une variable),

9/50

INSTRUCTION VS EXPRESSION

Linstruction d'affectation =

® réalise une action (associe une valeur a une variable),
® ne renvoie rien (comme import, for, while, if, else),

9/50

INSTRUCTION VS EXPRESSION

Linstruction d'affectation =

® réalise une action (associe une valeur a une variable),
® ne renvoie rien (comme import, for, while, if, else),
® print(a = 1),if a = 1 renvoient des erreurs.

9/50

INSTRUCTION VS EXPRESSION

Linstruction d'affectation =

® réalise une action (associe une valeur a une variable),
® ne renvoie rien (comme import, for, while, if, else),
® print(a = 1),if a = 1 renvoient des erreurs.

Expression avec ==
® == permet la création d'expressions (a == 1),

9/50

INSTRUCTION VS EXPRESSION

Linstruction d'affectation =

® réalise une action (associe une valeur a une variable),
® ne renvoie rien (comme import, for, while, if, else),
® print(a = 1),if a = 1 renvoient des erreurs.

Expression avec ==
® == permet la création d'expressions (a == 1),
® valeur renvoyée booléenne True ou False,

9/50

INSTRUCTION VS EXPRESSION

Linstruction d'affectation =

® réalise une action (associe une valeur a une variable),
® ne renvoie rien (comme import, for, while, if, else),
® print(a = 1),if a = 1 renvoient des erreurs.

Expression avec ==
® == permet la création d'expressions (a == 1),
® valeur renvoyée booléenne True ou False,
® print(a == 1) affiche True ou False (si a défini en amont),

9/50

INSTRUCTION VS EXPRESSION

Linstruction d’affectation =
® réalise une action (associe une valeur a une variable),
® ne renvoie rien (comme import, for, while, if, else),
® print(a = 1),if a = 1 renvoient des erreurs.

Expression avec ==
® == permet la création d'expressions (a == 1),
® valeur renvoyée booléenne True ou False,
® print(a == 1) affiche True ou False (si a défini en amont),
® if a == 1 syntaxe acceptée.

9/50

INSTRUCTION VS EXPRESSION

Linstruction d'affectation =

® réalise une action (associe une valeur a une variable),
® ne renvoie rien (comme import, for, while, if, else),
® print(a = 1),if a = 1 renvoient des erreurs.

Expression avec ==
® == permet la création d'expressions (a == 1),
® valeur renvoyée booléenne True ou False,
® print(a == 1) affiche True ou False (si a défini en amont),
® if a == 1 syntaxe acceptée.

Avantages et inconvénients

® nécessité de différencier lors de la programmation les deux actions (af-
fectation ou comparaison),

9/50

INSTRUCTION VS EXPRESSION

Linstruction d’affectation =
® réalise une action (associe une valeur a une variable),
® ne renvoie rien (comme import, for, while, if, else),
® print(a = 1),if a = 1 renvoient des erreurs.

Expression avec ==
® == permet la création d'expressions (a == 1),
® valeur renvoyée booléenne True ou False,
® print(a == 1) affiche True ou False (si a défini en amont),
® if a == 1 syntaxe acceptée.

Avantages et inconvénients

® nécessité de différencier lors de la programmation les deux actions (af-
fectation ou comparaison),
® ¢dvite la création de bugs issus de confusions entre les deux actions,

9/50

INSTRUCTION VS EXPRESSION

Linstruction d'affectation =

® réalise une action (associe une valeur a une variable),
® ne renvoie rien (comme import, for, while, if, else),
® print(a = 1),if a = 1 renvoient des erreurs.

Expression avec ==
® == permet la création d'expressions (a == 1),
® valeur renvoyée booléenne True ou False,
® print(a == 1) affiche True ou False (si a défini en amont),
® if a == 1 syntaxe acceptée.

Avantages et inconvénients

® nécessité de différencier lors de la programmation les deux actions (af-
fectation ou comparaison),

® ¢dvite la création de bugs issus de confusions entre les deux actions,

® comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas 'égalité entre a et 1). -

SPECIFICATIONS

EXPRIMER UN BESOIN

Pourquoi spécifier une fonction?

10/50

EXPRIMER UN BESOIN

Pourquoi spécifier une fonction?
® améliorer la compréhension de la fonction,

10/50

EXPRIMER UN BESOIN

Pourquoi spécifier une fonction?
® améliorer la compréhension de la fonction,
® clarifier l'interaction entre fonctions,

10/50

EXPRIMER UN BESOIN

Pourquoi spécifier une fonction?
® améliorer la compréhension de la fonction,
® clarifier l'interaction entre fonctions,
® faciliter la relecture de code,

10/50

EXPRIMER UN BESOIN

Pourquoi spécifier une fonction?
® améliorer la compréhension de la fonction,
® clarifier l'interaction entre fonctions,
® faciliter la relecture de code,
® faciliter le travail collaboratif.

10/50

EXPRIMER UN BESOIN

Pourquoi spécifier une fonction?
® améliorer la compréhension de la fonction,
® clarifier l'interaction entre fonctions,
® faciliter la relecture de code,
® faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

10/50

EXPRIMER UN BESOIN

Pourquoi spécifier une fonction?
® améliorer la compréhension de la fonction,
® clarifier l'interaction entre fonctions,
® faciliter la relecture de code,
® faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

® préciser le role de la fonction,

10/50

EXPRIMER UN BESOIN

Pourquoi spécifier une fonction?
® améliorer la compréhension de la fonction,
® clarifier l'interaction entre fonctions,
® faciliter la relecture de code,
® faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

® préciser le role de la fonction,
® préciser la nature des valeurs d’entrée (appelées parameétres ou
variables d’entrée),

10/50

EXPRIMER UN BESOIN

Pourquoi spécifier une fonction?
® améliorer la compréhension de la fonction,
® clarifier l'interaction entre fonctions,
® faciliter la relecture de code,
® faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

® préciser le role de la fonction,

® préciser la nature des valeurs d’entrée (appelées parameétres ou
variables d'entrée),

® préciser la nature de la valeur renvoyée.

10/50

SIGNATURE D'UNE FONCTION

Principe .
Pour une fonction :

® précise les types des paramétres d’'entrée,

11/50

SIGNATURE D'UNE FONCTION

Principe .
Pour une fonction :

® précise les types des paramétres d’'entrée,
® précise le type de la valeur renvoyée,

11/50

SIGNATURE D'UNE FONCTION

Principe .
Pour une fonction :

® précise les types des paramétres d’'entrée,
® précise le type de la valeur renvoyée,
® types acceptés: int, float, str, list,dict, np.array, etc,

11/50

SIGNATURE D'UNE FONCTION

Principe
Pour une fonction :
® précise les types des paramétres d’'entrée,
® précise le type de la valeur renvoyée,
® types acceptés: int, float, str, list,dict, np.array, etc,
® cas particulier d'une fonction ne renvoyant rien : type de sortie None.

11/50

SIGNATURE D'UNE FONCTION

Principe .
Pour une fonction :

® précise les types des paramétres d’'entrée,

® précise le type de la valeur renvoyée,

® types acceptés: int, float, str, list,dict, np.array, etc,

® cas particulier d'une fonction ne renvoyant rien : type de sortie None.

Notation générale
def func(paramil:typel, param2:type2, ...)->typeSortie:

11/50

EXEMPLES DE SIGNATURES

® fonction d'addition : add(x:float,y:float)->float

12/50

EXEMPLES DE SIGNATURES

® fonction d'addition : add(x:float,y:float)->float
® fonction de tri d'une liste renvoyant une nouvelle liste triée :
sort(L:list)->list

12/50

EXEMPLES DE SIGNATURES

® fonction d'addition : add(x:float,y:float)->float

® fonction de tri d'une liste renvoyant une nouvelle liste triée :
sort(L:list)->list

® fonction de tri d'une liste effectuant le tri de la liste passée en argument
par effet de bord (et donc ne renvoyant rien) : sort(L:1ist)->None

Possibilité de spécifier le type des éléments qui constituent une structure
composée (comme listes et tableaux)

12/50

EXEMPLES DE SIGNATURES

® fonction d'addition : add(x:float,y:float)->float

® fonction de tri d'une liste renvoyant une nouvelle liste triée :
sort(L:list)->list

® fonction de tri d'une liste effectuant le tri de la liste passée en argument
par effet de bord (et donc ne renvoyant rien) : sort(L:1ist)->None

Possibilité de spécifier le type des éléments qui constituent une structure
composée (comme listes et tableaux)

® Pour une fonction travaillant sur une liste d’entiers f(L: [int])->int
(au lieu de f(L:1list)->int),

12/50

EXEMPLES DE SIGNATURES

® fonction d'addition : add(x:float,y:float)->float

® fonction de tri d'une liste renvoyant une nouvelle liste triée :
sort(L:list)->list

® fonction de tri d'une liste effectuant le tri de la liste passée en argument
par effet de bord (et donc ne renvoyant rien) : sort(L:1ist)->None

Possibilité de spécifier le type des éléments qui constituent une structure
composée (comme listes et tableaux)

® Pour une fonction travaillant sur une liste d’entiers f(L: [int])->int
(au lieu de f(L:1list)->int),

® pour une fonction renvoyant une liste de listes composées chacune d'un
entier et d’'une chaine de caractére f(d:dict)->[[int,str]].

12/50

DOCSTRING D'UNE FONCTION

Principe
Texte placé juste aprés le nom de la fonction, délimité par des triples

quotes (""") et contenant :

13/50

DOCSTRING D'UNE FONCTION

Principe
Texte placé juste aprés le nom de la fonction, délimité par des triples

quotes (""") et contenant :

® une bréve description du role de la fonction,

13/50

DOCSTRING D'UNE FONCTION

Principe
Texte placé juste aprés le nom de la fonction, délimité par des triples

quotes (""") et contenant :

® une bréve description du role de la fonction,
® une section Parameters précisant le nom,type et la description de
chacune des variables d’entrée,

13/50

DOCSTRING D'UNE FONCTION

Principe
Texte placé juste aprés le nom de la fonction, délimité par des triples

quotes (""") et contenant :
® une bréve description du role de la fonction,
® une section Parameters précisant le nom,type et la description de

chacune des variables d’entrée,
® une section Returns précisant type et description de la valeur de sor-

tie,

13/50

DOCSTRING D'UNE FONCTION

Principe
Texte placé juste aprés le nom de la fonction, délimité par des triples

quotes (""") et contenant :

® une bréve description du role de la fonction,

® une section Parameters précisant le nom,type et la description de
chacune des variables d’entrée,

® une section Returns précisant type et description de la valeur de sor-

tie,
® une section Examples (optionnelle mais recommandée) illustrant le

fonctionnement de la fonction.

13/50

DOCSTRING D'UNE FONCTION

Exemple
Pour la fonction add(x:float,y:float)->float:
def add(x:float,y:float)->float:

Calculate the sum of 'x"and 'y’
Parameters

x : float

first value to add
y : float

second value to add
Returns

float

the sum of 'x"and 'y’
Examples
»>add(1,2)

3

return x+y
14/50

USAGES DES SIGNATURES ET DOCTRINGS

® utilisation simultanée de la signature et doctring non nécessaire,

15/50

USAGES DES SIGNATURES ET DOCTRINGS

® utilisation simultanée de la signature et doctring non nécessaire,
® signature : a privilégier lors de la description d’'une fonction, sans écri-
ture du code de celle-ci (parler de add(x:float,y:float)->float

plutdt que de add(x,y)),

15/50

USAGES DES SIGNATURES ET DOCTRINGS

® utilisation simultanée de la signature et doctring non nécessaire,

® signature : a privilégier lors de la description d’'une fonction, sans écri-
ture du code de celle-ci (parler de add(x:float,y:float)->float
plutdt que de add(x,y)),

® docstring : obligatoire lors de l'écriture du code d’une fonction,

15/50

USAGES DES SIGNATURES ET DOCTRINGS

® utilisation simultanée de la signature et doctring non nécessaire,

® signature : a privilégier lors de la description d’'une fonction, sans écri-
ture du code de celle-ci (parler de add(x:float,y:float)->float
plutdt que de add(x,y)),

® docstring : obligatoire lors de l'écriture du code d’une fonction,

® [a signature ne doit pas étre utilisée lors de l'appel de la fonction,

15/50

USAGES DES SIGNATURES ET DOCTRINGS

® utilisation simultanée de la signature et doctring non nécessaire,
® signature : a privilégier lors de la description d’'une fonction, sans écri-
ture du code de celle-ci (parler de add(x:float,y:float)->float
plutdt que de add(x,y)),
® docstring : obligatoire lors de l'écriture du code d’une fonction,
® [a signature ne doit pas étre utilisée lors de l'appel de la fonction,
o bonne utilisation : >>>add(2,3) renvoie 5,

15/50

USAGES DES SIGNATURES ET DOCTRINGS

® utilisation simultanée de la signature et doctring non nécessaire,
® signature : a privilégier lors de la description d’'une fonction, sans écri-
ture du code de celle-ci (parler de add(x:float,y:float)->float
plutdt que de add(x,y)),
® docstring : obligatoire lors de l'écriture du code d’une fonction,
® [a signature ne doit pas étre utilisée lors de l'appel de la fonction,
o bonne utilisation : >>>add(2,3) renvoie 5,
© mauvaise utilisation : >>>add(2:float,3:float)->float gé-
nére une erreur.

15/50

EXERCICE : FONCTION INCONNUE

Fonction inconnue
def f(a, b):
if b ==
return a
return f(b, a%b)

16/50

EXERCICE : FONCTION INCONNUE

Fonction inconnue
def f(a, b):
if b ==
return a
return f(b, a%b)

Questions
® Que renvoient f(15,10) et f(35,21)? Conjecturer le réle de f(a,b)
pour a et b quelconques.
® Préciser la signature et la docstring pour f, et renommer la fonction.

16/50

EXERCICE : FONCTION INCONNUE

® Pour a =15et b =10, on obtient successivement pour le couple (a, b) :
(10,5), (5, 0). La valeur renvoyeée est donc 5.

17/50

EXERCICE : FONCTION INCONNUE

® Pour a =15et b =10, on obtient successivement pour le couple (a, b) :
(10,5), (5, 0). La valeur renvoyeée est donc 5.

® Pour a =35 et b =21, on obtient successivement pour le couple (a, b) :
(21,14), (14,7), (7,0). La valeur renvoyée est donc 7.

17/50

EXERCICE : FONCTION INCONNUE

® Pour a =15et b =10, on obtient successivement pour le couple (a, b) :
(10,5), (5, 0). La valeur renvoyeée est donc 5.

® Pour a =35 et b =21, on obtient successivement pour le couple (a, b) :
(21,14), (14,7), (7,0). La valeur renvoyée est donc 7.

® Dans ces deux exemples, la fonction renvoie le pged (plus grand
commun diviseur) de a, b.

17/50

FONCTION RENOMMEE ET AVEC SPECIFICATIONS

def pgcd(a:int,b:int)->int:
""" Returns the pgcd of 'a' and 'b' if a > b
Parameters
a : int, first value to compute the pgcd
b : int, second value to compute the pgcd

Returns

int, pgcd of 'a' and 'b'

Examples
>>> pgcd(15,10)
5
>>> pgcd(35,21)
7
if b ==

return a

return pgcd(b, a%b) .

EXERCICE : RECHERCHE DICHOTOMIQUE

def dicho(L, v):
i_deb = 0
i_fin = len(L)
trouve = False
while not trouve and i _deb < i fin:
im = (i_deb + i_fin) // 2
if L[i_m] == v:
trouve = True
elif L[i_m] < v:
i deb =dim~+ 1
else:
i fin = im
return trouve

Préciser la signature et la spécification de cette fonction. 19/50

EXERCICE : RECHERCHE DICHOTOMIQUE

def dicho(L:list, v:int)->bool:

Determines if value V' belongs to 'L’ by dichotomic method.
Parameters
L:list
list of values sorted with L[0]<= L[1] <= ... <= L[n-1]
v:int
value to be tested
Returns
bool
True if value 'V’ is in 'L, False in the other case

Examples

»> dicho([1,3,5],5)
True

»> dicho([1,3,5]4)
False

»> dicho([]1)
False

20/50

EXERCICE : FONCTION DE TRI (TRI A BULLES)

def tri bulle(L):
n = len(L)
t = n-1
fini = False
while t > 0 and not fini:
fini = True
for j in range(t):
if L[] > L[j+1]:
L[j1, L[j+1] = L[j+1]1, L[j]
fini = False

Préciser la signature et la spécification de cette fonction.

21/50

EXERCICE : FONCTION DE TRI (TRI A BULLES)

def tri_bulle(L:list)->None:

Sort the list in ascending order and return None. After execution, the list is sorted in ascending order.
Parameters

L :list
list to be sorted
Returns
None, L is sorted by side effect
Examples
»> L =[231]
»>tri_bulle(L)

»> L
[1,2,3]

22/50

INSTRUCTION

Présentation
® spécification = conditions sur les paramétres d'entrée,

23/50

INSTRUCTION

Présentation

® spécification = conditions sur les paramétres d'entrée,
® volonté de tester le respect de ces conditions,

23/50

INSTRUCTION

Présentation
® spécification = conditions sur les paramétres d'entrée,
® volonté de tester le respect de ces conditions,
® instruction :
assert condition [,message]

(la partie entre crochets est optionnelle)

23/50

INSTRUCTION

Présentation
® spécification = conditions sur les paramétres d'entrée,
® volonté de tester le respect de ces conditions,
® instruction :
assert condition [,message]
(la partie entre crochets est optionnelle)
® si la condition est vérifiée, on passe a la suite,

23/50

INSTRUCTION

Présentation

® spécification = conditions sur les paramétres d'entrée,

® volonté de tester le respect de ces conditions,

® instruction :

assert condition [,message]

(la partie entre crochets est optionnelle)
si la condition est vérifiée, on passe a la suite,
sinon, on arréte le programme et on affiche le message (optionnel).

23/50

INSTRUCTION

Exemples
® assert x >= 0

® assert x >= 0, "la variable 'x' est néegative"
® assert len(L) != 0, "la liste est vide"

® assert type(eps) == float

® assert type(x) == float or type(x) == int

24/50

INSTRUCTION -EXERCICE

Soit la fonction
mot_en_place(mot:str,texte:str,i:int)->bool

qui renvoie True si mot[j] = texteli + j],Vj € [0,m — 1], avec m=1len(mot),
et False sinon

25/50

INSTRUCTION -EXERCICE

Soit la fonction
mot_en_place(mot:str,texte:str,i:int)->bool

qui renvoie True si mot[j] = texteli + j],Vj € [0,m — 1], avec m=1len(mot),
et False sinon.

® Déterminer les contraintes que doivent vérifier les variables d'entrée de
cette fonction.

25/50

INSTRUCTION -EXERCICE

Soit la fonction
mot_en_place(mot:str,texte:str,i:int)->bool

qui renvoie True si mot[j] = texteli + j],Vj € [0,m — 1], avec m=1len(mot),
et False sinon.
® Déterminer les contraintes que doivent vérifier les variables d'entrée de

cette fonction.
® Ecrire les lignes de code correspondantes en utilisant assert.

25/50

INSTRUCTION : EXERCICE

® o mot et texte doivent étre des chaines de caractére,

26/50

INSTRUCTION : EXERCICE

® o mot et texte doivent étre des chaines de caractére,
o 1 doit étre un entier positif ou nul,

26/50

INSTRUCTION : EXERCICE

® o mot et texte doivent étre des chaines de caractére,
o 1 doit étre un entier positif ou nul,
o on doit avoir i + len(mot) < len(texte).

26/50

INSTRUCTION : EXERCICE

® o mot et texte doivent étre des chaines de caractére,
o 1 doit étre un entier positif ou nul,
o on doit avoir i + len(mot) < len(texte).

® n, m =
assert
assert
assert
assert
assert

len(texte), len(mot)
type(mot) == str
type(texte) == str
type(i) == int
i>=0

i+m <= n

26/50

ANNOTATIONS D'UN BLOC
D'INSTRUCTIONS

COMMENTAIRES

® Un code non commenté est un code inexploitable.

27/50

COMMENTAIRES

® Un code non commenté est un code inexploitable.
® Plusieurs possibilités pour commenter :
o commentaire en ligne : sur la méme ligne qu’une ligne de code
(code, caractére #, espace, commentaire).

27/50

COMMENTAIRES

® Un code non commenté est un code inexploitable.
® Plusieurs possibilités pour commenter :
o commentaire en ligne : sur la méme ligne qu’une ligne de code
(code, caractére #, espace, commentaire).
o Bloc de commentaire : avant une partie de code (caractére #,
espace, commentaire)

27/50

COMMENTAIRES

am Exemple

On initialise deux variables x et y a 1. Puis on \
< calcule la somme de x et y. (bloc de commentaire)
x = 1 # Initialisation de x (commentaire en ligne)
y =1

Z = X+y

28/50

COMMENTAIRES

am Exemple

On initialise deux variables x et y a 1. Puis on \
< calcule la somme de x et y. (bloc de commentaire)
x = 1 # Initialisation de x (commentaire en ligne)
y =1

Z = X+y

28/50

UTILISATION DES COMMENTAIRES

Problématique usuelle concernant les codes :

® [Est-ce que le code se termine?

29/50

UTILISATION DES COMMENTAIRES

Problématique usuelle concernant les codes :

® [Est-ce que le code se termine?
® Sioui, le résultat obtenu est-il celui attendu?

29/50

UTILISATION DES COMMENTAIRES

Problématique usuelle concernant les codes :

® [Est-ce que le code se termine?
® Sioui, le résultat obtenu est-il celui attendu?

Outils utilisables pouvant figurer dans le code sous forme de commentaire :

® Précondition

29/50

UTILISATION DES COMMENTAIRES

Problématique usuelle concernant les codes :

® [Est-ce que le code se termine?
® Sioui, le résultat obtenu est-il celui attendu?

Outils utilisables pouvant figurer dans le code sous forme de commentaire :

® Précondition
® Postcondition

29/50

UTILISATION DES COMMENTAIRES

Problématique usuelle concernant les codes :

® [Est-ce que le code se termine?
® Sioui, le résultat obtenu est-il celui attendu?

Outils utilisables pouvant figurer dans le code sous forme de commentaire :

® Précondition
® Postcondition
® [nvariant de boucle

29/50

PRECONDITION

Précondition :

propriété (P) qui doit étre vérifiee avant l'exécution du code.

30/50

PRECONDITION

Précondition :
propriété (P) qui doit étre vérifiee avant l'exécution du code.

® Fxemple de code avec avec a et b entiers naturels
X,y=ab
while x = y:
ifx>vy:
X=X-Yy
else:
y=y-x

30/50

PRECONDITION

Précondition :
propriété (P) qui doit étre vérifiee avant l'exécution du code.

® Exemple de code avec avec a et b entiers naturels
X,y=ab
while x = y:
ifx>vy:
X=X-y
else:
y=y-X
® S est donc défini pour (a,b) € N2 Examinons 'évolution des valeurs
du couple de variables (x,y) dans deux cas.

30/50

PRECONDITION

Précondition :
propriété (P) qui doit étre vérifiee avant l'exécution du code.

® Exemple de code avec avec a et b entiers naturels
X,y=ab
while x = y:
ifx>vy:
X=X-y
else:
y=y-X
® S est donc défini pour (a,b) € N2 Examinons 'évolution des valeurs
du couple de variables (x,y) dans deux cas.

o Poura=14etb=9 0na:

30/50

PRECONDITION

Précondition :
propriété (P) qui doit étre vérifiee avant l'exécution du code.

® Exemple de code avec avec a et b entiers naturels
X,y=ab
while x = y:
ifx>vy:
X=X-y
else:
y=y-X
® S est donc défini pour (a,b) € N2 Examinons 'évolution des valeurs
du couple de variables (x,y) dans deux cas.

o Poura=14etb=9 0na:
(14,9) — (5,9) — (5,4) — (1,4) = (1,3) — (1,2) — (1,1)
la boucle s'arréte et on obtient x =y = 1.
o Poura=14etb=0,0ona:

30/50

PRECONDITION

Précondition :
propriété (P) qui doit étre vérifiee avant l'exécution du code.

® Exemple de code avec avec a et b entiers naturels
X,y=ab
while x = y:
ifx>vy:
X=X-y
else:
y=y-X
® S est donc défini pour (a,b) € N2 Examinons 'évolution des valeurs
du couple de variables (x,y) dans deux cas.

o Poura=14etb=9 0na:
(14,9) — (5,9) — (5,4) — (1,4) = (1,3) — (1,2) — (1,1)
la boucle s'arréte et on obtient x =y = 1.
o Poura=14etb=0,ona:(14,0) — (14,0) — (14,0) - -- la boucle
est infinie, S ne se termine donc jamais dans ce cas.

30/50

PRECONDITION

On peut donc partitionner 'ensemble de départ de S (N? ici) en deux :

31/50

PRECONDITION

On peut donc partitionner 'ensemble de départ de S (N? ici) en deux :

® L'ensemble {(a,b) € N? / S se termine et renvoie le résultat attendu},

31/50

PRECONDITION

On peut donc partitionner 'ensemble de départ de S (N? ici) en deux :

® L'ensemble {(a,b) € N? / S se termine et renvoie le résultat attendu},
® |e complémentaire de cet ensemble qui conduit a un résultat erroné
en sortie de boucle.

31/50

PRECONDITION

On peut donc partitionner 'ensemble de départ de S (N? ici) en deux :

® L'ensemble {(a,b) € N? / S se termine et renvoie le résultat attendu},
® |e complémentaire de cet ensemble qui conduit a un résultat erroné
en sortie de boucle.

Précondition pour le code S:

(P):«(a,b) eN?, a>0, b>0»

31/50

PRECONDITION

On peut donc partitionner 'ensemble de départ de S (N? ici) en deux :
® L'ensemble {(a,b) € N? / S se termine et renvoie le résultat attendu},

® |e complémentaire de cet ensemble qui conduit a un résultat erroné
en sortie de boucle.

Précondition pour le code S:
(P):«(a,b) eN?, a>0, b>0»

Cette précondition peut étre annotée en commentaire :
Précondition (P): a et b sont des entiers naturels strictement \
— positifs
X, y=a,b
while x != y:
if x > y:

else:

31/50

POSTCONDITION : CARACTERISATION DU RESULTAT

Postcondition :

propriété (Q) qui doit étre vérifiée aprés l'exécution du code.

32/50

POSTCONDITION : CARACTERISATION DU RESULTAT

Postcondition :
propriété (Q) qui doit étre vérifiée aprés l'exécution du code.

® [a postcondition peut figurer dans le code sous forme d'un
commentaire,

32/50

POSTCONDITION : CARACTERISATION DU RESULTAT

Postcondition :
propriété (Q) qui doit étre vérifiée aprés l'exécution du code.

® [a postcondition peut figurer dans le code sous forme d'un
commentaire,

® lorsque le code S est le corps d'une fonction, alors la précondition (P)
et la postcondition (Q) peuvent étre mentionnées dans le docstring de
la fonction.

32/50

POSTCONDITION : CARACTERISATION DU RESULTAT

Postcondition :
propriété (Q) qui doit étre vérifiée aprés l'exécution du code.

® [a postcondition peut figurer dans le code sous forme d'un
commentaire,

® lorsque le code S est le corps d'une fonction, alors la précondition (P)
et la postcondition (Q) peuvent étre mentionnées dans le docstring de
la fonction.

Dans 'exemple précédent, la postcondition (Q) pourrait étre : « x =y et
x = pged(a, b) ».

32/50

POSTCONDITION : CARACTERISATION DU RESULTAT

Postcondition :
propriété (Q) qui doit étre vérifiée aprés l'exécution du code.

® [a postcondition peut figurer dans le code sous forme d'un
commentaire,

® lorsque le code S est le corps d'une fonction, alors la précondition (P)
et la postcondition (Q) peuvent étre mentionnées dans le docstring de
la fonction.

Dans 'exemple précédent, la postcondition (Q) pourrait étre : « x =y et
x = pgcd(a, b) ».

Précondition (P): a et b sont des naturels strictement positifs
xy=ab
while x = y:
if x>y:
X=X-y
else:
y=y-X
Postcondition (Q): x = y et x = pgcd(a,b)

32/50

NOTION D'INVARIANT

Invariant :

proposition qui reste vraie tout au long de 'exécution du code (ou d'une
portion de code)

33/50

NOTION D'INVARIANT

Invariant :

proposition qui reste vraie tout au long de 'exécution du code (ou d'une
portion de code)

® Lors de la preuve d’algorithme (objet du chapitre suivant), il faut
prouver l'invariant,

33/50

NOTION D'INVARIANT

Invariant :

proposition qui reste vraie tout au long de 'exécution du code (ou d'une
portion de code)

® Lors de la preuve d’algorithme (objet du chapitre suivant), il faut
prouver l'invariant,
® on utilise l'invariant pour établir la preuve du programme,

33/50

NOTION D'INVARIANT

Invariant :

proposition qui reste vraie tout au long de 'exécution du code (ou d'une
portion de code)

® Lors de la preuve d’algorithme (objet du chapitre suivant), il faut
prouver l'invariant,

® on utilise l'invariant pour établir la preuve du programme,

® on peut alors noter cet invariant sous forme de commentaire dans le

code,

33/50

NOTION D'INVARIANT

Invariant :

proposition qui reste vraie tout au long de 'exécution du code (ou d'une
portion de code)

® Lors de la preuve d’algorithme (objet du chapitre suivant), il faut
prouver l'invariant,

® on utilise l'invariant pour établir la preuve du programme,

® on peut alors noter cet invariant sous forme de commentaire dans le
code,

® dans l'exemple précédent l'invariant est :
«x ety sont des naturels non nuls, et pgcd(x, y) = pgcd(a, b) ».

33/50

NOTION D'INVARIANT : EXEMPLE

Précondition (P): a et b sont des naturels strictement positifs
X, y=a,b
while x != y:
Invariant: x et y sont des naturels strictement positifs
et pgcd(x,y) = pgcd(a,b).
if x > y:
x =x -y #pgcd(x, y) = pged(x -y, y)
else:
y =y - x # pgcd(x, y) = pgcd(x, y - x)
Postcondition (Q): x = y et x = pgcd(a,b)

34/50

NOTION D'INVARIANT : EXEMPLE

Précondition (P): a et b sont des naturels strictement positifs
X, y=a,b
while x != y:
Invariant: x et y sont des naturels strictement positifs
et pgcd(x,y) = pgcd(a,b).
if x > y:
x =x -y #pgcd(x, y) = pged(x -y, y)
else:
y =y - x # pgcd(x, y) = pgcd(x, y - x)
Postcondition (Q): x = y et x = pgcd(a,b)

Lorsque la condition n'est plus remplie, c’'est a dire lorsque x et y sont
égaux, on sort de la boucle, on a alors x = y et d'aprés l'invariant on a aussi
pgcd(x,y) = pgcd(a, b), or pged(x,y) = pged(x,x) = x (x est un naturel non
nul), ce qui prouve la postcondition (Q).

34/50

NOTION D'INVARIANT

En résumé, lorsque nous avons affaire a une boucle, nous pouvons
représenter la situation ainsi :

(Précondition) (Postcondition)

implique
A 4
Initialisation

instaure

~

3

conserve Progression
dans la boucle

h
1
1
1
1
1
1
1
1
|
|
|
|
|
|
|
|
|
i
| .
' Invariant
|
|
|
|
|
|
|
|
|
|
|
1
|
|
1
1
1
1
1

Les cases grisées correspondent a une action. 35/50

EXERCICE

Ecrire la fonction somme(n: int) -> int respectant la spécification
suivante :

® Précondition:n € N.
n

® Postcondition : la valeur renvoyée est > k.
k=0

On précisera dans le code un invariant de la boucle.

36/50

SOLUTION

def somme(n: int) -> int:

nmnn

Parameters
n: int assumed positive (précondition)
Returns

0+1+...+n (postcondition)

Examples

>>> somme(10)

55

resultat = 0 # variable qui contiendra la somme cherchée

for k in range(1,n+1): # pour k allant de 1 a n

Invariant : 'resultat' est la somme des entiers de 0 a k
resultat = resultat + k

return resultat

37/50

JEUX DE TESTS

UTILITE DES TESTS

Une fois qu’un programme est prouvé (on a démontré qu’il se comporte
comme attendu dans toutes les situations possibles) il peut sembler inutile
de le tester, mais :

38/50

UTILITE DES TESTS

Une fois qu’un programme est prouvé (on a démontré qu’il se comporte
comme attendu dans toutes les situations possibles) il peut sembler inutile
de le tester, mais :

® des erreurs peuvent avoir été commises dans l'étude théorique

38/50

UTILITE DES TESTS

Une fois qu’un programme est prouvé (on a démontré qu’il se comporte
comme attendu dans toutes les situations possibles) il peut sembler inutile
de le tester, mais :

® des erreurs peuvent avoir été commises dans l'étude théorique
® |a preuve peut étre trés longue et/ou trés délicate a établir.

38/50

UTILITE DES TESTS

Une fois qu’un programme est prouvé (on a démontré qu’il se comporte
comme attendu dans toutes les situations possibles) il peut sembler inutile
de le tester, mais :

® des erreurs peuvent avoir été commises dans l'étude théorique
® |a preuve peut étre trés longue et/ou trés délicate a établir.

Dans tous les cas, il est ainsi nécessaire de multiplier les tests, pour
chaque fonction écrite, et pour l'ensemble du programme.

38/50

UTILITE DES TESTS

® Un test compare le résultat d’'une fonction (ou d’un bout de code)
exécutée avec des valeurs particuliéres pour les parametres d’entrée
et la valeur attendue en retour.

39/50

UTILITE DES TESTS

® Un test compare le résultat d’'une fonction (ou d’un bout de code)
exécutée avec des valeurs particuliéres pour les parametres d’entrée
et la valeur attendue en retour.

® |e choix des tests se porte en général sur des cas limites des valeurs
d’entrée (qui dépendent du code testé).

39/50

UTILITE DES TESTS

® Un test compare le résultat d’'une fonction (ou d’un bout de code)
exécutée avec des valeurs particuliéres pour les parametres d’entrée
et la valeur attendue en retour.

® |e choix des tests se porte en général sur des cas limites des valeurs
d’entrée (qui dépendent du code testé).

® Un test ne prouve pas le code :
« le test de programmes peut étre une facon trés efficace de montrer
la présence de bugs, mais il est désespérément inadéquat pour
prouver leur absence » (Edsger Dijkstra).

39/50

UTILITE DES TESTS

® Un test compare le résultat d’'une fonction (ou d’un bout de code)
exécutée avec des valeurs particuliéres pour les parametres d’entrée
et la valeur attendue en retour.

® |e choix des tests se porte en général sur des cas limites des valeurs
d’entrée (qui dépendent du code testé).

® Un test ne prouve pas le code :
« le test de programmes peut étre une facon trés efficace de montrer
la présence de bugs, mais il est désespérément inadéquat pour
prouver leur absence » (Edsger Dijkstra).

® || est recommandé de prévoir un jeu de tests dés la spécification.

39/50

EXEMPLE

® Soit la fonction division(a, b) dont la spécification est la suivante :

40/50

EXEMPLE

® Soit la fonction division(a, b) dont la spécification est la suivante :
o Paramétres d’entrée : a et b sont des entiers positifs avec b non nul.

40/50

EXEMPLE

® Soit la fonction division(a, b) dont la spécification est la suivante :
o Paramétres d’entrée : a et b sont des entiers positifs avec b non nul.
o Résultat renvoye : le résultat de la fonction est le tuple (g,r) ou g etr
sont respectivement le quotient et le reste de la division euclidienne de a
par b (c'est a dire vérifiant a = bg + r avec 0 < r < b).

40/50

EXEMPLE

® Soit la fonction division(a, b) dont la spécification est la suivante :
o Paramétres d’entrée : a et b sont des entiers positifs avec b non nul.
o Résultat renvoye : le résultat de la fonction est le tuple (g,r) ou g etr
sont respectivement le quotient et le reste de la division euclidienne de a
par b (c'est a dire vérifiant a = bg + r avec 0 < r < b).
® Choix d'action si la contrainte sur les paramétres d’entrée (précondition) n'est
pas remplie :

40/50

EXEMPLE

® Soit la fonction division(a, b) dont la spécification est la suivante :
o Paramétres d’entrée : a et b sont des entiers positifs avec b non nul.
o Résultat renvoye : le résultat de la fonction est le tuple (g,r) ou g etr
sont respectivement le quotient et le reste de la division euclidienne de a
par b (c'est a dire vérifiant a = bg + r avec 0 < r < b).
® Choix d'action si la contrainte sur les paramétres d’entrée (précondition) n'est
pas remplie :
© générer une erreur avec l'instruction assert,

40/50

EXEMPLE

® Soit la fonction division(a, b) dont la spécification est la suivante :
o Paramétres d’entrée : a et b sont des entiers positifs avec b non nul.
o Résultat renvoye : le résultat de la fonction est le tuple (g,r) ou g etr
sont respectivement le quotient et le reste de la division euclidienne de a
par b (c'est a dire vérifiant a = bg + r avec 0 < r < b).
® Choix d'action si la contrainte sur les paramétres d’entrée (précondition) n'est
pas remplie :
© générer une erreur avec l'instruction assert,
© renvoyer un résultat particulier.

40/50

EXEMPLE

® Soit la fonction division(a, b) dont la spécification est la suivante :
o Paramétres d’entrée : a et b sont des entiers positifs avec b non nul.
o Résultat renvoye : le résultat de la fonction est le tuple (g,r) ou g etr
sont respectivement le quotient et le reste de la division euclidienne de a
par b (c'est a dire vérifiant a = bg + r avec 0 < r < b).
® Choix d'action si la contrainte sur les paramétres d’entrée (précondition) n'est
pas remplie :
© générer une erreur avec l'instruction assert,
© renvoyer un résultat particulier.
® Comportement respectifs :
o Ter cas: la fin du programme avec éventuellement un message d’erreur,
ce qui n'est pas toujours souhaitable

40/50

EXEMPLE

® Soit la fonction division(a, b) dont la spécification est la suivante :
o Paramétres d’entrée : a et b sont des entiers positifs avec b non nul.
o Résultat renvoye : le résultat de la fonction est le tuple (g,r) ou g etr
sont respectivement le quotient et le reste de la division euclidienne de a
par b (c'est a dire vérifiant a = bg + r avec 0 < r < b).
® Choix d'action si la contrainte sur les paramétres d’entrée (précondition) n'est
pas remplie :
© générer une erreur avec l'instruction assert,
© renvoyer un résultat particulier.
® Comportement respectifs :
o Ter cas: la fin du programme avec éventuellement un message d’erreur,
ce qui n'est pas toujours souhaitable,
© 2iéme cas : on peut choisir de renvoyer None si la contrainte n'est pas
remplie. Cette convention devra étre mentionnée dans la docstring.

40/50

EXEMPLE

® Exemples de tests:
o a et b strictement positifs : division(19, 7) doit renvoyer (2,

5),

41/50

EXEMPLE

® Exemples de tests:
o a et b strictement positifs : division(19, 7) doit renvoyer (2,
5),
o a et b strictement positifs : division(7, 19) doit renvoyer (0,
7),

41/50

EXEMPLE

® Exemples de tests:
o a et b strictement positifs : division(19, 7) doit renvoyer (2,
5),
o a et b strictement positifs : division(7, 19) doit renvoyer (0,
7),
o a nul et b strictement positif: division(0, 19) doit renvoyer
(0, 0),
a positifet b nul: division(19, 0) doit renvoyer None,
a positif et b négatif: division(19, -7) doit renvoyer None,
a négatif et b positif: division(-19, 7) doit renvoyer None,
a négatif et b nul: division(-19, 0) doit renvoyer None,
a négatif et b négatif: division(-19, -7) doit renvoyer None.

[R IR

41/50

EXEMPLE

® Exemples de tests:
o a et b strictement positifs : division(19, 7) doit renvoyer (2,
5),
o a et b strictement positifs : division(7, 19) doit renvoyer (0,
7),
o a nul et b strictement positif: division(0, 19) doit renvoyer
(0, 0),
o a positifet b nul:division(19, 0) doit renvoyer None,
o a positif et b négatif: division(19, -7) doit renvoyer None,
o a négatif et b positif: division(-19, 7) doit renvoyer None,
o anégatifet b nul:division(-19, 0) doit renvoyer None,
o a négatif et b négatif: division(-19, -7) doit renvoyer None.
® On pourrait bien sir imaginer d'autres valeurs numeériques, ou méme
choisir des valeurs aléatoirement dans chaque cas. Nous allons faire
figurer ces tests dans la docstring sous forme d’exemples.

41/50

EXEMPLE

def division(a: int, b: int) -> (int, int):
Renvoie le quotient et le reste de la division de a par b
Paramétres:
a: int, entier naturel
b:int, entier strictement positif
Retour:
tuple (q, r) tel que a=bg+r avec 0<=r<b
ou None si a<0 ou b<=0
Exemples:
»> division(19,7)
(2,5)
»> division(7,19)
(0,7)
»> division(0,19)
(0,0)
»> division(19,0)
None
»> division(19,-7)
None

42/50

EXEMPLE

nun

>>> division(-19,7)

None

>>> division(-19,0)
None

>>> division(-19,-7)
None

nun

43/50

EXEMPLE

nun

>>> division(-19,7)

None

>>> division(-19,0)
None

>>> division(-19,-7)
None

nun

Nous pouvons maintenant passer a 'écriture du code.

43/50

EXEMPLE

>>> division(-19,7)

None

>>> division(-19,0)

None

>>> division(-19,-7)
None

nun

Nous pouvons maintenant passer a 'écriture du code.

® |a postcondition nous fournit pratiqguement l'invariant de la boucle
que nous allons devoir écrire : a = bg + r.

43/50

EXEMPLE

nun

>>> division(-19,7)
None

>>> division(-19,0)
None

>>> division(-19,-7)
None

nun

Nous pouvons maintenant passer a 'écriture du code.

® |a postcondition nous fournit pratiqguement l'invariant de la boucle
que nous allons devoir écrire : a = bg + r.
® g et r seront deux variables locales, il faut les initialiser de sorte que

'invariant soit vérifié.

43/50

EXEMPLE

>>> division(-19,7)

None
>>> division(-19,0)
None
>>> division(-19,-7)
None

nun

Nous pouvons maintenant passer a 'écriture du code.

® |a postcondition nous fournit pratiqguement l'invariant de la boucle
que nous allons devoir écrire : a = bg + r.

® g et r seront deux variables locales, il faut les initialiser de sorte que
l'invariant soit vérifié. Il suffit de prendreg=0etr =g, la
précondition nous dit alors que 0 < r.

43/50

EXEMPLE

>>> division(-19,7)

None

>>> division(-19,0)
None

>>> division(-19,-7)
None

nun

Nous pouvons maintenant passer a 'écriture du code.

® |a postcondition nous fournit pratiqguement l'invariant de la boucle
que nous allons devoir écrire : a = bg + r.

® g et r seront deux variables locales, il faut les initialiser de sorte que
l'invariant soit vérifié. Il suffit de prendreg=0etr =g, la
précondition nous dit alors que 0 < r.

® Sir < b ladivision est terminée,

43/50

EXEMPLE

>>> division(-19,7)

None

>>> division(-19,0)
None

>>> division(-19,-7)
None

nun

Nous pouvons maintenant passer a 'écriture du code.

® |a postcondition nous fournit pratiqguement l'invariant de la boucle
que nous allons devoir écrire : a = bg + r.

® g et r seront deux variables locales, il faut les initialiser de sorte que
l'invariant soit vérifié. Il suffit de prendreg=0etr =g, la
précondition nous dit alors que 0 < r.

® Sir < b ladivision est terminée, mais si r > b, alors on enléve b a r et
onajoute 1agcarbg+r=>b(g+1)+(r—>b),

43/50

EXEMPLE

>>> division(-19,7)

None
>>> division(-19,0)
None
>>> division(-19,-7)
None

nun

Nous pouvons maintenant passer a 'écriture du code.

® |a postcondition nous fournit pratiqguement l'invariant de la boucle
que nous allons devoir écrire : a = bg + r.

® g et r seront deux variables locales, il faut les initialiser de sorte que
l'invariant soit vérifié. Il suffit de prendreg=0etr =g, la
précondition nous dit alors que 0 < r.

® Sir < b ladivision est terminée, mais si r > b, alors on enléve b a r et
on ajoute 1a g car bg+r = b(g+ 1)+ (r — b), linvariant est bien
conserve,

43/50

EXEMPLE

>>> division(-19,7)

None
>>> division(-19,0)
None
>>> division(-19,-7)
None

nun

Nous pouvons maintenant passer a 'écriture du code.

® |a postcondition nous fournit pratiqguement l'invariant de la boucle
que nous allons devoir écrire : a = bg + r.

® g et r seront deux variables locales, il faut les initialiser de sorte que
l'invariant soit vérifié. Il suffit de prendreg=0etr =g, la
précondition nous dit alors que 0 < r.

® Sir < b ladivision est terminée, mais si r > b, alors on enléve b a r et
on ajoute 1a g car bg+r = b(g+ 1)+ (r — b), linvariant est bien
conservé, et on recommence le test sur r (boucle).

43/50

EXEMPLE

def division(a: int, b: int) -> (int, int):
Renvoie le quotient et le reste de la division de a par b
Paramétres:
a: int, entier naturel
b: int, entier strictement positif (précondition)
Retour:

tuple (q, r) tel que a=bg+r avec 0<=r<b
ou None si a<@ ou b<=0 (postcondition)
if (a<0) or (b<=0): # précondition non remplie
return None # la fonction se termine en renvoyant None
q, r = 0, a
while r >= b:
Invariant: a=bqg+r et 0<=r
q+=1
r -= b # bg+r = b(q+1)+(r-b)
return (q, r)

44/50

EFFECTUER LES TESTS

On peut proposer trois fagons de procéder pour exécuter les tests :

45/50

EFFECTUER LES TESTS

On peut proposer trois facons de procéder pour exécuter les tests :

1. La méthode naive : on ajoute a la suite de notre fonction une
succession de print (un par test), du style :
print(division(19,7) == (2,5)), ce qui provoquera a
l'exécution l'affichage de True ou bien False suivant que le test est
positif ou négatif.

45/50

EFFECTUER LES TESTS

On peut proposer trois facons de procéder pour exécuter les tests :
2. Un peu plus élaboré : on écrit une fonction dédiée aux tests qui va
utiliser l'instruction assert pour chacun des tests

45/50

EFFECTUER LES TESTS

On peut proposer trois facons de procéder pour exécuter les tests :
2. Un peu plus élaboré : on écrit une fonction dédiée aux tests qui va

utiliser l'instruction assert pour chacun des tests :
def test_division():
assert division(19,7) == (2,5), "erreur lorsque a=19 et b=7"
assert division(7,19) == (0,7), "erreur lorsque a=7 et b=19"
.. etc
assert division(-19,-7) == None, "erreur lorsque a=-19 et b=-7"
print("Tous les tests ont été réussis.")

45/50

EFFECTUER LES TESTS

On peut proposer trois facons de procéder pour exécuter les tests :
2. Un peu plus élaboré : on écrit une fonction dédiée aux tests qui va

utiliser l'instruction assert pour chacun des tests :
def test_division():
assert division(19,7) == (2,5), "erreur lorsque a=19 et b=7"
assert division(7,19) == (0,7), "erreur lorsque a=7 et b=19"
.. etc
assert division(-19,-7) == None, "erreur lorsque a=-19 et b=-7"
print("Tous les tests ont été réussis.")

Aprés exécution, s'il n'y a pas d’erreur d’assertion, on affiche que tous
les tests ont été passés avec succes.

45/50

EFFECTUER LES TESTS

On peut proposer trois facons de procéder pour exécuter les tests :
2. Un peu plus élaboré : on écrit une fonction dédiée aux tests qui va

utiliser l'instruction assert pour chacun des tests :
def test_division():
assert division(19,7) == (2,5), "erreur lorsque a=19 et b=7"
assert division(7,19) == (0,7), "erreur lorsque a=7 et b=19"
.. etc
assert division(-19,-7) == None, "erreur lorsque a=-19 et b=-7"
print("Tous les tests ont été réussis.")

Aprés exécution, s'il n'y a pas d’erreur d’assertion, on affiche que tous
les tests ont été passés avec succes.

Attention cependant, si un des tests provoque une boucle infinie le
programme ne se terminera pas, et on ne saura pas quel est le test
défectueux.

EFFECTUER LES TESTS

On peut proposer trois fagons de procéder pour exécuter les tests :
3. Tests automatiques : tests explicités dans la docstring (sous une
certaine forme) et utilisation de la fonction testmode() du module

doctest:
® Analyse de la docstring et exécution des lignes commencant par
>>>

45/50

EFFECTUER LES TESTS

On peut proposer trois fagons de procéder pour exécuter les tests :
3. Tests automatiques : tests explicités dans la docstring (sous une
certaine forme) et utilisation de la fonction testmode() du module

doctest:
® Analyse de la docstring et exécution des lignes commencant par
>>>

® comparaison du résultat avec le contenu de la ligne suivante. En
cas de difféerence, une erreur est signalée.

45/50

EFFECTUER LES TESTS

On peut proposer trois fagons de procéder pour exécuter les tests :
3. Tests automatiques : tests explicités dans la docstring (sous une
certaine forme) et utilisation de la fonction testmode() du module

doctest:
® Analyse de la docstring et exécution des lignes commencant par
>>>

® comparaison du résultat avec le contenu de la ligne suivante. En
cas de difféerence, une erreur est signalée.

® Attention : la docstring est une chaine de caractéres, il faut donc
faire trés attention a la facon dont on écrit les résultats attendus
car ce sont des chaines de caractéres qui vont étre comparées.

45/50

EFFECTUER LES TESTS

® Par exemple si on écrit dans la docstring de notre fonction.
def division(a: int, b: int) -> (int, int):

>>> division(19,7)
(2,5)

...

46/50

EFFECTUER LES TESTS

® Par exemple si on écrit dans la docstring de notre fonction.
def division(a: int, b: int) -> (int, int):

nnn

>>> division(19,7)
(2,5)

...

alors & l'exécution de l'instruction doctest.testmod() nous verrons
lerreur suivante :

EEEEE R R R R R R R EEEEEEEEE RS
File "val.py", line 250, in
Failed example:
division(19,7)
Expected:
(2,5)
Got:
(2, 5)

__main__.division

notez l'espace manquante apres la virgule dans la docstring...

EFFECTUER LES TESTS

® De méme, si on écrit :
def division(a: int, b: int) -> (int, int):

nnn

>>> division(19,-7)
None

nnn

alors a l'exécution de linstruction doctest.testmod() nous verrons
l'erreur suivante :
EEEE RS S S S S S EEEEEEEEEE S
File "val.py", line 264, in __main__.division
Failed example:
division(-19,-7)
Expected:
None
Got nothing

car None et "None" ce n'est pas la méme chose!

46/50

EFFECTUER LES TESTS

® De méme, si on écrit :
def division(a: int, b: int) -> (int, int):

nnn

>>> division(19,-7)
None

nnn

alors a l'exécution de linstruction doctest.testmod() nous verrons
l'erreur suivante :
EEEE RS S S S S S EEEEEEEEEE S
File "val.py", line 264, in __main__.division
Failed example:
division(-19,-7)
Expected:
None
Got nothing

car None et "None" ce n'est pas la méme chose!

46/50

EFFECTUER LES TESTS

Il est préférable d’opter pour 'écriture suivante :
def division(a: int, b: int) -> (int, int):

mon

>>> division(19,-7) == None
True

mon

...

47[50

EFFECTUER LES TESTS

Il est préférable d’opter pour 'écriture suivante :
def division(a: int, b: int) -> (int, int):

>>> division(19,-7) == None
True

mon

...
alors a l'exécution de linstruction doctest.testmod() il n'y aura plus

d’erreur (a condition d’écrire True correctement, et sans espace avant ni
apres!).

47[50

EFFECTUER LES TESTS

Pour conclure, nous pouvons proposer ce code pour tester notre fonction :
def division(a: int, b: int) -> (int, int):

Renvoie le quotient et le reste de la division de a par b
Parameétres:
a: int, entier natuel
b: int, entier strictement positif
Retour:
tuple (q, r) tel que a=bg+r avec O<=r<b
ou None si a<0 ou b<=0
Exemples:
»> division(19,7) == (2,5)
True
»> division(7,19) == (0,7)
True
»> division(0,19) == (0,0)
True
»> division(19,0) == None
True

48/50

EFFECTUER LES TESTS

Suite :

»> division(19,7) == None
True
»> division(-19,7) == None
True
»> division(-19,0) == None
True
»> division(-19,-7) == None
True

if (a<0) or (b<=0): # pré-condition non remplie
return None

q,r=0a

while r >= b:

Invariant: a=bg+r et 0<=r
q+=1
r-=b #bg+r=b(q+1)+(r-b)

return (q, r)

49/50

TESTS DE PERFORMANCE

® Pour comparer des algorithmes, on peut étre amené a effectuer des
tests de performance en temps d’exécution.

50/50

TESTS DE PERFORMANCE

® Pour comparer des algorithmes, on peut étre amené a effectuer des
tests de performance en temps d’exécution.

® Avec le module time, il est possible de faire ces mesures. On reléve un
instant initial, on exécute un certain nombre de fois la fonction, on
reléve l'instant final et il n'y a plus qu'a faire la différence.

50/50

TESTS DE PERFORMANCE

® Pour comparer des algorithmes, on peut étre amené a effectuer des
tests de performance en temps d’exécution.

® Avec le module time, il est possible de faire ces mesures. On reléve un
instant initial, on exécute un certain nombre de fois la fonction, on
reléve l'instant final et il n'y a plus qu'a faire la différence.

® Exemple:
from time import time # fonction time du module time
t1=time() # instant initial
for _in range(1000): # pour 1000 exécutions par exemple
r = fonction_a_tester()
t2 = time() # instant final
print("durée: ", (t2-t1)/1000) # en secondes

50/50

TESTS DE PERFORMANCE

® Pour comparer des algorithmes, on peut étre amené a effectuer des
tests de performance en temps d’exécution.

® Avec le module time, il est possible de faire ces mesures. On reléve un
instant initial, on exécute un certain nombre de fois la fonction, on
reléve l'instant final et il n'y a plus qu'a faire la différence.

® Exemple:
from time import time # fonction time du module time
t1=time() # instant initial
for _in range(1000): # pour 1000 exécutions par exemple
r = fonction_a_tester()
t2 = time() # instant final
print("durée: ", (t2-t1)/1000) # en secondes

® Suivant le systeme d’exploitation, une seule exécution n'est pas
forcément suffisante pour avoir une mesure fiable.

50/50

TESTS DE PERFORMANCE

® Pour comparer des algorithmes, on peut étre amené a effectuer des
tests de performance en temps d’exécution.

® Avec le module time, il est possible de faire ces mesures. On reléve un
instant initial, on exécute un certain nombre de fois la fonction, on
reléve l'instant final et il n'y a plus qu'a faire la différence.

® Exemple:
from time import time # fonction time du module time
t1=time() # instant initial
for _in range(1000): # pour 1000 exécutions par exemple
r = fonction_a_tester()
t2 = time() # instant final
print("durée: ", (t2-t1)/1000) # en secondes

® Suivant le systeme d’exploitation, une seule exécution n'est pas
forcément suffisante pour avoir une mesure fiable.

® Sj on travaille dans un notebook, alors on peut plus simplement
utiliser linstruction timeit fonction_a_tester() quiva mesurer
automatiquement le temps d’exécution de la fonction.

50/50

