
Semestre 2 / Cours 1 - Bonnes pratiques de programmation

ITC MPSI & PCSI – Année 2025-2026

Sommaire

1. Fonctions et effet de bord

2. Spécifications

3. Annotations d’un bloc d’instructions

4. Jeux de tests

1/50

Fonctions et effet de bord

Copie de variables

Exemple
x = 0
y = x
x = 1
L = [0]
Lp = L
L[0] = 1

Donner le contenu des variables y et Lp après exécution du code.

>>> y
0
>>> Lp
[1]

2/50

Copie de variables

Exemple
x = 0
y = x
x = 1
L = [0]
Lp = L
L[0] = 1

Donner le contenu des variables y et Lp après exécution du code.

>>> y
0
>>> Lp
[1]

2/50

Copie de variables

Explications
• variable ⇔ étiquette (nom) donné à un emplacement mémoire,

• variable non mutable ⇒ le nom désigne une valeur (entier, flottant,
chaine de caractère,...),

• variable mutable ⇒ le nom désigne un pointeur pointant vers une va-
leur.

3/50

Copie de variables

Explications
• variable ⇔ étiquette (nom) donné à un emplacement mémoire,
• variable non mutable ⇒ le nom désigne une valeur (entier, flottant,

chaine de caractère,...),

• variable mutable ⇒ le nom désigne un pointeur pointant vers une va-
leur.

3/50

Copie de variables

Explications
• variable ⇔ étiquette (nom) donné à un emplacement mémoire,
• variable non mutable ⇒ le nom désigne une valeur (entier, flottant,

chaine de caractère,...),
• variable mutable ⇒ le nom désigne un pointeur pointant vers une va-

leur.

3/50

Copie de variables

Exemple
x = 0
y = x
x = 1
L =[0]
Lp = L
L[0] = 1

Représentation

Figure 1 : copie de la variable non
mutable x

Figure 2 : copie de la variable mutable L
4/50

Fonctions et variables

Exemple
def f(x):
 x = 1
x = 0
f(x)

def g(L):
 L[0] = 1
L = [0]
g(L)

Après exécution :

• la valeur associée à la variable x est : 0
• la valeur associée à la variable L est : [1].

⇒ différence de comportement des fonctions suivant le caractère mutable
ou non des variables.

5/50

Fonctions et variables

Exemple
def f(x):
 x = 1
x = 0
f(x)

def g(L):
 L[0] = 1
L = [0]
g(L)

Après exécution :

• la valeur associée à la variable x est :

0
• la valeur associée à la variable L est : [1].

⇒ différence de comportement des fonctions suivant le caractère mutable
ou non des variables.

5/50

Fonctions et variables

Exemple
def f(x):
 x = 1
x = 0
f(x)

def g(L):
 L[0] = 1
L = [0]
g(L)

Après exécution :

• la valeur associée à la variable x est : 0

• la valeur associée à la variable L est : [1].

⇒ différence de comportement des fonctions suivant le caractère mutable
ou non des variables.

5/50

Fonctions et variables

Exemple
def f(x):
 x = 1
x = 0
f(x)

def g(L):
 L[0] = 1
L = [0]
g(L)

Après exécution :

• la valeur associée à la variable x est : 0
• la valeur associée à la variable L est :

[1].

⇒ différence de comportement des fonctions suivant le caractère mutable
ou non des variables.

5/50

Fonctions et variables

Exemple
def f(x):
 x = 1
x = 0
f(x)

def g(L):
 L[0] = 1
L = [0]
g(L)

Après exécution :

• la valeur associée à la variable x est : 0
• la valeur associée à la variable L est : [1].

⇒ différence de comportement des fonctions suivant le caractère mutable
ou non des variables.

5/50

Fonctions et variables

Exemple
def f(x):
 x = 1
x = 0
f(x)

def g(L):
 L[0] = 1
L = [0]
g(L)

Après exécution :

• la valeur associée à la variable x est : 0
• la valeur associée à la variable L est : [1].

⇒ différence de comportement des fonctions suivant le caractère mutable
ou non des variables. 5/50

Fonctions et variables

Exemple
>>> x = 0
>>> f(x)
>>> x
0
>>> L = [0]
>>> g(L)
>>> L
[1]

6/50

Lien avec la copie de variables

Représentation

Figure 3 : avant modification de x par f Figure 4 : avant modification de L par g

Figure 5 : après modification de x par f Figure 6 : après modification de L par g

7/50

Lien avec la copie de variables

Représentation

Figure 3 : avant modification de x par f Figure 4 : avant modification de L par g

Figure 5 : après modification de x par f Figure 6 : après modification de L par g
7/50

Conclusions

Effet de bord
En informatique, une fonction est dite à effet de bord si elle modifie un état
en dehors de son environnement local, c’est-à-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

• la façon dont une fonction modifie le contenu d’une variable d’entrée
dépend du caractère mutable ou non de cette variable,

• deux comportements distincts :
� modification de la valeur de x, non mutable, dans le programme

principal ⇒ x = f(x),
� modification de la valeur de L, mutable, dans le programme prin-

cipal ⇒ g(L),

8/50

Conclusions

Effet de bord
En informatique, une fonction est dite à effet de bord si elle modifie un état
en dehors de son environnement local, c’est-à-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

• la façon dont une fonction modifie le contenu d’une variable d’entrée
dépend du caractère mutable ou non de cette variable,

• deux comportements distincts :
� modification de la valeur de x, non mutable, dans le programme

principal ⇒ x = f(x),
� modification de la valeur de L, mutable, dans le programme prin-

cipal ⇒ g(L),

8/50

Conclusions

Effet de bord
En informatique, une fonction est dite à effet de bord si elle modifie un état
en dehors de son environnement local, c’est-à-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

• la façon dont une fonction modifie le contenu d’une variable d’entrée
dépend du caractère mutable ou non de cette variable,

• deux comportements distincts :

� modification de la valeur de x, non mutable, dans le programme
principal ⇒ x = f(x),

� modification de la valeur de L, mutable, dans le programme prin-
cipal ⇒ g(L),

8/50

Conclusions

Effet de bord
En informatique, une fonction est dite à effet de bord si elle modifie un état
en dehors de son environnement local, c’est-à-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

• la façon dont une fonction modifie le contenu d’une variable d’entrée
dépend du caractère mutable ou non de cette variable,

• deux comportements distincts :
� modification de la valeur de x, non mutable, dans le programme

principal ⇒ x = f(x),

� modification de la valeur de L, mutable, dans le programme prin-
cipal ⇒ g(L),

8/50

Conclusions

Effet de bord
En informatique, une fonction est dite à effet de bord si elle modifie un état
en dehors de son environnement local, c’est-à-dire a une interaction
observable avec le monde extérieur autre que renvoyer une valeur.

• la façon dont une fonction modifie le contenu d’une variable d’entrée
dépend du caractère mutable ou non de cette variable,

• deux comportements distincts :
� modification de la valeur de x, non mutable, dans le programme

principal ⇒ x = f(x),
� modification de la valeur de L, mutable, dans le programme prin-

cipal ⇒ g(L),

8/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),

• ne renvoie rien (comme import, for, while, if, else),
• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),
• valeur renvoyée booléenne True ou False,
• print(a == 1) affiche True ou False (si a défini en amont),
• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),
• évite la création de bugs issus de confusions entre les deux actions,
• comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas l’égalité entre a et 1).

9/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),
• ne renvoie rien (comme import, for, while, if, else),

• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),
• valeur renvoyée booléenne True ou False,
• print(a == 1) affiche True ou False (si a défini en amont),
• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),
• évite la création de bugs issus de confusions entre les deux actions,
• comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas l’égalité entre a et 1).

9/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),
• ne renvoie rien (comme import, for, while, if, else),
• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),
• valeur renvoyée booléenne True ou False,
• print(a == 1) affiche True ou False (si a défini en amont),
• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),
• évite la création de bugs issus de confusions entre les deux actions,
• comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas l’égalité entre a et 1).

9/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),
• ne renvoie rien (comme import, for, while, if, else),
• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),

• valeur renvoyée booléenne True ou False,
• print(a == 1) affiche True ou False (si a défini en amont),
• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),
• évite la création de bugs issus de confusions entre les deux actions,
• comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas l’égalité entre a et 1).

9/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),
• ne renvoie rien (comme import, for, while, if, else),
• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),
• valeur renvoyée booléenne True ou False,

• print(a == 1) affiche True ou False (si a défini en amont),
• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),
• évite la création de bugs issus de confusions entre les deux actions,
• comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas l’égalité entre a et 1).

9/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),
• ne renvoie rien (comme import, for, while, if, else),
• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),
• valeur renvoyée booléenne True ou False,
• print(a == 1) affiche True ou False (si a défini en amont),

• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),
• évite la création de bugs issus de confusions entre les deux actions,
• comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas l’égalité entre a et 1).

9/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),
• ne renvoie rien (comme import, for, while, if, else),
• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),
• valeur renvoyée booléenne True ou False,
• print(a == 1) affiche True ou False (si a défini en amont),
• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),
• évite la création de bugs issus de confusions entre les deux actions,
• comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas l’égalité entre a et 1).

9/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),
• ne renvoie rien (comme import, for, while, if, else),
• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),
• valeur renvoyée booléenne True ou False,
• print(a == 1) affiche True ou False (si a défini en amont),
• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),

• évite la création de bugs issus de confusions entre les deux actions,
• comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas l’égalité entre a et 1).

9/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),
• ne renvoie rien (comme import, for, while, if, else),
• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),
• valeur renvoyée booléenne True ou False,
• print(a == 1) affiche True ou False (si a défini en amont),
• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),
• évite la création de bugs issus de confusions entre les deux actions,

• comportement différents dans d’autres langages (exemple en C, if a
= 1 est accepté, mais ne teste pas l’égalité entre a et 1).

9/50

Instruction VS expression

L’instruction d’affectation =
• réalise une action (associe une valeur à une variable),
• ne renvoie rien (comme import, for, while, if, else),
• print(a = 1), if a = 1 renvoient des erreurs.

Expression avec ==
• == permet la création d’expressions (a == 1),
• valeur renvoyée booléenne True ou False,
• print(a == 1) affiche True ou False (si a défini en amont),
• if a == 1 syntaxe acceptée.

Avantages et inconvénients
• nécessité de différencier lors de la programmation les deux actions (af-

fectation ou comparaison),
• évite la création de bugs issus de confusions entre les deux actions,
• comportement différents dans d’autres langages (exemple en C, if a

= 1 est accepté, mais ne teste pas l’égalité entre a et 1).
9/50

Spécifications

Exprimer un besoin

Pourquoi spécifier une fonction?

• améliorer la compréhension de la fonction,
• clarifier l’interaction entre fonctions,
• faciliter la relecture de code,
• faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

• préciser le rôle de la fonction,
• préciser la nature des valeurs d’entrée (appelées paramètres ou

variables d’entrée),
• préciser la nature de la valeur renvoyée.

10/50

Exprimer un besoin

Pourquoi spécifier une fonction?
• améliorer la compréhension de la fonction,

• clarifier l’interaction entre fonctions,
• faciliter la relecture de code,
• faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

• préciser le rôle de la fonction,
• préciser la nature des valeurs d’entrée (appelées paramètres ou

variables d’entrée),
• préciser la nature de la valeur renvoyée.

10/50

Exprimer un besoin

Pourquoi spécifier une fonction?
• améliorer la compréhension de la fonction,
• clarifier l’interaction entre fonctions,

• faciliter la relecture de code,
• faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

• préciser le rôle de la fonction,
• préciser la nature des valeurs d’entrée (appelées paramètres ou

variables d’entrée),
• préciser la nature de la valeur renvoyée.

10/50

Exprimer un besoin

Pourquoi spécifier une fonction?
• améliorer la compréhension de la fonction,
• clarifier l’interaction entre fonctions,
• faciliter la relecture de code,

• faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

• préciser le rôle de la fonction,
• préciser la nature des valeurs d’entrée (appelées paramètres ou

variables d’entrée),
• préciser la nature de la valeur renvoyée.

10/50

Exprimer un besoin

Pourquoi spécifier une fonction?
• améliorer la compréhension de la fonction,
• clarifier l’interaction entre fonctions,
• faciliter la relecture de code,
• faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

• préciser le rôle de la fonction,
• préciser la nature des valeurs d’entrée (appelées paramètres ou

variables d’entrée),
• préciser la nature de la valeur renvoyée.

10/50

Exprimer un besoin

Pourquoi spécifier une fonction?
• améliorer la compréhension de la fonction,
• clarifier l’interaction entre fonctions,
• faciliter la relecture de code,
• faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

• préciser le rôle de la fonction,
• préciser la nature des valeurs d’entrée (appelées paramètres ou

variables d’entrée),
• préciser la nature de la valeur renvoyée.

10/50

Exprimer un besoin

Pourquoi spécifier une fonction?
• améliorer la compréhension de la fonction,
• clarifier l’interaction entre fonctions,
• faciliter la relecture de code,
• faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

• préciser le rôle de la fonction,

• préciser la nature des valeurs d’entrée (appelées paramètres ou
variables d’entrée),

• préciser la nature de la valeur renvoyée.

10/50

Exprimer un besoin

Pourquoi spécifier une fonction?
• améliorer la compréhension de la fonction,
• clarifier l’interaction entre fonctions,
• faciliter la relecture de code,
• faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

• préciser le rôle de la fonction,
• préciser la nature des valeurs d’entrée (appelées paramètres ou

variables d’entrée),

• préciser la nature de la valeur renvoyée.

10/50

Exprimer un besoin

Pourquoi spécifier une fonction?
• améliorer la compréhension de la fonction,
• clarifier l’interaction entre fonctions,
• faciliter la relecture de code,
• faciliter le travail collaboratif.

Qu’est-ce que spécifier une fonction?

• préciser le rôle de la fonction,
• préciser la nature des valeurs d’entrée (appelées paramètres ou

variables d’entrée),
• préciser la nature de la valeur renvoyée.

10/50

Signature d’une fonction

Principe
Pour une fonction :

• précise les types des paramètres d’entrée,

• précise le type de la valeur renvoyée,
• types acceptés : int, float, str, list,dict, np.array, etc.,
• cas particulier d’une fonction ne renvoyant rien : type de sortie None.

Notation générale
def func(param1:type1, param2:type2, ...)->typeSortie:

11/50

Signature d’une fonction

Principe
Pour une fonction :

• précise les types des paramètres d’entrée,
• précise le type de la valeur renvoyée,

• types acceptés : int, float, str, list,dict, np.array, etc.,
• cas particulier d’une fonction ne renvoyant rien : type de sortie None.

Notation générale
def func(param1:type1, param2:type2, ...)->typeSortie:

11/50

Signature d’une fonction

Principe
Pour une fonction :

• précise les types des paramètres d’entrée,
• précise le type de la valeur renvoyée,
• types acceptés : int, float, str, list,dict, np.array, etc.,

• cas particulier d’une fonction ne renvoyant rien : type de sortie None.

Notation générale
def func(param1:type1, param2:type2, ...)->typeSortie:

11/50

Signature d’une fonction

Principe
Pour une fonction :

• précise les types des paramètres d’entrée,
• précise le type de la valeur renvoyée,
• types acceptés : int, float, str, list,dict, np.array, etc.,
• cas particulier d’une fonction ne renvoyant rien : type de sortie None.

Notation générale
def func(param1:type1, param2:type2, ...)->typeSortie:

11/50

Signature d’une fonction

Principe
Pour une fonction :

• précise les types des paramètres d’entrée,
• précise le type de la valeur renvoyée,
• types acceptés : int, float, str, list,dict, np.array, etc.,
• cas particulier d’une fonction ne renvoyant rien : type de sortie None.

Notation générale
def func(param1:type1, param2:type2, ...)->typeSortie:

11/50

Exemples de signatures

• fonction d’addition : add(x:float,y:float)->float

• fonction de tri d’une liste renvoyant une nouvelle liste triée :
sort(L:list)->list

• fonction de tri d’une liste effectuant le tri de la liste passée en argument
par effet de bord (et donc ne renvoyant rien) : sort(L:list)->None

Possibilité de spécifier le type des éléments qui constituent une structure
composée (comme listes et tableaux)

• Pour une fonction travaillant sur une liste d’entiers f(L:[int])->int
(au lieu de f(L:list)->int),

• pour une fonction renvoyant une liste de listes composées chacune d’un
entier et d’une chaine de caractère f(d:dict)->[[int,str]].

12/50

Exemples de signatures

• fonction d’addition : add(x:float,y:float)->float
• fonction de tri d’une liste renvoyant une nouvelle liste triée :

sort(L:list)->list

• fonction de tri d’une liste effectuant le tri de la liste passée en argument
par effet de bord (et donc ne renvoyant rien) : sort(L:list)->None

Possibilité de spécifier le type des éléments qui constituent une structure
composée (comme listes et tableaux)

• Pour une fonction travaillant sur une liste d’entiers f(L:[int])->int
(au lieu de f(L:list)->int),

• pour une fonction renvoyant une liste de listes composées chacune d’un
entier et d’une chaine de caractère f(d:dict)->[[int,str]].

12/50

Exemples de signatures

• fonction d’addition : add(x:float,y:float)->float
• fonction de tri d’une liste renvoyant une nouvelle liste triée :

sort(L:list)->list
• fonction de tri d’une liste effectuant le tri de la liste passée en argument

par effet de bord (et donc ne renvoyant rien) : sort(L:list)->None

Possibilité de spécifier le type des éléments qui constituent une structure
composée (comme listes et tableaux)

• Pour une fonction travaillant sur une liste d’entiers f(L:[int])->int
(au lieu de f(L:list)->int),

• pour une fonction renvoyant une liste de listes composées chacune d’un
entier et d’une chaine de caractère f(d:dict)->[[int,str]].

12/50

Exemples de signatures

• fonction d’addition : add(x:float,y:float)->float
• fonction de tri d’une liste renvoyant une nouvelle liste triée :

sort(L:list)->list
• fonction de tri d’une liste effectuant le tri de la liste passée en argument

par effet de bord (et donc ne renvoyant rien) : sort(L:list)->None

Possibilité de spécifier le type des éléments qui constituent une structure
composée (comme listes et tableaux)

• Pour une fonction travaillant sur une liste d’entiers f(L:[int])->int
(au lieu de f(L:list)->int),

• pour une fonction renvoyant une liste de listes composées chacune d’un
entier et d’une chaine de caractère f(d:dict)->[[int,str]].

12/50

Exemples de signatures

• fonction d’addition : add(x:float,y:float)->float
• fonction de tri d’une liste renvoyant une nouvelle liste triée :

sort(L:list)->list
• fonction de tri d’une liste effectuant le tri de la liste passée en argument

par effet de bord (et donc ne renvoyant rien) : sort(L:list)->None

Possibilité de spécifier le type des éléments qui constituent une structure
composée (comme listes et tableaux)

• Pour une fonction travaillant sur une liste d’entiers f(L:[int])->int
(au lieu de f(L:list)->int),

• pour une fonction renvoyant une liste de listes composées chacune d’un
entier et d’une chaine de caractère f(d:dict)->[[int,str]].

12/50

Docstring d’une fonction

Principe
Texte placé juste après le nom de la fonction, délimité par des triples
quotes (""") et contenant :

• une brève description du rôle de la fonction,
• une section Parameters précisant le nom,type et la description de

chacune des variables d’entrée,
• une section Returns précisant type et description de la valeur de sor-

tie,
• une section Examples (optionnelle mais recommandée) illustrant le

fonctionnement de la fonction.

13/50

Docstring d’une fonction

Principe
Texte placé juste après le nom de la fonction, délimité par des triples
quotes (""") et contenant :

• une brève description du rôle de la fonction,

• une section Parameters précisant le nom,type et la description de
chacune des variables d’entrée,

• une section Returns précisant type et description de la valeur de sor-
tie,

• une section Examples (optionnelle mais recommandée) illustrant le
fonctionnement de la fonction.

13/50

Docstring d’une fonction

Principe
Texte placé juste après le nom de la fonction, délimité par des triples
quotes (""") et contenant :

• une brève description du rôle de la fonction,
• une section Parameters précisant le nom,type et la description de

chacune des variables d’entrée,

• une section Returns précisant type et description de la valeur de sor-
tie,

• une section Examples (optionnelle mais recommandée) illustrant le
fonctionnement de la fonction.

13/50

Docstring d’une fonction

Principe
Texte placé juste après le nom de la fonction, délimité par des triples
quotes (""") et contenant :

• une brève description du rôle de la fonction,
• une section Parameters précisant le nom,type et la description de

chacune des variables d’entrée,
• une section Returns précisant type et description de la valeur de sor-

tie,

• une section Examples (optionnelle mais recommandée) illustrant le
fonctionnement de la fonction.

13/50

Docstring d’une fonction

Principe
Texte placé juste après le nom de la fonction, délimité par des triples
quotes (""") et contenant :

• une brève description du rôle de la fonction,
• une section Parameters précisant le nom,type et la description de

chacune des variables d’entrée,
• une section Returns précisant type et description de la valeur de sor-

tie,
• une section Examples (optionnelle mais recommandée) illustrant le

fonctionnement de la fonction.

13/50

Docstring d’une fonction

Exemple
Pour la fonction add(x:float,y:float)->float :
def add(x:float,y:float)->float:
 ”””
 Calculate the sum of ’x’ and ’y’
 Parameters
 ———-
 x : float
 first value to add
 y : float
 second value to add
 Returns
 ——-
 float
 the sum of ’x’ and ’y’

 Examples
 ——–
 »> add(1,2)
 3

 ”””
 return x+y

14/50

Usages des signatures et doctrings

• utilisation simultanée de la signature et doctring non nécessaire,

• signature : à privilégier lors de la description d’une fonction, sans écri-
ture du code de celle-ci (parler de add(x:float,y:float)->float
plutôt que de add(x,y)),

• docstring : obligatoire lors de l’écriture du code d’une fonction,
• la signature ne doit pas être utilisée lors de l’appel de la fonction,

� bonne utilisation : >>>add(2,3) renvoie 5,
� mauvaise utilisation : >>>add(2:float,3:float)->float gé-

nère une erreur.

15/50

Usages des signatures et doctrings

• utilisation simultanée de la signature et doctring non nécessaire,
• signature : à privilégier lors de la description d’une fonction, sans écri-

ture du code de celle-ci (parler de add(x:float,y:float)->float
plutôt que de add(x,y)),

• docstring : obligatoire lors de l’écriture du code d’une fonction,
• la signature ne doit pas être utilisée lors de l’appel de la fonction,

� bonne utilisation : >>>add(2,3) renvoie 5,
� mauvaise utilisation : >>>add(2:float,3:float)->float gé-

nère une erreur.

15/50

Usages des signatures et doctrings

• utilisation simultanée de la signature et doctring non nécessaire,
• signature : à privilégier lors de la description d’une fonction, sans écri-

ture du code de celle-ci (parler de add(x:float,y:float)->float
plutôt que de add(x,y)),

• docstring : obligatoire lors de l’écriture du code d’une fonction,

• la signature ne doit pas être utilisée lors de l’appel de la fonction,
� bonne utilisation : >>>add(2,3) renvoie 5,
� mauvaise utilisation : >>>add(2:float,3:float)->float gé-

nère une erreur.

15/50

Usages des signatures et doctrings

• utilisation simultanée de la signature et doctring non nécessaire,
• signature : à privilégier lors de la description d’une fonction, sans écri-

ture du code de celle-ci (parler de add(x:float,y:float)->float
plutôt que de add(x,y)),

• docstring : obligatoire lors de l’écriture du code d’une fonction,
• la signature ne doit pas être utilisée lors de l’appel de la fonction,

� bonne utilisation : >>>add(2,3) renvoie 5,
� mauvaise utilisation : >>>add(2:float,3:float)->float gé-

nère une erreur.

15/50

Usages des signatures et doctrings

• utilisation simultanée de la signature et doctring non nécessaire,
• signature : à privilégier lors de la description d’une fonction, sans écri-

ture du code de celle-ci (parler de add(x:float,y:float)->float
plutôt que de add(x,y)),

• docstring : obligatoire lors de l’écriture du code d’une fonction,
• la signature ne doit pas être utilisée lors de l’appel de la fonction,

� bonne utilisation : >>>add(2,3) renvoie 5,

� mauvaise utilisation : >>>add(2:float,3:float)->float gé-
nère une erreur.

15/50

Usages des signatures et doctrings

• utilisation simultanée de la signature et doctring non nécessaire,
• signature : à privilégier lors de la description d’une fonction, sans écri-

ture du code de celle-ci (parler de add(x:float,y:float)->float
plutôt que de add(x,y)),

• docstring : obligatoire lors de l’écriture du code d’une fonction,
• la signature ne doit pas être utilisée lors de l’appel de la fonction,

� bonne utilisation : >>>add(2,3) renvoie 5,
� mauvaise utilisation : >>>add(2:float,3:float)->float gé-

nère une erreur.

15/50

Exercice : fonction inconnue

Fonction inconnue
def f(a, b):
 if b == 0:
 return a
 return f(b, a%b)

Questions
• Que renvoient f(15,10) et f(35,21) ? Conjecturer le rôle de f(a,b)

pour a et b quelconques.
• Préciser la signature et la docstring pour f, et renommer la fonction.

16/50

Exercice : fonction inconnue

Fonction inconnue
def f(a, b):
 if b == 0:
 return a
 return f(b, a%b)

Questions
• Que renvoient f(15,10) et f(35,21) ? Conjecturer le rôle de f(a,b)

pour a et b quelconques.
• Préciser la signature et la docstring pour f, et renommer la fonction.

16/50

Exercice : fonction inconnue

• Pour a = 15 et b = 10, on obtient successivement pour le couple (a,b) :
(10, 5), (5, 0). La valeur renvoyée est donc 5.

• Pour a = 35 et b = 21, on obtient successivement pour le couple (a,b) :
(21, 14), (14, 7), (7, 0). La valeur renvoyée est donc 7.

• Dans ces deux exemples, la fonction renvoie le pgcd (plus grand
commun diviseur) de a,b.

17/50

Exercice : fonction inconnue

• Pour a = 15 et b = 10, on obtient successivement pour le couple (a,b) :
(10, 5), (5, 0). La valeur renvoyée est donc 5.

• Pour a = 35 et b = 21, on obtient successivement pour le couple (a,b) :
(21, 14), (14, 7), (7, 0). La valeur renvoyée est donc 7.

• Dans ces deux exemples, la fonction renvoie le pgcd (plus grand
commun diviseur) de a,b.

17/50

Exercice : fonction inconnue

• Pour a = 15 et b = 10, on obtient successivement pour le couple (a,b) :
(10, 5), (5, 0). La valeur renvoyée est donc 5.

• Pour a = 35 et b = 21, on obtient successivement pour le couple (a,b) :
(21, 14), (14, 7), (7, 0). La valeur renvoyée est donc 7.

• Dans ces deux exemples, la fonction renvoie le pgcd (plus grand
commun diviseur) de a,b.

17/50

Fonction renommée et avec spécifications
def pgcd(a:int,b:int)->int:
 """ Returns the pgcd of 'a' and 'b' if a > b
 Parameters

 a : int, first value to compute the pgcd
 b : int, second value to compute the pgcd

 Returns

 int, pgcd of 'a' and 'b'

 Examples

 >>> pgcd(15,10)
 5
 >>> pgcd(35,21)
 7
 """
 if b == 0 :
 return a
 return pgcd(b, a%b)

18/50

Exercice : recherche dichotomique

def dicho(L, v):
 i_deb = 0
 i_fin = len(L)
 trouve = False
 while not trouve and i_deb < i_fin:
 i_m = (i_deb + i_fin) // 2
 if L[i_m] == v:
 trouve = True
 elif L[i_m] < v:
 i_deb = i_m + 1
 else:
 i_fin = i_m
 return trouve

Préciser la signature et la spécification de cette fonction.
19/50

Exercice : recherche dichotomique
def dicho(L:list, v:int)->bool:
 ”””
 Determines if value ’v’ belongs to ’L’ by dichotomic method.
 Parameters
 ———-
 L : list
 list of values sorted with L[0]<= L[1] <= ... <= L[n-1]
 v : int
 value to be tested
 Returns
 ——-
 bool
 True if value ’v’ is in ’L’, False in the other case

 Examples
 ——–
 »> dicho([1,3,5],5)
 True
 »> dicho([1,3,5],4)
 False
 »> dicho([],1)
 False
 ”””

20/50

Exercice : fonction de tri (tri à bulles)

def tri_bulle(L):
 n = len(L)
 t = n-1
 fini = False
 while t > 0 and not fini:
 fini = True
 for j in range(t):
 if L[j] > L[j+1]:
 L[j], L[j+1] = L[j+1], L[j]
 fini = False
 t -= 1

Préciser la signature et la spécification de cette fonction.

21/50

Exercice : fonction de tri (tri à bulles)

def tri_bulle(L:list)->None:
 ”””
 Sort the list in ascending order and return None. After execution, the list is sorted in ascending order.
 Parameters
 ———-
 L : list
 list to be sorted

 Returns
 ——-
 None, L is sorted by side effect

 Examples
 ——–
 »> L = [2,3,1]
 »> tri_bulle(L)
 »> L
 [1,2,3]
 ”””

22/50

instruction assert

Présentation
• spécification ⇒ conditions sur les paramètres d’entrée,

• volonté de tester le respect de ces conditions,
• instruction :

assert condition [,message]
(la partie entre crochets est optionnelle)

• si la condition est vérifiée, on passe à la suite,
• sinon, on arrête le programme et on affiche le message (optionnel).

23/50

instruction assert

Présentation
• spécification ⇒ conditions sur les paramètres d’entrée,
• volonté de tester le respect de ces conditions,

• instruction :
assert condition [,message]

(la partie entre crochets est optionnelle)

• si la condition est vérifiée, on passe à la suite,
• sinon, on arrête le programme et on affiche le message (optionnel).

23/50

instruction assert

Présentation
• spécification ⇒ conditions sur les paramètres d’entrée,
• volonté de tester le respect de ces conditions,
• instruction :

assert condition [,message]
(la partie entre crochets est optionnelle)

• si la condition est vérifiée, on passe à la suite,
• sinon, on arrête le programme et on affiche le message (optionnel).

23/50

instruction assert

Présentation
• spécification ⇒ conditions sur les paramètres d’entrée,
• volonté de tester le respect de ces conditions,
• instruction :

assert condition [,message]
(la partie entre crochets est optionnelle)

• si la condition est vérifiée, on passe à la suite,

• sinon, on arrête le programme et on affiche le message (optionnel).

23/50

instruction assert

Présentation
• spécification ⇒ conditions sur les paramètres d’entrée,
• volonté de tester le respect de ces conditions,
• instruction :

assert condition [,message]
(la partie entre crochets est optionnelle)

• si la condition est vérifiée, on passe à la suite,
• sinon, on arrête le programme et on affiche le message (optionnel).

23/50

instruction assert

Exemples
• assert x >= 0
• assert x >= 0, "la variable 'x' est négative"
• assert len(L) != 0, "la liste est vide"
• assert type(eps) == float
• assert type(x) == float or type(x) == int

24/50

instruction assert-Exercice

Soit la fonction

mot_en_place(mot:str,texte:str,i:int)->bool

qui renvoie True si mot[j] = texte[i+ j],∀j ∈ J0,m− 1K, avec m=len(mot),
et False sinon.

• Déterminer les contraintes que doivent vérifier les variables d’entrée de
cette fonction.

• Écrire les lignes de code correspondantes en utilisant assert.

25/50

instruction assert-Exercice

Soit la fonction

mot_en_place(mot:str,texte:str,i:int)->bool

qui renvoie True si mot[j] = texte[i+ j],∀j ∈ J0,m− 1K, avec m=len(mot),
et False sinon.

• Déterminer les contraintes que doivent vérifier les variables d’entrée de
cette fonction.

• Écrire les lignes de code correspondantes en utilisant assert.

25/50

instruction assert-Exercice

Soit la fonction

mot_en_place(mot:str,texte:str,i:int)->bool

qui renvoie True si mot[j] = texte[i+ j],∀j ∈ J0,m− 1K, avec m=len(mot),
et False sinon.

• Déterminer les contraintes que doivent vérifier les variables d’entrée de
cette fonction.

• Écrire les lignes de code correspondantes en utilisant assert.

25/50

instruction assert : Exercice

• � mot et texte doivent être des chaines de caractère,

� i doit être un entier positif ou nul,
� on doit avoir i+ len(mot) ≤ len(texte).

• n, m = len(texte), len(mot)
assert type(mot) == str
assert type(texte) == str
assert type(i) == int
assert i >= 0
assert i+m <= n

26/50

instruction assert : Exercice

• � mot et texte doivent être des chaines de caractère,
� i doit être un entier positif ou nul,

� on doit avoir i+ len(mot) ≤ len(texte).
• n, m = len(texte), len(mot)

assert type(mot) == str
assert type(texte) == str
assert type(i) == int
assert i >= 0
assert i+m <= n

26/50

instruction assert : Exercice

• � mot et texte doivent être des chaines de caractère,
� i doit être un entier positif ou nul,
� on doit avoir i+ len(mot) ≤ len(texte).

• n, m = len(texte), len(mot)
assert type(mot) == str
assert type(texte) == str
assert type(i) == int
assert i >= 0
assert i+m <= n

26/50

instruction assert : Exercice

• � mot et texte doivent être des chaines de caractère,
� i doit être un entier positif ou nul,
� on doit avoir i+ len(mot) ≤ len(texte).

• n, m = len(texte), len(mot)
assert type(mot) == str
assert type(texte) == str
assert type(i) == int
assert i >= 0
assert i+m <= n

26/50

Annotations d’un bloc
d’instructions

Commentaires

• Un code non commenté est un code inexploitable.

• Plusieurs possibilités pour commenter :
� commentaire en ligne : sur la même ligne qu’une ligne de code

(code, caractère #, espace, commentaire).
� Bloc de commentaire : avant une partie de code (caractère #,

espace, commentaire)

27/50

Commentaires

• Un code non commenté est un code inexploitable.
• Plusieurs possibilités pour commenter :

� commentaire en ligne : sur la même ligne qu’une ligne de code
(code, caractère #, espace, commentaire).

� Bloc de commentaire : avant une partie de code (caractère #,
espace, commentaire)

27/50

Commentaires

• Un code non commenté est un code inexploitable.
• Plusieurs possibilités pour commenter :

� commentaire en ligne : sur la même ligne qu’une ligne de code
(code, caractère #, espace, commentaire).

� Bloc de commentaire : avant une partie de code (caractère #,
espace, commentaire)

27/50

Commentaires

SQUARESQUARE Exemple
On initialise deux variables x et y à 1. Puis on \
↪→ calcule la somme de x et y. (bloc de commentaire)
x = 1 # Initialisation de x (commentaire en ligne)
y = 1
z = x+y

28/50

Commentaires

SQUARESQUARE Exemple
On initialise deux variables x et y à 1. Puis on \
↪→ calcule la somme de x et y. (bloc de commentaire)
x = 1 # Initialisation de x (commentaire en ligne)
y = 1
z = x+y

28/50

Utilisation des Commentaires

Problématique usuelle concernant les codes :

• Est-ce que le code se termine?

• Si oui, le résultat obtenu est-il celui attendu?

Outils utilisables pouvant figurer dans le code sous forme de commentaire :

• Précondition
• Postcondition
• Invariant de boucle

29/50

Utilisation des Commentaires

Problématique usuelle concernant les codes :

• Est-ce que le code se termine?
• Si oui, le résultat obtenu est-il celui attendu?

Outils utilisables pouvant figurer dans le code sous forme de commentaire :

• Précondition
• Postcondition
• Invariant de boucle

29/50

Utilisation des Commentaires

Problématique usuelle concernant les codes :

• Est-ce que le code se termine?
• Si oui, le résultat obtenu est-il celui attendu?

Outils utilisables pouvant figurer dans le code sous forme de commentaire :

• Précondition

• Postcondition
• Invariant de boucle

29/50

Utilisation des Commentaires

Problématique usuelle concernant les codes :

• Est-ce que le code se termine?
• Si oui, le résultat obtenu est-il celui attendu?

Outils utilisables pouvant figurer dans le code sous forme de commentaire :

• Précondition
• Postcondition

• Invariant de boucle

29/50

Utilisation des Commentaires

Problématique usuelle concernant les codes :

• Est-ce que le code se termine?
• Si oui, le résultat obtenu est-il celui attendu?

Outils utilisables pouvant figurer dans le code sous forme de commentaire :

• Précondition
• Postcondition
• Invariant de boucle

29/50

Précondition

Précondition :

propriété (P) qui doit être vérifiée avant l’exécution du code.

• Exemple de code avec avec a et b entiers naturels
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x

• S est donc défini pour (a,b) ∈ N2. Examinons l’évolution des valeurs
du couple de variables (x, y) dans deux cas.

� Pour a = 14 et b = 9, on a :
(14, 9) → (5, 9) → (5, 4) → (1, 4) → (1, 3) → (1, 2) → (1, 1)

la boucle s’arrête et on obtient x = y = 1.
� Pour a = 14 et b = 0, on a : (14, 0) → (14, 0) → (14, 0) · · · la boucle

est infinie, S ne se termine donc jamais dans ce cas.

30/50

Précondition

Précondition :

propriété (P) qui doit être vérifiée avant l’exécution du code.

• Exemple de code avec avec a et b entiers naturels
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x

• S est donc défini pour (a,b) ∈ N2. Examinons l’évolution des valeurs
du couple de variables (x, y) dans deux cas.
� Pour a = 14 et b = 9, on a :

(14, 9) → (5, 9) → (5, 4) → (1, 4) → (1, 3) → (1, 2) → (1, 1)
la boucle s’arrête et on obtient x = y = 1.

� Pour a = 14 et b = 0, on a : (14, 0) → (14, 0) → (14, 0) · · · la boucle
est infinie, S ne se termine donc jamais dans ce cas.

30/50

Précondition

Précondition :

propriété (P) qui doit être vérifiée avant l’exécution du code.

• Exemple de code avec avec a et b entiers naturels
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x

• S est donc défini pour (a,b) ∈ N2. Examinons l’évolution des valeurs
du couple de variables (x, y) dans deux cas.

� Pour a = 14 et b = 9, on a :
(14, 9) → (5, 9) → (5, 4) → (1, 4) → (1, 3) → (1, 2) → (1, 1)

la boucle s’arrête et on obtient x = y = 1.
� Pour a = 14 et b = 0, on a : (14, 0) → (14, 0) → (14, 0) · · · la boucle

est infinie, S ne se termine donc jamais dans ce cas.

30/50

Précondition

Précondition :

propriété (P) qui doit être vérifiée avant l’exécution du code.

• Exemple de code avec avec a et b entiers naturels
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x

• S est donc défini pour (a,b) ∈ N2. Examinons l’évolution des valeurs
du couple de variables (x, y) dans deux cas.
� Pour a = 14 et b = 9, on a :

(14, 9) → (5, 9) → (5, 4) → (1, 4) → (1, 3) → (1, 2) → (1, 1)
la boucle s’arrête et on obtient x = y = 1.

� Pour a = 14 et b = 0, on a : (14, 0) → (14, 0) → (14, 0) · · · la boucle
est infinie, S ne se termine donc jamais dans ce cas.

30/50

Précondition

Précondition :

propriété (P) qui doit être vérifiée avant l’exécution du code.

• Exemple de code avec avec a et b entiers naturels
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x

• S est donc défini pour (a,b) ∈ N2. Examinons l’évolution des valeurs
du couple de variables (x, y) dans deux cas.
� Pour a = 14 et b = 9, on a :

(14, 9) → (5, 9) → (5, 4) → (1, 4) → (1, 3) → (1, 2) → (1, 1)
la boucle s’arrête et on obtient x = y = 1.

� Pour a = 14 et b = 0, on a :

(14, 0) → (14, 0) → (14, 0) · · · la boucle
est infinie, S ne se termine donc jamais dans ce cas.

30/50

Précondition

Précondition :

propriété (P) qui doit être vérifiée avant l’exécution du code.

• Exemple de code avec avec a et b entiers naturels
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x

• S est donc défini pour (a,b) ∈ N2. Examinons l’évolution des valeurs
du couple de variables (x, y) dans deux cas.
� Pour a = 14 et b = 9, on a :

(14, 9) → (5, 9) → (5, 4) → (1, 4) → (1, 3) → (1, 2) → (1, 1)
la boucle s’arrête et on obtient x = y = 1.

� Pour a = 14 et b = 0, on a : (14, 0) → (14, 0) → (14, 0) · · · la boucle
est infinie, S ne se termine donc jamais dans ce cas.

30/50

Précondition

On peut donc partitionner l’ensemble de départ de S (N2 ici) en deux :

• L’ensemble
{
(a,b) ∈ N2 / S se termine et renvoie le résultat attendu

}
,

• le complémentaire de cet ensemble qui conduit à un résultat erroné
en sortie de boucle.

Précondition pour le code S :

(P) : « (a,b) ∈ N2, a > 0, b > 0 ».
Cette précondition peut être annotée en commentaire :
Précondition (P): a et b sont des entiers naturels strictement \
↪→ positifs
x, y = a, b
while x != y:
 if x > y:
 x = x-y
 else:
 y = y-x

31/50

Précondition

On peut donc partitionner l’ensemble de départ de S (N2 ici) en deux :

• L’ensemble
{
(a,b) ∈ N2 / S se termine et renvoie le résultat attendu

}
,

• le complémentaire de cet ensemble qui conduit à un résultat erroné
en sortie de boucle.

Précondition pour le code S :

(P) : « (a,b) ∈ N2, a > 0, b > 0 ».
Cette précondition peut être annotée en commentaire :
Précondition (P): a et b sont des entiers naturels strictement \
↪→ positifs
x, y = a, b
while x != y:
 if x > y:
 x = x-y
 else:
 y = y-x

31/50

Précondition

On peut donc partitionner l’ensemble de départ de S (N2 ici) en deux :

• L’ensemble
{
(a,b) ∈ N2 / S se termine et renvoie le résultat attendu

}
,

• le complémentaire de cet ensemble qui conduit à un résultat erroné
en sortie de boucle.

Précondition pour le code S :

(P) : « (a,b) ∈ N2, a > 0, b > 0 ».
Cette précondition peut être annotée en commentaire :
Précondition (P): a et b sont des entiers naturels strictement \
↪→ positifs
x, y = a, b
while x != y:
 if x > y:
 x = x-y
 else:
 y = y-x

31/50

Précondition

On peut donc partitionner l’ensemble de départ de S (N2 ici) en deux :

• L’ensemble
{
(a,b) ∈ N2 / S se termine et renvoie le résultat attendu

}
,

• le complémentaire de cet ensemble qui conduit à un résultat erroné
en sortie de boucle.

Précondition pour le code S :

(P) : « (a,b) ∈ N2, a > 0, b > 0 ».

Cette précondition peut être annotée en commentaire :
Précondition (P): a et b sont des entiers naturels strictement \
↪→ positifs
x, y = a, b
while x != y:
 if x > y:
 x = x-y
 else:
 y = y-x

31/50

Précondition

On peut donc partitionner l’ensemble de départ de S (N2 ici) en deux :

• L’ensemble
{
(a,b) ∈ N2 / S se termine et renvoie le résultat attendu

}
,

• le complémentaire de cet ensemble qui conduit à un résultat erroné
en sortie de boucle.

Précondition pour le code S :

(P) : « (a,b) ∈ N2, a > 0, b > 0 ».
Cette précondition peut être annotée en commentaire :
Précondition (P): a et b sont des entiers naturels strictement \
↪→ positifs
x, y = a, b
while x != y:
 if x > y:
 x = x-y
 else:
 y = y-x

31/50

Postcondition : caractérisation du résultat

Postcondition :

propriété (Q) qui doit être vérifiée après l’exécution du code.

• La postcondition peut figurer dans le code sous forme d’un
commentaire,

• lorsque le code S est le corps d’une fonction, alors la précondition (P)
et la postcondition (Q) peuvent être mentionnées dans le docstring de
la fonction.

Dans l’exemple précédent, la postcondition (Q) pourrait être : « x = y et
x = pgcd(a,b) ».
Précondition (P): a et b sont des naturels strictement positifs
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x
Postcondition (Q): x = y et x = pgcd(a,b)

32/50

Postcondition : caractérisation du résultat

Postcondition :

propriété (Q) qui doit être vérifiée après l’exécution du code.

• La postcondition peut figurer dans le code sous forme d’un
commentaire,

• lorsque le code S est le corps d’une fonction, alors la précondition (P)
et la postcondition (Q) peuvent être mentionnées dans le docstring de
la fonction.

Dans l’exemple précédent, la postcondition (Q) pourrait être : « x = y et
x = pgcd(a,b) ».
Précondition (P): a et b sont des naturels strictement positifs
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x
Postcondition (Q): x = y et x = pgcd(a,b)

32/50

Postcondition : caractérisation du résultat

Postcondition :

propriété (Q) qui doit être vérifiée après l’exécution du code.

• La postcondition peut figurer dans le code sous forme d’un
commentaire,

• lorsque le code S est le corps d’une fonction, alors la précondition (P)
et la postcondition (Q) peuvent être mentionnées dans le docstring de
la fonction.

Dans l’exemple précédent, la postcondition (Q) pourrait être : « x = y et
x = pgcd(a,b) ».
Précondition (P): a et b sont des naturels strictement positifs
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x
Postcondition (Q): x = y et x = pgcd(a,b)

32/50

Postcondition : caractérisation du résultat

Postcondition :

propriété (Q) qui doit être vérifiée après l’exécution du code.

• La postcondition peut figurer dans le code sous forme d’un
commentaire,

• lorsque le code S est le corps d’une fonction, alors la précondition (P)
et la postcondition (Q) peuvent être mentionnées dans le docstring de
la fonction.

Dans l’exemple précédent, la postcondition (Q) pourrait être : « x = y et
x = pgcd(a,b) ».

Précondition (P): a et b sont des naturels strictement positifs
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x
Postcondition (Q): x = y et x = pgcd(a,b)

32/50

Postcondition : caractérisation du résultat

Postcondition :

propriété (Q) qui doit être vérifiée après l’exécution du code.

• La postcondition peut figurer dans le code sous forme d’un
commentaire,

• lorsque le code S est le corps d’une fonction, alors la précondition (P)
et la postcondition (Q) peuvent être mentionnées dans le docstring de
la fonction.

Dans l’exemple précédent, la postcondition (Q) pourrait être : « x = y et
x = pgcd(a,b) ».
Précondition (P): a et b sont des naturels strictement positifs
x, y = a, b
while x != y:
 if x > y:
 x = x - y
 else:
 y = y - x
Postcondition (Q): x = y et x = pgcd(a,b)

32/50

Notion d’invariant

Invariant :

proposition qui reste vraie tout au long de l’exécution du code (ou d’une
portion de code)

• Lors de la preuve d’algorithme (objet du chapitre suivant), il faut
prouver l’invariant,

• on utilise l’invariant pour établir la preuve du programme,
• on peut alors noter cet invariant sous forme de commentaire dans le

code,
• dans l’exemple précédent l’invariant est :

« x et y sont des naturels non nuls, et pgcd(x, y) = pgcd(a,b) ».

33/50

Notion d’invariant

Invariant :

proposition qui reste vraie tout au long de l’exécution du code (ou d’une
portion de code)

• Lors de la preuve d’algorithme (objet du chapitre suivant), il faut
prouver l’invariant,

• on utilise l’invariant pour établir la preuve du programme,
• on peut alors noter cet invariant sous forme de commentaire dans le

code,
• dans l’exemple précédent l’invariant est :

« x et y sont des naturels non nuls, et pgcd(x, y) = pgcd(a,b) ».

33/50

Notion d’invariant

Invariant :

proposition qui reste vraie tout au long de l’exécution du code (ou d’une
portion de code)

• Lors de la preuve d’algorithme (objet du chapitre suivant), il faut
prouver l’invariant,

• on utilise l’invariant pour établir la preuve du programme,

• on peut alors noter cet invariant sous forme de commentaire dans le
code,

• dans l’exemple précédent l’invariant est :
« x et y sont des naturels non nuls, et pgcd(x, y) = pgcd(a,b) ».

33/50

Notion d’invariant

Invariant :

proposition qui reste vraie tout au long de l’exécution du code (ou d’une
portion de code)

• Lors de la preuve d’algorithme (objet du chapitre suivant), il faut
prouver l’invariant,

• on utilise l’invariant pour établir la preuve du programme,
• on peut alors noter cet invariant sous forme de commentaire dans le

code,

• dans l’exemple précédent l’invariant est :
« x et y sont des naturels non nuls, et pgcd(x, y) = pgcd(a,b) ».

33/50

Notion d’invariant

Invariant :

proposition qui reste vraie tout au long de l’exécution du code (ou d’une
portion de code)

• Lors de la preuve d’algorithme (objet du chapitre suivant), il faut
prouver l’invariant,

• on utilise l’invariant pour établir la preuve du programme,
• on peut alors noter cet invariant sous forme de commentaire dans le

code,
• dans l’exemple précédent l’invariant est :

« x et y sont des naturels non nuls, et pgcd(x, y) = pgcd(a,b) ».

33/50

Notion d’invariant : exemple

Précondition (P): a et b sont des naturels strictement positifs
x, y = a, b
while x != y:
Invariant: x et y sont des naturels strictement positifs
et pgcd(x,y) = pgcd(a,b).
 if x > y:
 x = x - y # pgcd(x, y) = pgcd(x - y, y)
 else:
 y = y - x # pgcd(x, y) = pgcd(x, y - x)
Postcondition (Q): x = y et x = pgcd(a,b)

Lorsque la condition n’est plus remplie, c’est à dire lorsque x et y sont
égaux, on sort de la boucle, on a alors x = y et d’après l’invariant on a aussi
pgcd(x, y) = pgcd(a,b), or pgcd(x, y) = pgcd(x, x) = x (x est un naturel non
nul), ce qui prouve la postcondition (Q).

34/50

Notion d’invariant : exemple

Précondition (P): a et b sont des naturels strictement positifs
x, y = a, b
while x != y:
Invariant: x et y sont des naturels strictement positifs
et pgcd(x,y) = pgcd(a,b).
 if x > y:
 x = x - y # pgcd(x, y) = pgcd(x - y, y)
 else:
 y = y - x # pgcd(x, y) = pgcd(x, y - x)
Postcondition (Q): x = y et x = pgcd(a,b)

Lorsque la condition n’est plus remplie, c’est à dire lorsque x et y sont
égaux, on sort de la boucle, on a alors x = y et d’après l’invariant on a aussi
pgcd(x, y) = pgcd(a,b), or pgcd(x, y) = pgcd(x, x) = x (x est un naturel non
nul), ce qui prouve la postcondition (Q).

34/50

Notion d’invariant

En résumé, lorsque nous avons affaire à une boucle, nous pouvons
représenter la situation ainsi :

instaure

conserve

nonet

ouiet

implique

Précondition

Initialisation

Invariant

Postcondition

Progression
dans la boucle

Arrêt ?

Les cases grisées correspondent à une action. 35/50

Exercice

Écrire la fonction somme(n: int) -> int respectant la spécification
suivante :

• Précondition : n ∈ N.
• Postcondition : la valeur renvoyée est

n∑
k=0

k.

On précisera dans le code un invariant de la boucle.

36/50

Solution

def somme(n: int) -> int:
 """
 Parameters

 n: int assumed positive (précondition)
 Returns

 int
 0+1+...+n (postcondition)
 Examples

 >>> somme(10)
 55
 """
 resultat = 0 # variable qui contiendra la somme cherchée
 for k in range(1,n+1): # pour k allant de 1 à n
 # Invariant : 'resultat' est la somme des entiers de 0 à k
 resultat = resultat + k
 return resultat

37/50

Jeux de tests

Utilité des tests

Une fois qu’un programme est prouvé (on a démontré qu’il se comporte
comme attendu dans toutes les situations possibles) il peut sembler inutile
de le tester, mais :

• des erreurs peuvent avoir été commises dans l’étude théorique
• la preuve peut être très longue et/ou très délicate à établir.

Dans tous les cas, il est ainsi nécessaire de multiplier les tests, pour
chaque fonction écrite, et pour l’ensemble du programme.

38/50

Utilité des tests

Une fois qu’un programme est prouvé (on a démontré qu’il se comporte
comme attendu dans toutes les situations possibles) il peut sembler inutile
de le tester, mais :

• des erreurs peuvent avoir été commises dans l’étude théorique

• la preuve peut être très longue et/ou très délicate à établir.

Dans tous les cas, il est ainsi nécessaire de multiplier les tests, pour
chaque fonction écrite, et pour l’ensemble du programme.

38/50

Utilité des tests

Une fois qu’un programme est prouvé (on a démontré qu’il se comporte
comme attendu dans toutes les situations possibles) il peut sembler inutile
de le tester, mais :

• des erreurs peuvent avoir été commises dans l’étude théorique
• la preuve peut être très longue et/ou très délicate à établir.

Dans tous les cas, il est ainsi nécessaire de multiplier les tests, pour
chaque fonction écrite, et pour l’ensemble du programme.

38/50

Utilité des tests

Une fois qu’un programme est prouvé (on a démontré qu’il se comporte
comme attendu dans toutes les situations possibles) il peut sembler inutile
de le tester, mais :

• des erreurs peuvent avoir été commises dans l’étude théorique
• la preuve peut être très longue et/ou très délicate à établir.

Dans tous les cas, il est ainsi nécessaire de multiplier les tests, pour
chaque fonction écrite, et pour l’ensemble du programme.

38/50

Utilité des tests

• Un test compare le résultat d’une fonction (ou d’un bout de code)
exécutée avec des valeurs particulières pour les paramètres d’entrée
et la valeur attendue en retour.

• Le choix des tests se porte en général sur des cas limites des valeurs
d’entrée (qui dépendent du code testé).

• Un test ne prouve pas le code :
« le test de programmes peut être une façon très efficace de montrer
la présence de bugs, mais il est désespérément inadéquat pour
prouver leur absence » (Edsger Dijkstra).

• Il est recommandé de prévoir un jeu de tests dès la spécification.

39/50

Utilité des tests

• Un test compare le résultat d’une fonction (ou d’un bout de code)
exécutée avec des valeurs particulières pour les paramètres d’entrée
et la valeur attendue en retour.

• Le choix des tests se porte en général sur des cas limites des valeurs
d’entrée (qui dépendent du code testé).

• Un test ne prouve pas le code :
« le test de programmes peut être une façon très efficace de montrer
la présence de bugs, mais il est désespérément inadéquat pour
prouver leur absence » (Edsger Dijkstra).

• Il est recommandé de prévoir un jeu de tests dès la spécification.

39/50

Utilité des tests

• Un test compare le résultat d’une fonction (ou d’un bout de code)
exécutée avec des valeurs particulières pour les paramètres d’entrée
et la valeur attendue en retour.

• Le choix des tests se porte en général sur des cas limites des valeurs
d’entrée (qui dépendent du code testé).

• Un test ne prouve pas le code :
« le test de programmes peut être une façon très efficace de montrer
la présence de bugs, mais il est désespérément inadéquat pour
prouver leur absence » (Edsger Dijkstra).

• Il est recommandé de prévoir un jeu de tests dès la spécification.

39/50

Utilité des tests

• Un test compare le résultat d’une fonction (ou d’un bout de code)
exécutée avec des valeurs particulières pour les paramètres d’entrée
et la valeur attendue en retour.

• Le choix des tests se porte en général sur des cas limites des valeurs
d’entrée (qui dépendent du code testé).

• Un test ne prouve pas le code :
« le test de programmes peut être une façon très efficace de montrer
la présence de bugs, mais il est désespérément inadéquat pour
prouver leur absence » (Edsger Dijkstra).

• Il est recommandé de prévoir un jeu de tests dès la spécification.

39/50

Exemple

• Soit la fonction division(a, b) dont la spécification est la suivante :

� Paramètres d’entrée : a et b sont des entiers positifs avec b non nul.
� Résultat renvoyé : le résultat de la fonction est le tuple (q, r) où q et r

sont respectivement le quotient et le reste de la division euclidienne de a
par b (c’est à dire vérifiant a = bq+ r avec 0 6 r < b).

• Choix d’action si la contrainte sur les paramètres d’entrée (précondition) n’est
pas remplie :

� générer une erreur avec l’instruction assert,
� renvoyer un résultat particulier.

• Comportement respectifs :
� 1er cas : la fin du programme avec éventuellement un message d’erreur,

ce qui n’est pas toujours souhaitable,
� 2ième cas : on peut choisir de renvoyer None si la contrainte n’est pas

remplie. Cette convention devra être mentionnée dans la docstring.

40/50

Exemple

• Soit la fonction division(a, b) dont la spécification est la suivante :
� Paramètres d’entrée : a et b sont des entiers positifs avec b non nul.

� Résultat renvoyé : le résultat de la fonction est le tuple (q, r) où q et r
sont respectivement le quotient et le reste de la division euclidienne de a
par b (c’est à dire vérifiant a = bq+ r avec 0 6 r < b).

• Choix d’action si la contrainte sur les paramètres d’entrée (précondition) n’est
pas remplie :

� générer une erreur avec l’instruction assert,
� renvoyer un résultat particulier.

• Comportement respectifs :
� 1er cas : la fin du programme avec éventuellement un message d’erreur,

ce qui n’est pas toujours souhaitable,
� 2ième cas : on peut choisir de renvoyer None si la contrainte n’est pas

remplie. Cette convention devra être mentionnée dans la docstring.

40/50

Exemple

• Soit la fonction division(a, b) dont la spécification est la suivante :
� Paramètres d’entrée : a et b sont des entiers positifs avec b non nul.
� Résultat renvoyé : le résultat de la fonction est le tuple (q, r) où q et r

sont respectivement le quotient et le reste de la division euclidienne de a
par b (c’est à dire vérifiant a = bq+ r avec 0 6 r < b).

• Choix d’action si la contrainte sur les paramètres d’entrée (précondition) n’est
pas remplie :

� générer une erreur avec l’instruction assert,
� renvoyer un résultat particulier.

• Comportement respectifs :
� 1er cas : la fin du programme avec éventuellement un message d’erreur,

ce qui n’est pas toujours souhaitable,
� 2ième cas : on peut choisir de renvoyer None si la contrainte n’est pas

remplie. Cette convention devra être mentionnée dans la docstring.

40/50

Exemple

• Soit la fonction division(a, b) dont la spécification est la suivante :
� Paramètres d’entrée : a et b sont des entiers positifs avec b non nul.
� Résultat renvoyé : le résultat de la fonction est le tuple (q, r) où q et r

sont respectivement le quotient et le reste de la division euclidienne de a
par b (c’est à dire vérifiant a = bq+ r avec 0 6 r < b).

• Choix d’action si la contrainte sur les paramètres d’entrée (précondition) n’est
pas remplie :

� générer une erreur avec l’instruction assert,
� renvoyer un résultat particulier.

• Comportement respectifs :
� 1er cas : la fin du programme avec éventuellement un message d’erreur,

ce qui n’est pas toujours souhaitable,
� 2ième cas : on peut choisir de renvoyer None si la contrainte n’est pas

remplie. Cette convention devra être mentionnée dans la docstring.

40/50

Exemple

• Soit la fonction division(a, b) dont la spécification est la suivante :
� Paramètres d’entrée : a et b sont des entiers positifs avec b non nul.
� Résultat renvoyé : le résultat de la fonction est le tuple (q, r) où q et r

sont respectivement le quotient et le reste de la division euclidienne de a
par b (c’est à dire vérifiant a = bq+ r avec 0 6 r < b).

• Choix d’action si la contrainte sur les paramètres d’entrée (précondition) n’est
pas remplie :

� générer une erreur avec l’instruction assert,

� renvoyer un résultat particulier.
• Comportement respectifs :

� 1er cas : la fin du programme avec éventuellement un message d’erreur,
ce qui n’est pas toujours souhaitable,

� 2ième cas : on peut choisir de renvoyer None si la contrainte n’est pas
remplie. Cette convention devra être mentionnée dans la docstring.

40/50

Exemple

• Soit la fonction division(a, b) dont la spécification est la suivante :
� Paramètres d’entrée : a et b sont des entiers positifs avec b non nul.
� Résultat renvoyé : le résultat de la fonction est le tuple (q, r) où q et r

sont respectivement le quotient et le reste de la division euclidienne de a
par b (c’est à dire vérifiant a = bq+ r avec 0 6 r < b).

• Choix d’action si la contrainte sur les paramètres d’entrée (précondition) n’est
pas remplie :

� générer une erreur avec l’instruction assert,
� renvoyer un résultat particulier.

• Comportement respectifs :
� 1er cas : la fin du programme avec éventuellement un message d’erreur,

ce qui n’est pas toujours souhaitable,
� 2ième cas : on peut choisir de renvoyer None si la contrainte n’est pas

remplie. Cette convention devra être mentionnée dans la docstring.

40/50

Exemple

• Soit la fonction division(a, b) dont la spécification est la suivante :
� Paramètres d’entrée : a et b sont des entiers positifs avec b non nul.
� Résultat renvoyé : le résultat de la fonction est le tuple (q, r) où q et r

sont respectivement le quotient et le reste de la division euclidienne de a
par b (c’est à dire vérifiant a = bq+ r avec 0 6 r < b).

• Choix d’action si la contrainte sur les paramètres d’entrée (précondition) n’est
pas remplie :

� générer une erreur avec l’instruction assert,
� renvoyer un résultat particulier.

• Comportement respectifs :
� 1er cas : la fin du programme avec éventuellement un message d’erreur,

ce qui n’est pas toujours souhaitable

,
� 2ième cas : on peut choisir de renvoyer None si la contrainte n’est pas

remplie. Cette convention devra être mentionnée dans la docstring.

40/50

Exemple

• Soit la fonction division(a, b) dont la spécification est la suivante :
� Paramètres d’entrée : a et b sont des entiers positifs avec b non nul.
� Résultat renvoyé : le résultat de la fonction est le tuple (q, r) où q et r

sont respectivement le quotient et le reste de la division euclidienne de a
par b (c’est à dire vérifiant a = bq+ r avec 0 6 r < b).

• Choix d’action si la contrainte sur les paramètres d’entrée (précondition) n’est
pas remplie :

� générer une erreur avec l’instruction assert,
� renvoyer un résultat particulier.

• Comportement respectifs :
� 1er cas : la fin du programme avec éventuellement un message d’erreur,

ce qui n’est pas toujours souhaitable,
� 2ième cas : on peut choisir de renvoyer None si la contrainte n’est pas

remplie. Cette convention devra être mentionnée dans la docstring.

40/50

Exemple

• Exemples de tests :
� a et b strictement positifs : division(19, 7) doit renvoyer (2,
5),

� a et b strictement positifs : division(7, 19) doit renvoyer (0,
7),

� a nul et b strictement positif : division(0, 19) doit renvoyer
(0, 0),

� a positif et b nul : division(19, 0) doit renvoyer None,
� a positif et b négatif : division(19, -7) doit renvoyer None,
� a négatif et b positif : division(-19, 7) doit renvoyer None,
� a négatif et b nul : division(-19, 0) doit renvoyer None,
� a négatif et b négatif : division(-19, -7) doit renvoyer None.

• On pourrait bien sûr imaginer d’autres valeurs numériques, ou même
choisir des valeurs aléatoirement dans chaque cas. Nous allons faire
figurer ces tests dans la docstring sous forme d’exemples.

41/50

Exemple

• Exemples de tests :
� a et b strictement positifs : division(19, 7) doit renvoyer (2,
5),

� a et b strictement positifs : division(7, 19) doit renvoyer (0,
7),

� a nul et b strictement positif : division(0, 19) doit renvoyer
(0, 0),

� a positif et b nul : division(19, 0) doit renvoyer None,
� a positif et b négatif : division(19, -7) doit renvoyer None,
� a négatif et b positif : division(-19, 7) doit renvoyer None,
� a négatif et b nul : division(-19, 0) doit renvoyer None,
� a négatif et b négatif : division(-19, -7) doit renvoyer None.

• On pourrait bien sûr imaginer d’autres valeurs numériques, ou même
choisir des valeurs aléatoirement dans chaque cas. Nous allons faire
figurer ces tests dans la docstring sous forme d’exemples.

41/50

Exemple

• Exemples de tests :
� a et b strictement positifs : division(19, 7) doit renvoyer (2,
5),

� a et b strictement positifs : division(7, 19) doit renvoyer (0,
7),

� a nul et b strictement positif : division(0, 19) doit renvoyer
(0, 0),

� a positif et b nul : division(19, 0) doit renvoyer None,
� a positif et b négatif : division(19, -7) doit renvoyer None,
� a négatif et b positif : division(-19, 7) doit renvoyer None,
� a négatif et b nul : division(-19, 0) doit renvoyer None,
� a négatif et b négatif : division(-19, -7) doit renvoyer None.

• On pourrait bien sûr imaginer d’autres valeurs numériques, ou même
choisir des valeurs aléatoirement dans chaque cas. Nous allons faire
figurer ces tests dans la docstring sous forme d’exemples.

41/50

Exemple

• Exemples de tests :
� a et b strictement positifs : division(19, 7) doit renvoyer (2,
5),

� a et b strictement positifs : division(7, 19) doit renvoyer (0,
7),

� a nul et b strictement positif : division(0, 19) doit renvoyer
(0, 0),

� a positif et b nul : division(19, 0) doit renvoyer None,
� a positif et b négatif : division(19, -7) doit renvoyer None,
� a négatif et b positif : division(-19, 7) doit renvoyer None,
� a négatif et b nul : division(-19, 0) doit renvoyer None,
� a négatif et b négatif : division(-19, -7) doit renvoyer None.

• On pourrait bien sûr imaginer d’autres valeurs numériques, ou même
choisir des valeurs aléatoirement dans chaque cas. Nous allons faire
figurer ces tests dans la docstring sous forme d’exemples.

41/50

Exemple
def division(a: int, b: int) -> (int, int):
 ””””
 Renvoie le quotient et le reste de la division de a par b
 Paramètres:

 a: int, entier naturel
 b: int, entier strictement positif
 Retour:

 tuple (q, r) tel que a=bq+r avec 0<=r<b
 ou None si a<0 ou b<=0
 Exemples:

 »> division(19,7)
 (2,5)
 »> division(7,19)
 (0,7)
 »> division(0,19)
 (0,0)
 »> division(19,0)
 None
 »> division(19,-7)
 None

42/50

Exemple
 """
 >>> division(-19,7)
 None
 >>> division(-19,0)
 None
 >>> division(-19,-7)
 None
 """

Nous pouvons maintenant passer à l’écriture du code.

• La postcondition nous fournit pratiquement l’invariant de la boucle
que nous allons devoir écrire : a = bq+ r.

• q et r seront deux variables locales, il faut les initialiser de sorte que
l’invariant soit vérifié. Il suffit de prendre q = 0 et r = a, la
précondition nous dit alors que 0 6 r.

• Si r < b la division est terminée, mais si r > b, alors on enlève b à r et
on ajoute 1 à q car bq+ r = b(q+ 1) + (r − b), l’invariant est bien
conservé, et on recommence le test sur r (boucle).

43/50

Exemple
 """
 >>> division(-19,7)
 None
 >>> division(-19,0)
 None
 >>> division(-19,-7)
 None
 """

Nous pouvons maintenant passer à l’écriture du code.

• La postcondition nous fournit pratiquement l’invariant de la boucle
que nous allons devoir écrire : a = bq+ r.

• q et r seront deux variables locales, il faut les initialiser de sorte que
l’invariant soit vérifié. Il suffit de prendre q = 0 et r = a, la
précondition nous dit alors que 0 6 r.

• Si r < b la division est terminée, mais si r > b, alors on enlève b à r et
on ajoute 1 à q car bq+ r = b(q+ 1) + (r − b), l’invariant est bien
conservé, et on recommence le test sur r (boucle).

43/50

Exemple
 """
 >>> division(-19,7)
 None
 >>> division(-19,0)
 None
 >>> division(-19,-7)
 None
 """

Nous pouvons maintenant passer à l’écriture du code.

• La postcondition nous fournit pratiquement l’invariant de la boucle
que nous allons devoir écrire : a = bq+ r.

• q et r seront deux variables locales, il faut les initialiser de sorte que
l’invariant soit vérifié. Il suffit de prendre q = 0 et r = a, la
précondition nous dit alors que 0 6 r.

• Si r < b la division est terminée, mais si r > b, alors on enlève b à r et
on ajoute 1 à q car bq+ r = b(q+ 1) + (r − b), l’invariant est bien
conservé, et on recommence le test sur r (boucle).

43/50

Exemple
 """
 >>> division(-19,7)
 None
 >>> division(-19,0)
 None
 >>> division(-19,-7)
 None
 """

Nous pouvons maintenant passer à l’écriture du code.

• La postcondition nous fournit pratiquement l’invariant de la boucle
que nous allons devoir écrire : a = bq+ r.

• q et r seront deux variables locales, il faut les initialiser de sorte que
l’invariant soit vérifié.

Il suffit de prendre q = 0 et r = a, la
précondition nous dit alors que 0 6 r.

• Si r < b la division est terminée, mais si r > b, alors on enlève b à r et
on ajoute 1 à q car bq+ r = b(q+ 1) + (r − b), l’invariant est bien
conservé, et on recommence le test sur r (boucle).

43/50

Exemple
 """
 >>> division(-19,7)
 None
 >>> division(-19,0)
 None
 >>> division(-19,-7)
 None
 """

Nous pouvons maintenant passer à l’écriture du code.

• La postcondition nous fournit pratiquement l’invariant de la boucle
que nous allons devoir écrire : a = bq+ r.

• q et r seront deux variables locales, il faut les initialiser de sorte que
l’invariant soit vérifié. Il suffit de prendre q = 0 et r = a, la
précondition nous dit alors que 0 6 r.

• Si r < b la division est terminée, mais si r > b, alors on enlève b à r et
on ajoute 1 à q car bq+ r = b(q+ 1) + (r − b), l’invariant est bien
conservé, et on recommence le test sur r (boucle).

43/50

Exemple
 """
 >>> division(-19,7)
 None
 >>> division(-19,0)
 None
 >>> division(-19,-7)
 None
 """

Nous pouvons maintenant passer à l’écriture du code.

• La postcondition nous fournit pratiquement l’invariant de la boucle
que nous allons devoir écrire : a = bq+ r.

• q et r seront deux variables locales, il faut les initialiser de sorte que
l’invariant soit vérifié. Il suffit de prendre q = 0 et r = a, la
précondition nous dit alors que 0 6 r.

• Si r < b la division est terminée,

mais si r > b, alors on enlève b à r et
on ajoute 1 à q car bq+ r = b(q+ 1) + (r − b), l’invariant est bien
conservé, et on recommence le test sur r (boucle).

43/50

Exemple
 """
 >>> division(-19,7)
 None
 >>> division(-19,0)
 None
 >>> division(-19,-7)
 None
 """

Nous pouvons maintenant passer à l’écriture du code.

• La postcondition nous fournit pratiquement l’invariant de la boucle
que nous allons devoir écrire : a = bq+ r.

• q et r seront deux variables locales, il faut les initialiser de sorte que
l’invariant soit vérifié. Il suffit de prendre q = 0 et r = a, la
précondition nous dit alors que 0 6 r.

• Si r < b la division est terminée, mais si r > b, alors on enlève b à r et
on ajoute 1 à q car bq+ r = b(q+ 1) + (r − b),

l’invariant est bien
conservé, et on recommence le test sur r (boucle).

43/50

Exemple
 """
 >>> division(-19,7)
 None
 >>> division(-19,0)
 None
 >>> division(-19,-7)
 None
 """

Nous pouvons maintenant passer à l’écriture du code.

• La postcondition nous fournit pratiquement l’invariant de la boucle
que nous allons devoir écrire : a = bq+ r.

• q et r seront deux variables locales, il faut les initialiser de sorte que
l’invariant soit vérifié. Il suffit de prendre q = 0 et r = a, la
précondition nous dit alors que 0 6 r.

• Si r < b la division est terminée, mais si r > b, alors on enlève b à r et
on ajoute 1 à q car bq+ r = b(q+ 1) + (r − b), l’invariant est bien
conservé,

et on recommence le test sur r (boucle).

43/50

Exemple
 """
 >>> division(-19,7)
 None
 >>> division(-19,0)
 None
 >>> division(-19,-7)
 None
 """

Nous pouvons maintenant passer à l’écriture du code.

• La postcondition nous fournit pratiquement l’invariant de la boucle
que nous allons devoir écrire : a = bq+ r.

• q et r seront deux variables locales, il faut les initialiser de sorte que
l’invariant soit vérifié. Il suffit de prendre q = 0 et r = a, la
précondition nous dit alors que 0 6 r.

• Si r < b la division est terminée, mais si r > b, alors on enlève b à r et
on ajoute 1 à q car bq+ r = b(q+ 1) + (r − b), l’invariant est bien
conservé, et on recommence le test sur r (boucle).

43/50

Exemple
def division(a: int, b: int) -> (int, int):
 """"
 Renvoie le quotient et le reste de la division de a par b
 Paramètres:

 a: int, entier naturel
 b: int, entier strictement positif (précondition)
 Retour:

 tuple (q, r) tel que a=bq+r avec 0<=r<b
 ou None si a<0 ou b<=0 (postcondition)
 """
 if (a<0) or (b<=0): # précondition non remplie
 return None # la fonction se termine en renvoyant None
 q, r = 0, a
 while r >= b:
 # Invariant: a=bq+r et 0<=r
 q += 1
 r -= b # bq+r = b(q+1)+(r-b)
 return (q, r)

44/50

Effectuer les tests

On peut proposer trois façons de procéder pour exécuter les tests :

45/50

Effectuer les tests

On peut proposer trois façons de procéder pour exécuter les tests :

1. La méthode naïve : on ajoute à la suite de notre fonction une
succession de print (un par test), du style :
print(division(19,7) == (2,5)), ce qui provoquera à
l’exécution l’affichage de True ou bien False suivant que le test est
positif ou négatif.

45/50

Effectuer les tests

On peut proposer trois façons de procéder pour exécuter les tests :
2. Un peu plus élaboré : on écrit une fonction dédiée aux tests qui va

utiliser l’instruction assert pour chacun des tests

:
def test_division():
 assert division(19,7) == (2,5), ”erreur lorsque a=19 et b=7”
 assert division(7,19) == (0,7), ”erreur lorsque a=7 et b=19”
 # ... etc
 assert division(-19,-7) == None, ”erreur lorsque a=-19 et b=-7”
 print(”Tous les tests ont été réussis.”)

Après exécution, s’il n’y a pas d’erreur d’assertion, on affiche que tous
les tests ont été passés avec succès.
Attention cependant, si un des tests provoque une boucle infinie le
programme ne se terminera pas, et on ne saura pas quel est le test
défectueux.

45/50

Effectuer les tests

On peut proposer trois façons de procéder pour exécuter les tests :
2. Un peu plus élaboré : on écrit une fonction dédiée aux tests qui va

utiliser l’instruction assert pour chacun des tests :
def test_division():
 assert division(19,7) == (2,5), ”erreur lorsque a=19 et b=7”
 assert division(7,19) == (0,7), ”erreur lorsque a=7 et b=19”
 # ... etc
 assert division(-19,-7) == None, ”erreur lorsque a=-19 et b=-7”
 print(”Tous les tests ont été réussis.”)

Après exécution, s’il n’y a pas d’erreur d’assertion, on affiche que tous
les tests ont été passés avec succès.
Attention cependant, si un des tests provoque une boucle infinie le
programme ne se terminera pas, et on ne saura pas quel est le test
défectueux.

45/50

Effectuer les tests

On peut proposer trois façons de procéder pour exécuter les tests :
2. Un peu plus élaboré : on écrit une fonction dédiée aux tests qui va

utiliser l’instruction assert pour chacun des tests :
def test_division():
 assert division(19,7) == (2,5), ”erreur lorsque a=19 et b=7”
 assert division(7,19) == (0,7), ”erreur lorsque a=7 et b=19”
 # ... etc
 assert division(-19,-7) == None, ”erreur lorsque a=-19 et b=-7”
 print(”Tous les tests ont été réussis.”)

Après exécution, s’il n’y a pas d’erreur d’assertion, on affiche que tous
les tests ont été passés avec succès.

Attention cependant, si un des tests provoque une boucle infinie le
programme ne se terminera pas, et on ne saura pas quel est le test
défectueux.

45/50

Effectuer les tests

On peut proposer trois façons de procéder pour exécuter les tests :
2. Un peu plus élaboré : on écrit une fonction dédiée aux tests qui va

utiliser l’instruction assert pour chacun des tests :
def test_division():
 assert division(19,7) == (2,5), ”erreur lorsque a=19 et b=7”
 assert division(7,19) == (0,7), ”erreur lorsque a=7 et b=19”
 # ... etc
 assert division(-19,-7) == None, ”erreur lorsque a=-19 et b=-7”
 print(”Tous les tests ont été réussis.”)

Après exécution, s’il n’y a pas d’erreur d’assertion, on affiche que tous
les tests ont été passés avec succès.
Attention cependant, si un des tests provoque une boucle infinie le
programme ne se terminera pas, et on ne saura pas quel est le test
défectueux.

45/50

Effectuer les tests

On peut proposer trois façons de procéder pour exécuter les tests :
3. Tests automatiques : tests explicités dans la docstring (sous une

certaine forme) et utilisation de la fonction testmode() du module
doctest :
• Analyse de la docstring et exécution des lignes commençant par

>>>

• comparaison du résultat avec le contenu de la ligne suivante. En
cas de différence, une erreur est signalée.

• Attention : la docstring est une chaîne de caractères, il faut donc
faire très attention à la façon dont on écrit les résultats attendus
car ce sont des chaînes de caractères qui vont être comparées.

45/50

Effectuer les tests

On peut proposer trois façons de procéder pour exécuter les tests :
3. Tests automatiques : tests explicités dans la docstring (sous une

certaine forme) et utilisation de la fonction testmode() du module
doctest :
• Analyse de la docstring et exécution des lignes commençant par

>>>
• comparaison du résultat avec le contenu de la ligne suivante. En

cas de différence, une erreur est signalée.

• Attention : la docstring est une chaîne de caractères, il faut donc
faire très attention à la façon dont on écrit les résultats attendus
car ce sont des chaînes de caractères qui vont être comparées.

45/50

Effectuer les tests

On peut proposer trois façons de procéder pour exécuter les tests :
3. Tests automatiques : tests explicités dans la docstring (sous une

certaine forme) et utilisation de la fonction testmode() du module
doctest :
• Analyse de la docstring et exécution des lignes commençant par

>>>
• comparaison du résultat avec le contenu de la ligne suivante. En

cas de différence, une erreur est signalée.
• Attention : la docstring est une chaîne de caractères, il faut donc

faire très attention à la façon dont on écrit les résultats attendus
car ce sont des chaînes de caractères qui vont être comparées.

45/50

Effectuer les tests

• Par exemple si on écrit dans la docstring de notre fonction.
def division(a: int, b: int) -> (int, int):
 """
 ...
 >>> division(19,7)
 (2,5)
 ...
 """
 # ...

alors à l’exécution de l’instruction doctest.testmod() nous verrons
l’erreur suivante :

File "val.py", line 250, in __main__.division
Failed example:
 division(19,7)
Expected:
 (2,5)
Got:
 (2, 5)

notez l’espace manquante après la virgule dans la docstring...

46/50

Effectuer les tests

• Par exemple si on écrit dans la docstring de notre fonction.
def division(a: int, b: int) -> (int, int):
 """
 ...
 >>> division(19,7)
 (2,5)
 ...
 """
 # ...

alors à l’exécution de l’instruction doctest.testmod() nous verrons
l’erreur suivante :

File "val.py", line 250, in __main__.division
Failed example:
 division(19,7)
Expected:
 (2,5)
Got:
 (2, 5)

notez l’espace manquante après la virgule dans la docstring...

46/50

Effectuer les tests

• De même, si on écrit :
def division(a: int, b: int) -> (int, int):
 """
 ...
 >>> division(19,-7)
 None
 ...
 """

alors à l’exécution de l’instruction doctest.testmod() nous verrons
l’erreur suivante :

File "val.py", line 264, in __main__.division
Failed example:
 division(-19,-7)
Expected:
 None
Got nothing

car None et "None" ce n’est pas la même chose !

46/50

Effectuer les tests

• De même, si on écrit :
def division(a: int, b: int) -> (int, int):
 """
 ...
 >>> division(19,-7)
 None
 ...
 """

alors à l’exécution de l’instruction doctest.testmod() nous verrons
l’erreur suivante :

File "val.py", line 264, in __main__.division
Failed example:
 division(-19,-7)
Expected:
 None
Got nothing

car None et "None" ce n’est pas la même chose !

46/50

Effectuer les tests

Il est préférable d’opter pour l’écriture suivante :
def division(a: int, b: int) -> (int, int):
 """
 ...
 >>> division(19,-7) == None
 True
 ...
 """
 # ...

alors à l’exécution de l’instruction doctest.testmod() il n’y aura plus
d’erreur (à condition d’écrire True correctement, et sans espace avant ni
après !).

47/50

Effectuer les tests

Il est préférable d’opter pour l’écriture suivante :
def division(a: int, b: int) -> (int, int):
 """
 ...
 >>> division(19,-7) == None
 True
 ...
 """
 # ...

alors à l’exécution de l’instruction doctest.testmod() il n’y aura plus
d’erreur (à condition d’écrire True correctement, et sans espace avant ni
après !).

47/50

Effectuer les tests

Pour conclure, nous pouvons proposer ce code pour tester notre fonction :
def division(a: int, b: int) -> (int, int):
 ””””
 Renvoie le quotient et le reste de la division de a par b
 Paramètres:

 a: int, entier natuel
 b: int, entier strictement positif
 Retour:

 tuple (q, r) tel que a=bq+r avec 0<=r<b
 ou None si a<0 ou b<=0
 Exemples:

 »> division(19,7) == (2,5)
 True
 »> division(7,19) == (0,7)
 True
 »> division(0,19) == (0,0)
 True
 »> division(19,0) == None
 True

48/50

Effectuer les tests

Suite :
 ”””
 »> division(19,-7) == None
 True
 »> division(-19,7) == None
 True
 »> division(-19,0) == None
 True
 »> division(-19,-7) == None
 True
 ”””
 if (a<0) or (b<=0): # pré-condition non remplie
 return None
 q, r = 0, a
 while r >= b:
 # Invariant: a=bq+r et 0<=r
 q += 1
 r -= b # bq+r = b(q+1)+(r-b)
 return (q, r)

49/50

Tests de performance

• Pour comparer des algorithmes, on peut être amené à effectuer des
tests de performance en temps d’exécution.

• Avec le module time, il est possible de faire ces mesures. On relève un
instant initial, on exécute un certain nombre de fois la fonction, on
relève l’instant final et il n’y a plus qu’à faire la différence.

• Exemple :
from time import time # fonction time du module time
t1 = time() # instant initial
for _ in range(1000): # pour 1000 exécutions par exemple
 r = fonction_a_tester()
t2 = time() # instant final
print(”durée: ”, (t2-t1)/1000) # en secondes

• Suivant le système d’exploitation, une seule exécution n’est pas
forcément suffisante pour avoir une mesure fiable.

• Si on travaille dans un notebook, alors on peut plus simplement
utiliser l’instruction timeit fonction_a_tester() qui va mesurer
automatiquement le temps d’exécution de la fonction.

50/50

Tests de performance

• Pour comparer des algorithmes, on peut être amené à effectuer des
tests de performance en temps d’exécution.

• Avec le module time, il est possible de faire ces mesures. On relève un
instant initial, on exécute un certain nombre de fois la fonction, on
relève l’instant final et il n’y a plus qu’à faire la différence.

• Exemple :
from time import time # fonction time du module time
t1 = time() # instant initial
for _ in range(1000): # pour 1000 exécutions par exemple
 r = fonction_a_tester()
t2 = time() # instant final
print(”durée: ”, (t2-t1)/1000) # en secondes

• Suivant le système d’exploitation, une seule exécution n’est pas
forcément suffisante pour avoir une mesure fiable.

• Si on travaille dans un notebook, alors on peut plus simplement
utiliser l’instruction timeit fonction_a_tester() qui va mesurer
automatiquement le temps d’exécution de la fonction.

50/50

Tests de performance

• Pour comparer des algorithmes, on peut être amené à effectuer des
tests de performance en temps d’exécution.

• Avec le module time, il est possible de faire ces mesures. On relève un
instant initial, on exécute un certain nombre de fois la fonction, on
relève l’instant final et il n’y a plus qu’à faire la différence.

• Exemple :
from time import time # fonction time du module time
t1 = time() # instant initial
for _ in range(1000): # pour 1000 exécutions par exemple
 r = fonction_a_tester()
t2 = time() # instant final
print(”durée: ”, (t2-t1)/1000) # en secondes

• Suivant le système d’exploitation, une seule exécution n’est pas
forcément suffisante pour avoir une mesure fiable.

• Si on travaille dans un notebook, alors on peut plus simplement
utiliser l’instruction timeit fonction_a_tester() qui va mesurer
automatiquement le temps d’exécution de la fonction.

50/50

Tests de performance

• Pour comparer des algorithmes, on peut être amené à effectuer des
tests de performance en temps d’exécution.

• Avec le module time, il est possible de faire ces mesures. On relève un
instant initial, on exécute un certain nombre de fois la fonction, on
relève l’instant final et il n’y a plus qu’à faire la différence.

• Exemple :
from time import time # fonction time du module time
t1 = time() # instant initial
for _ in range(1000): # pour 1000 exécutions par exemple
 r = fonction_a_tester()
t2 = time() # instant final
print(”durée: ”, (t2-t1)/1000) # en secondes

• Suivant le système d’exploitation, une seule exécution n’est pas
forcément suffisante pour avoir une mesure fiable.

• Si on travaille dans un notebook, alors on peut plus simplement
utiliser l’instruction timeit fonction_a_tester() qui va mesurer
automatiquement le temps d’exécution de la fonction.

50/50

Tests de performance

• Pour comparer des algorithmes, on peut être amené à effectuer des
tests de performance en temps d’exécution.

• Avec le module time, il est possible de faire ces mesures. On relève un
instant initial, on exécute un certain nombre de fois la fonction, on
relève l’instant final et il n’y a plus qu’à faire la différence.

• Exemple :
from time import time # fonction time du module time
t1 = time() # instant initial
for _ in range(1000): # pour 1000 exécutions par exemple
 r = fonction_a_tester()
t2 = time() # instant final
print(”durée: ”, (t2-t1)/1000) # en secondes

• Suivant le système d’exploitation, une seule exécution n’est pas
forcément suffisante pour avoir une mesure fiable.

• Si on travaille dans un notebook, alors on peut plus simplement
utiliser l’instruction timeit fonction_a_tester() qui va mesurer
automatiquement le temps d’exécution de la fonction.

50/50

